Abstract

We have fabricated monolithic silicon avalanche photodiodes capable of 10 Gbps operation at a wavelength of 1550 nm. The photodiodes are entirely CMOS process compatible and comprise a p-i-n junction integrated with a silicon-on-insulator (SOI) rib waveguide. Photo-generation is initiated via the presence of deep levels in the silicon bandgap, introduced by ion implantation and modified by subsequent annealing. The devices show a small signal 3 dB bandwidth of 2.0 GHz as well as an open eye pattern at 10 Gbps. A responsivity of 4.7 ± 0.5 A/W is measured for a 600 µm device at a reverse bias of 40 V.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Pavesi and G. Guillot, Optical Interconnects: The Silicon Approach, Vol. 119 Springer Series in Optical Sciences (Springer-Verlag 2006).
  2. R. Beausoleil, “Large-Scale integrated photonics for high-performance interconnects,” ACM J. Emerg. Technol.7(2), Article 6 (2011).
  3. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nature Phot.4(8), 511–517 (2010).
    [CrossRef]
  4. L. Vivien, J. M. Osmond, J. M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express17(8), 6252–6257 (2009).
    [CrossRef] [PubMed]
  5. A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation engineered-enhanced infrared response,” J. Vac. Sci. Technol. A24(3), 783–786 (2006).
    [CrossRef]
  6. J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express18(14), 14671–14678 (2010).
    [CrossRef] [PubMed]
  7. D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-enhanced silicon-on-insulator waveguide resonant photodetector with high sensitivity at 1.55 µm,” IEEE Photon. Technol. Lett.22(20), 1530–1532 (2010).
    [CrossRef]
  8. M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express17(7), 5193–5204 (2009).
    [CrossRef] [PubMed]
  9. R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, and R. M. Osgood, “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55 µm,” IEEE Photon. Technol. Lett.25(1), 67–70 (2013).
    [CrossRef]
  10. S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature464(7285), 80–84 (2010).
    [CrossRef] [PubMed]
  11. N. Duan, T.Y. Liow, A. Lim, L. Ding and G.Q. Lo, “High speed waveguide-integrated Ge/Si avalanche photodetector,” in The Optical Fiber Communication Conference and Exposition (Optical Society of America 2013) paper OM3K.3.
  12. Silvaco Inc, ( http://www.silvaco.com/products/device_simulation/atlas.html ) (2013).
  13. M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19(3), 152–154 (2007).
    [CrossRef]
  14. B. Souhan, C. P. Chen, R. R. Grote, J. B. Driscoll, N. Ophir, K. Bergman, and R. M. Osgood, Jr., “Error-free operation of an all-silicon waveguide photodiode at 1.9 um,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies (Optical Society of America 2013) paper CTh3L.4.
    [CrossRef]
  15. D. F. Logan, P. E. Jessop, and A. P. Knights, “Modeling defect enhanced detection at 1550 nm in integrated silicon waveguide photodetectors,” J. Lightwave Technol.27(7), 930–937 (2009).
    [CrossRef]

2013 (1)

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, and R. M. Osgood, “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55 µm,” IEEE Photon. Technol. Lett.25(1), 67–70 (2013).
[CrossRef]

2011 (1)

R. Beausoleil, “Large-Scale integrated photonics for high-performance interconnects,” ACM J. Emerg. Technol.7(2), Article 6 (2011).

2010 (4)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nature Phot.4(8), 511–517 (2010).
[CrossRef]

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature464(7285), 80–84 (2010).
[CrossRef] [PubMed]

J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express18(14), 14671–14678 (2010).
[CrossRef] [PubMed]

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-enhanced silicon-on-insulator waveguide resonant photodetector with high sensitivity at 1.55 µm,” IEEE Photon. Technol. Lett.22(20), 1530–1532 (2010).
[CrossRef]

2009 (3)

2007 (1)

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19(3), 152–154 (2007).
[CrossRef]

2006 (1)

A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation engineered-enhanced infrared response,” J. Vac. Sci. Technol. A24(3), 783–786 (2006).
[CrossRef]

Assefa, S.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Beausoleil, R.

R. Beausoleil, “Large-Scale integrated photonics for high-performance interconnects,” ACM J. Emerg. Technol.7(2), Article 6 (2011).

Bergman, K.

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, and R. M. Osgood, “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55 µm,” IEEE Photon. Technol. Lett.25(1), 67–70 (2013).
[CrossRef]

Bowers, J. E.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nature Phot.4(8), 511–517 (2010).
[CrossRef]

Bradley, J. D.

A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation engineered-enhanced infrared response,” J. Vac. Sci. Technol. A24(3), 783–786 (2006).
[CrossRef]

Cassan, E.

Crozat, P.

Damlencourt, J. F.

De La Rue, R. M.

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-enhanced silicon-on-insulator waveguide resonant photodetector with high sensitivity at 1.55 µm,” IEEE Photon. Technol. Lett.22(20), 1530–1532 (2010).
[CrossRef]

Deneault, S.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19(3), 152–154 (2007).
[CrossRef]

Doylend, J. K.

Driscoll, J. B.

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, and R. M. Osgood, “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55 µm,” IEEE Photon. Technol. Lett.25(1), 67–70 (2013).
[CrossRef]

Fédéli, J. M.

Gan, F.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19(3), 152–154 (2007).
[CrossRef]

Geis, M. W.

M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express17(7), 5193–5204 (2009).
[CrossRef] [PubMed]

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19(3), 152–154 (2007).
[CrossRef]

Gou, S. H.

A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation engineered-enhanced infrared response,” J. Vac. Sci. Technol. A24(3), 783–786 (2006).
[CrossRef]

Grein, M. E.

M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express17(7), 5193–5204 (2009).
[CrossRef] [PubMed]

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19(3), 152–154 (2007).
[CrossRef]

Grote, R. R.

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, and R. M. Osgood, “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55 µm,” IEEE Photon. Technol. Lett.25(1), 67–70 (2013).
[CrossRef]

Jessop, P. E.

J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express18(14), 14671–14678 (2010).
[CrossRef] [PubMed]

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-enhanced silicon-on-insulator waveguide resonant photodetector with high sensitivity at 1.55 µm,” IEEE Photon. Technol. Lett.22(20), 1530–1532 (2010).
[CrossRef]

D. F. Logan, P. E. Jessop, and A. P. Knights, “Modeling defect enhanced detection at 1550 nm in integrated silicon waveguide photodetectors,” J. Lightwave Technol.27(7), 930–937 (2009).
[CrossRef]

A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation engineered-enhanced infrared response,” J. Vac. Sci. Technol. A24(3), 783–786 (2006).
[CrossRef]

Kaertner, F. X.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19(3), 152–154 (2007).
[CrossRef]

Knights, A. P.

J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express18(14), 14671–14678 (2010).
[CrossRef] [PubMed]

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-enhanced silicon-on-insulator waveguide resonant photodetector with high sensitivity at 1.55 µm,” IEEE Photon. Technol. Lett.22(20), 1530–1532 (2010).
[CrossRef]

D. F. Logan, P. E. Jessop, and A. P. Knights, “Modeling defect enhanced detection at 1550 nm in integrated silicon waveguide photodetectors,” J. Lightwave Technol.27(7), 930–937 (2009).
[CrossRef]

A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation engineered-enhanced infrared response,” J. Vac. Sci. Technol. A24(3), 783–786 (2006).
[CrossRef]

Laval, S.

Lecunff, Y.

Lennon, D. M.

M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express17(7), 5193–5204 (2009).
[CrossRef] [PubMed]

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19(3), 152–154 (2007).
[CrossRef]

Liang, D.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nature Phot.4(8), 511–517 (2010).
[CrossRef]

Logan, D. F.

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-enhanced silicon-on-insulator waveguide resonant photodetector with high sensitivity at 1.55 µm,” IEEE Photon. Technol. Lett.22(20), 1530–1532 (2010).
[CrossRef]

D. F. Logan, P. E. Jessop, and A. P. Knights, “Modeling defect enhanced detection at 1550 nm in integrated silicon waveguide photodetectors,” J. Lightwave Technol.27(7), 930–937 (2009).
[CrossRef]

Lyszczarz, T. M.

M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express17(7), 5193–5204 (2009).
[CrossRef] [PubMed]

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19(3), 152–154 (2007).
[CrossRef]

Marris-Morini, D.

Osgood, R. M.

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, and R. M. Osgood, “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55 µm,” IEEE Photon. Technol. Lett.25(1), 67–70 (2013).
[CrossRef]

Osmond, J. M.

Padmaraju, K.

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, and R. M. Osgood, “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55 µm,” IEEE Photon. Technol. Lett.25(1), 67–70 (2013).
[CrossRef]

Schulein, R. T.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19(3), 152–154 (2007).
[CrossRef]

Sorel, M.

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-enhanced silicon-on-insulator waveguide resonant photodetector with high sensitivity at 1.55 µm,” IEEE Photon. Technol. Lett.22(20), 1530–1532 (2010).
[CrossRef]

Souhan, B.

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, and R. M. Osgood, “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55 µm,” IEEE Photon. Technol. Lett.25(1), 67–70 (2013).
[CrossRef]

Spector, S. J.

M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express17(7), 5193–5204 (2009).
[CrossRef] [PubMed]

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19(3), 152–154 (2007).
[CrossRef]

Velha, P.

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-enhanced silicon-on-insulator waveguide resonant photodetector with high sensitivity at 1.55 µm,” IEEE Photon. Technol. Lett.22(20), 1530–1532 (2010).
[CrossRef]

Vivien, L.

Vlasov, Y. A.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Xia, F.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Yoon, J. U.

M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express17(7), 5193–5204 (2009).
[CrossRef] [PubMed]

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19(3), 152–154 (2007).
[CrossRef]

ACM J. Emerg. Technol. (1)

R. Beausoleil, “Large-Scale integrated photonics for high-performance interconnects,” ACM J. Emerg. Technol.7(2), Article 6 (2011).

IEEE Photon. Technol. Lett. (3)

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights, and P. E. Jessop, “Defect-enhanced silicon-on-insulator waveguide resonant photodetector with high sensitivity at 1.55 µm,” IEEE Photon. Technol. Lett.22(20), 1530–1532 (2010).
[CrossRef]

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, and R. M. Osgood, “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55 µm,” IEEE Photon. Technol. Lett.25(1), 67–70 (2013).
[CrossRef]

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett.19(3), 152–154 (2007).
[CrossRef]

J. Lightwave Technol. (1)

J. Vac. Sci. Technol. A (1)

A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation engineered-enhanced infrared response,” J. Vac. Sci. Technol. A24(3), 783–786 (2006).
[CrossRef]

Nature (1)

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature464(7285), 80–84 (2010).
[CrossRef] [PubMed]

Nature Phot. (1)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nature Phot.4(8), 511–517 (2010).
[CrossRef]

Opt. Express (3)

Other (4)

B. Souhan, C. P. Chen, R. R. Grote, J. B. Driscoll, N. Ophir, K. Bergman, and R. M. Osgood, Jr., “Error-free operation of an all-silicon waveguide photodiode at 1.9 um,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies (Optical Society of America 2013) paper CTh3L.4.
[CrossRef]

L. Pavesi and G. Guillot, Optical Interconnects: The Silicon Approach, Vol. 119 Springer Series in Optical Sciences (Springer-Verlag 2006).

N. Duan, T.Y. Liow, A. Lim, L. Ding and G.Q. Lo, “High speed waveguide-integrated Ge/Si avalanche photodetector,” in The Optical Fiber Communication Conference and Exposition (Optical Society of America 2013) paper OM3K.3.

Silvaco Inc, ( http://www.silvaco.com/products/device_simulation/atlas.html ) (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

A cross-sectional schematic of the waveguide photodiode. Dimensions are shown in nanometers.

Fig. 2
Fig. 2

Current voltage characteristic of a 600 µm long photodiode.

Fig. 3
Fig. 3

The simulated 2D electric field cross section of a photodiode for various reverse bias voltages. The vertical dashed lines represent the waveguide rib boundary. The cross section lines were taken 25 nm from above the buried oxide, centered vertically within the 50 nm thick silicon slab.

Fig. 4
Fig. 4

Photodiode current versus launched laser power for a 200 µm long photodiode with a reverse bias of 40 V. Linear operation is demonstrated from −30 dBm to 3.5 dBm.

Fig. 5
Fig. 5

The wavelength spectrum of the APD and the measured optical power transmitted (externally measured). The photodiode response is dominated by the transmission of the grating couplers.

Fig. 6
Fig. 6

The small signal frequency response of a 600 µm long photodiode. Shown are the traces for 35 V and 40 V reverse bias. At 35 V reverse bias the 3 dB bandwidth is 2.0 GHz, with increasing voltage the response decreases due to increased multiplication gain.

Fig. 7
Fig. 7

(a) A received 10 Gbps pattern (time span 300 ps) for a generated PRBS 27 −1 signal. (b) A 10 Gbps eye pattern from a 800 µm detector operating with a reverse bias of 35 V.

Fig. 8
Fig. 8

The temperature response of a 200 µm long photodiode reverse biased at 35 V.

Metrics