Abstract

Photonic crystal slabs (PCS) are one of the major transducers for label-free, optical biosensing applications. In this paper we present oblique-angle layer deposition of the high index slab material as a method to improve the PCS sensitivity. In simulations and experiments we consider PCSs composed of a high index silicon monoxide layer on a nanostructured resist layer on a glass substrate. By mounting the substrate at an oblique angle with respect to the evaporation source, the high index material distribution on the nanostructured surface is modified due to shadowing effects. Finite-difference time-domain (FDTD) simulations were performed to predict bulk and surface sensitivities. In order to verify the simulation results we fabricated PCSs at various deposition angles using nanoimprint lithography to replicate a linear grating nanostructure into the resist layer and thermal evaporation for a 60-nm silicon monoxide deposition. The bulk sensitivities of these structures were measured using water-glycerol dilutions. A sensitivity improvement of 281% was obtained for PCSs fabricated at 45° deposition angle compared to normal incidence deposition.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J Biophotonics16, 1–16 (2012).
    [PubMed]
  2. B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem.81(2-3), 316–328 (2002).
    [CrossRef]
  3. R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors (Basel)11(12), 1476–1488 (2011).
    [CrossRef] [PubMed]
  4. B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004).
    [CrossRef] [PubMed]
  5. S. M. Shamah and B. T. Cunningham, “Label-free cell-based assays using photonic crystal optical biosensors,” Analyst (Lond.)136(6), 1090–1102 (2011).
    [CrossRef] [PubMed]
  6. Y. Nazirizadeh, U. Bog, S. Sekula, T. Mappes, U. Lemmer, and M. Gerken, “Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers,” Opt. Express18(18), 19120–19128 (2010).
    [CrossRef] [PubMed]
  7. S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
    [CrossRef]
  8. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express16(2), 1020–1028 (2008).
    [CrossRef] [PubMed]
  9. M. El Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express18(22), 22702–22714 (2010).
    [CrossRef] [PubMed]
  10. N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid.4(1-2), 117–127 (2008).
    [CrossRef]
  11. M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express17(26), 24224–24233 (2009).
    [CrossRef] [PubMed]
  12. L. Shi, P. Pottier, Y. A. Peter, and M. Skorobogatiy, “Guided-mode resonance photonic crystal slab sensors based on bead monolayer geometry,” Opt. Express16(22), 17962–17971 (2008).
    [CrossRef] [PubMed]
  13. L. J. Guo, “Nanoimprint lithography: Methods and material requirements,” Adv. Mater.19(4), 495–513 (2007).
    [CrossRef]
  14. I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sensor Actuat. B120(1), 187–193 (2006).
    [CrossRef]
  15. W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sensor Actuat. B131(1), 279–284 (2008).
    [CrossRef]
  16. W. Zhang, S. Kim, N. Ganesh, I. D. Block, P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Deposited nanorod films for photonic crystal biosensor applications,” J. Vac. Sci. Technol. A28(4), 996–1001 (2010).
    [CrossRef]
  17. M. Stroisch, C. Teiwes-Morin, T. Woggon, M. Gerken, U. Lemmer, K. Forberich, and A. Gombert, “Photonic stopband tuning of organic semiconductor distributed feedback lasers by oblique angle deposition of an intermediate high index layer,” Appl. Phys. Lett.95(2), 021112 (2009).
    [CrossRef]
  18. Y. Nazirizadeh, F. Oertzen, K. Plewa, N. Barié, P.-J. Jakobs, M. Guttmann, H. Leiste, and M. Gerken, “Sensitivity optimization of injection-molded photonic crystal slabs for biosensing applications,” Opt. Mater. Express3(5), 556–565 (2013).
    [CrossRef]
  19. M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Raedler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B30(3), 031601 (2012).
    [CrossRef]

2013 (1)

2012 (2)

M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Raedler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B30(3), 031601 (2012).
[CrossRef]

D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J Biophotonics16, 1–16 (2012).
[PubMed]

2011 (2)

R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors (Basel)11(12), 1476–1488 (2011).
[CrossRef] [PubMed]

S. M. Shamah and B. T. Cunningham, “Label-free cell-based assays using photonic crystal optical biosensors,” Analyst (Lond.)136(6), 1090–1102 (2011).
[CrossRef] [PubMed]

2010 (3)

2009 (2)

M. Stroisch, C. Teiwes-Morin, T. Woggon, M. Gerken, U. Lemmer, K. Forberich, and A. Gombert, “Photonic stopband tuning of organic semiconductor distributed feedback lasers by oblique angle deposition of an intermediate high index layer,” Appl. Phys. Lett.95(2), 021112 (2009).
[CrossRef]

M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express17(26), 24224–24233 (2009).
[CrossRef] [PubMed]

2008 (4)

L. Shi, P. Pottier, Y. A. Peter, and M. Skorobogatiy, “Guided-mode resonance photonic crystal slab sensors based on bead monolayer geometry,” Opt. Express16(22), 17962–17971 (2008).
[CrossRef] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express16(2), 1020–1028 (2008).
[CrossRef] [PubMed]

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sensor Actuat. B131(1), 279–284 (2008).
[CrossRef]

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid.4(1-2), 117–127 (2008).
[CrossRef]

2007 (1)

L. J. Guo, “Nanoimprint lithography: Methods and material requirements,” Adv. Mater.19(4), 495–513 (2007).
[CrossRef]

2006 (1)

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sensor Actuat. B120(1), 187–193 (2006).
[CrossRef]

2004 (1)

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004).
[CrossRef] [PubMed]

2002 (2)

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem.81(2-3), 316–328 (2002).
[CrossRef]

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

Altug, H.

Baird, C.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004).
[CrossRef] [PubMed]

Barié, N.

Block, I. D.

W. Zhang, S. Kim, N. Ganesh, I. D. Block, P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Deposited nanorod films for photonic crystal biosensor applications,” J. Vac. Sci. Technol. A28(4), 996–1001 (2010).
[CrossRef]

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sensor Actuat. B131(1), 279–284 (2008).
[CrossRef]

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sensor Actuat. B120(1), 187–193 (2006).
[CrossRef]

Bog, U.

Chan, L. L.

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sensor Actuat. B120(1), 187–193 (2006).
[CrossRef]

Chang, T. Y.

Cunningham, B.

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem.81(2-3), 316–328 (2002).
[CrossRef]

Cunningham, B. T.

S. M. Shamah and B. T. Cunningham, “Label-free cell-based assays using photonic crystal optical biosensors,” Analyst (Lond.)136(6), 1090–1102 (2011).
[CrossRef] [PubMed]

W. Zhang, S. Kim, N. Ganesh, I. D. Block, P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Deposited nanorod films for photonic crystal biosensor applications,” J. Vac. Sci. Technol. A28(4), 996–1001 (2010).
[CrossRef]

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sensor Actuat. B131(1), 279–284 (2008).
[CrossRef]

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sensor Actuat. B120(1), 187–193 (2006).
[CrossRef]

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004).
[CrossRef] [PubMed]

Ding, Y.

R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors (Basel)11(12), 1476–1488 (2011).
[CrossRef] [PubMed]

El Beheiry, M.

Fan, S.

M. El Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express18(22), 22702–22714 (2010).
[CrossRef] [PubMed]

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

Fan, X.

Fine, E.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004).
[CrossRef] [PubMed]

Forberich, K.

M. Stroisch, C. Teiwes-Morin, T. Woggon, M. Gerken, U. Lemmer, K. Forberich, and A. Gombert, “Photonic stopband tuning of organic semiconductor distributed feedback lasers by oblique angle deposition of an intermediate high index layer,” Appl. Phys. Lett.95(2), 021112 (2009).
[CrossRef]

Ganesh, N.

W. Zhang, S. Kim, N. Ganesh, I. D. Block, P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Deposited nanorod films for photonic crystal biosensor applications,” J. Vac. Sci. Technol. A28(4), 996–1001 (2010).
[CrossRef]

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sensor Actuat. B131(1), 279–284 (2008).
[CrossRef]

Genick, C.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004).
[CrossRef] [PubMed]

Gerken, M.

Y. Nazirizadeh, F. Oertzen, K. Plewa, N. Barié, P.-J. Jakobs, M. Guttmann, H. Leiste, and M. Gerken, “Sensitivity optimization of injection-molded photonic crystal slabs for biosensing applications,” Opt. Mater. Express3(5), 556–565 (2013).
[CrossRef]

M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Raedler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B30(3), 031601 (2012).
[CrossRef]

D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J Biophotonics16, 1–16 (2012).
[PubMed]

Y. Nazirizadeh, U. Bog, S. Sekula, T. Mappes, U. Lemmer, and M. Gerken, “Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers,” Opt. Express18(18), 19120–19128 (2010).
[CrossRef] [PubMed]

M. Stroisch, C. Teiwes-Morin, T. Woggon, M. Gerken, U. Lemmer, K. Forberich, and A. Gombert, “Photonic stopband tuning of organic semiconductor distributed feedback lasers by oblique angle deposition of an intermediate high index layer,” Appl. Phys. Lett.95(2), 021112 (2009).
[CrossRef]

Gerstenmaier, J.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004).
[CrossRef] [PubMed]

Gombert, A.

M. Stroisch, C. Teiwes-Morin, T. Woggon, M. Gerken, U. Lemmer, K. Forberich, and A. Gombert, “Photonic stopband tuning of organic semiconductor distributed feedback lasers by oblique angle deposition of an intermediate high index layer,” Appl. Phys. Lett.95(2), 021112 (2009).
[CrossRef]

Guo, L. J.

L. J. Guo, “Nanoimprint lithography: Methods and material requirements,” Adv. Mater.19(4), 495–513 (2007).
[CrossRef]

Guttmann, M.

Hansen, M.

M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Raedler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B30(3), 031601 (2012).
[CrossRef]

Huang, M.

Jakobs, P.-J.

Joannopoulos, J.

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

Kim, S.

W. Zhang, S. Kim, N. Ganesh, I. D. Block, P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Deposited nanorod films for photonic crystal biosensor applications,” J. Vac. Sci. Technol. A28(4), 996–1001 (2010).
[CrossRef]

Kohlstedt, H.

M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Raedler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B30(3), 031601 (2012).
[CrossRef]

Laing, L.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004).
[CrossRef] [PubMed]

Leiste, H.

Lemmer, U.

Y. Nazirizadeh, U. Bog, S. Sekula, T. Mappes, U. Lemmer, and M. Gerken, “Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers,” Opt. Express18(18), 19120–19128 (2010).
[CrossRef] [PubMed]

M. Stroisch, C. Teiwes-Morin, T. Woggon, M. Gerken, U. Lemmer, K. Forberich, and A. Gombert, “Photonic stopband tuning of organic semiconductor distributed feedback lasers by oblique angle deposition of an intermediate high index layer,” Appl. Phys. Lett.95(2), 021112 (2009).
[CrossRef]

Levi, O.

Li, P.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004).
[CrossRef] [PubMed]

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem.81(2-3), 316–328 (2002).
[CrossRef]

Lin, B.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004).
[CrossRef] [PubMed]

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem.81(2-3), 316–328 (2002).
[CrossRef]

Liu, V.

Magnusson, R.

R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors (Basel)11(12), 1476–1488 (2011).
[CrossRef] [PubMed]

Mappes, T.

Mathias, P. C.

W. Zhang, S. Kim, N. Ganesh, I. D. Block, P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Deposited nanorod films for photonic crystal biosensor applications,” J. Vac. Sci. Technol. A28(4), 996–1001 (2010).
[CrossRef]

Mortensen, N. A.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid.4(1-2), 117–127 (2008).
[CrossRef]

Nazirizadeh, Y.

Oertzen, F.

Pedersen, J.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid.4(1-2), 117–127 (2008).
[CrossRef]

Pepper, J.

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem.81(2-3), 316–328 (2002).
[CrossRef]

Peter, Y. A.

Plewa, K.

Pottier, P.

Pradana, A.

M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Raedler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B30(3), 031601 (2012).
[CrossRef]

Raedler, M.

M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Raedler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B30(3), 031601 (2012).
[CrossRef]

Schulz, S.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004).
[CrossRef] [PubMed]

Sekula, S.

Shamah, S. M.

S. M. Shamah and B. T. Cunningham, “Label-free cell-based assays using photonic crystal optical biosensors,” Analyst (Lond.)136(6), 1090–1102 (2011).
[CrossRef] [PubMed]

Shi, L.

Skorobogatiy, M.

Stroisch, M.

M. Stroisch, C. Teiwes-Morin, T. Woggon, M. Gerken, U. Lemmer, K. Forberich, and A. Gombert, “Photonic stopband tuning of organic semiconductor distributed feedback lasers by oblique angle deposition of an intermediate high index layer,” Appl. Phys. Lett.95(2), 021112 (2009).
[CrossRef]

Teiwes-Morin, C.

M. Stroisch, C. Teiwes-Morin, T. Woggon, M. Gerken, U. Lemmer, K. Forberich, and A. Gombert, “Photonic stopband tuning of organic semiconductor distributed feedback lasers by oblique angle deposition of an intermediate high index layer,” Appl. Phys. Lett.95(2), 021112 (2009).
[CrossRef]

Threm, D.

D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J Biophotonics16, 1–16 (2012).
[PubMed]

Wang, F.

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004).
[CrossRef] [PubMed]

Wawro, D.

R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors (Basel)11(12), 1476–1488 (2011).
[CrossRef] [PubMed]

White, I. M.

Woggon, T.

M. Stroisch, C. Teiwes-Morin, T. Woggon, M. Gerken, U. Lemmer, K. Forberich, and A. Gombert, “Photonic stopband tuning of organic semiconductor distributed feedback lasers by oblique angle deposition of an intermediate high index layer,” Appl. Phys. Lett.95(2), 021112 (2009).
[CrossRef]

Wu, H.-Y.

W. Zhang, S. Kim, N. Ganesh, I. D. Block, P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Deposited nanorod films for photonic crystal biosensor applications,” J. Vac. Sci. Technol. A28(4), 996–1001 (2010).
[CrossRef]

Xiao, S.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid.4(1-2), 117–127 (2008).
[CrossRef]

Yanik, A. A.

Zhang, W.

W. Zhang, S. Kim, N. Ganesh, I. D. Block, P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Deposited nanorod films for photonic crystal biosensor applications,” J. Vac. Sci. Technol. A28(4), 996–1001 (2010).
[CrossRef]

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sensor Actuat. B131(1), 279–284 (2008).
[CrossRef]

Ziegler, M.

M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Raedler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B30(3), 031601 (2012).
[CrossRef]

Zimmerman, S.

R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors (Basel)11(12), 1476–1488 (2011).
[CrossRef] [PubMed]

Adv. Mater. (1)

L. J. Guo, “Nanoimprint lithography: Methods and material requirements,” Adv. Mater.19(4), 495–513 (2007).
[CrossRef]

Analyst (Lond.) (1)

S. M. Shamah and B. T. Cunningham, “Label-free cell-based assays using photonic crystal optical biosensors,” Analyst (Lond.)136(6), 1090–1102 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

M. Stroisch, C. Teiwes-Morin, T. Woggon, M. Gerken, U. Lemmer, K. Forberich, and A. Gombert, “Photonic stopband tuning of organic semiconductor distributed feedback lasers by oblique angle deposition of an intermediate high index layer,” Appl. Phys. Lett.95(2), 021112 (2009).
[CrossRef]

J Biophotonics (1)

D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J Biophotonics16, 1–16 (2012).
[PubMed]

J. Biomol. Screen. (1)

B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen.9(6), 481–490 (2004).
[CrossRef] [PubMed]

J. Vac. Sci. Technol. A (1)

W. Zhang, S. Kim, N. Ganesh, I. D. Block, P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Deposited nanorod films for photonic crystal biosensor applications,” J. Vac. Sci. Technol. A28(4), 996–1001 (2010).
[CrossRef]

J. Vac. Sci. Technol. B (1)

M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Raedler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B30(3), 031601 (2012).
[CrossRef]

Microfluid. Nanofluid. (1)

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid.4(1-2), 117–127 (2008).
[CrossRef]

Opt. Express (5)

Opt. Mater. Express (1)

Phys. Rev. B (1)

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

Sens. Actuators B Chem. (1)

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem.81(2-3), 316–328 (2002).
[CrossRef]

Sensor Actuat. B (2)

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sensor Actuat. B120(1), 187–193 (2006).
[CrossRef]

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sensor Actuat. B131(1), 279–284 (2008).
[CrossRef]

Sensors (Basel) (1)

R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors (Basel)11(12), 1476–1488 (2011).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of photonic crystal slab (PCS) as the transducer in label-free experiments. The quasi-guided mode (QGM) provided by the high index layer penetrates objects on the surface and reacts to mass changes of these objects. (b) Schematics of the oblique-angle deposition technique as the last step of the PCS fabrication. Due to the oblique deposition a unique material distribution is observed with a gap in the high index material and material deposited on the sidewall of the nanostructure.

Fig. 2
Fig. 2

(a) With FDTD simulated transmission spectra of a PCS with a thickness of 60 nm and 0° deposition angle. The bulk sensitivity is calculated by dividing the resonance shift (Δλ) by the refractive index change (Δn) in the analyte above the PCS. (b) Simulated transmission spectra of a PCS with 40° deposition angle. Due to material redistribution a twice-higher bulk sensitivity is observed.

Fig. 3
Fig. 3

(a) With FDTD simulated transmission spectra of PCSs with 60 nm and 100 nm slab thickness. As the deposition angle grows we observe a red shift of the GMR. For a slab thickness of 60 nm we observe additionally a discontinuity in the GMR evolution. (b) Bulk sensitivities calculated using FDTD simulations at two different refractive indices above the PCS surface as a function of the deposition angle. We observe sensitivity enhancement of 105% and 8% for slab thicknesses of 60 nm and 100 nm, respectively. (c) Quality factor (Q) as a function of the deposition angle for resonances provided in PCSs with 60 nm and 100 nm slab thickness. These values are obtained by fitting a Lorentzian function to the simulated transmission spectra from Fig. 3(a). (d) Product of Q-factor and bulk sensitivity as a function of the deposition angle.

Fig. 4
Fig. 4

Calculated electric field (E2) distribution of the QGM at resonance wavelength in PCS’s unit cell for deposition angles of 0° and 40°. Due to the redistribution of the high index material the mode is pulled up towards the analyte area.

Fig. 5
Fig. 5

Simulated bulk and surface sensitivities calculated using FDTD as a function of deposition angle and slab thickness. In both cases sensitivity enhancement is more pronounced for thinner slabs. For high deposition angles and high slab thicknesses the high index material overlaps with the groove sidewall. These data points are ignored and plotted in white.

Fig. 6
Fig. 6

Focused ion beam (FIB) cut through a PCS with 45° evaporation angle. The PCS is composed of an AMONIL grating imprinted on a glass substrate with a periodicity of 400 nm and a groove depth of 140 nm. The duty cycle of the grating is 0.5. The silicon monoxide (SiOx) high index layer was evaporated at 45°. For the SEM image the sample was deposited with silver (Ag).

Fig. 7
Fig. 7

(a) Transmission spectra through PCS fabricated with an evaporation angle of 45° at different refractive indices. (b) Experimental bulk sensitivity as a function of evaporation angle. Six measurements at each evaporation angle were performed and mean values and standard deviations are plotted. Compared to 0° evaporation angle an enhancement of 281% is obtained at 45°.

Metrics