Abstract

We investigated the influence of polarization and apodization on laser induced optical breakdown threshold in transparent and diffuse media using linearly and radially polarized light. We demonstrate a lower irradiance threshold for optical breakdown using radially polarized light. The dominance of radial polarization in higher-order multiphoton ionization has important medical applications where a lower irradiance threshold may allow reaching deeper layers inside the skin with less risk of collateral damage and thereby improving safety and efficacy of treatment.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron.32(4), 670–678 (1996).
    [CrossRef]
  2. P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron.21(3), 155–248 (1997).
    [CrossRef]
  3. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron.35(8), 1156–1167 (1999).
    [CrossRef]
  4. G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev.108(4), 1245–1330 (2008).
    [CrossRef] [PubMed]
  5. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
    [CrossRef] [PubMed]
  6. S. Klarsfeld and A. Maquet, “Circular versus linear polarization in multiphoton ionization,” Phys. Rev. Lett.29(2), 79–81 (1972).
    [CrossRef]
  7. H. R. Reiss, “Polarization effects in high-order multiphoton ionization,” Phys. Rev. Lett.29(17), 1129–1131 (1972).
    [CrossRef]
  8. P. Lambropoulos, “Effect of light polarization on multiphoton ionization of atoms,” Phys. Rev. Lett.28(10), 585–587 (1972).
    [CrossRef]
  9. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett.97(23), 237403 (2006).
    [CrossRef] [PubMed]
  10. A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc.210(3), 220–224 (2003).
    [CrossRef] [PubMed]
  11. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon.1(1), 1–57 (2009).
    [CrossRef]
  12. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express12(15), 3377–3382 (2004).
    [CrossRef] [PubMed]
  13. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
    [CrossRef]
  14. Y. Liu, D. Cline, and P. He, “Vacuum laser acceleration using a radially polarized CO2 laser beam,” Nucl. Instrum. Methods Phys. Res. A424(2-3), 296–303 (1999).
    [CrossRef]
  15. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett.33(2), 122–124 (2008).
    [CrossRef] [PubMed]
  16. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun.179(1-6), 1–7 (2000).
    [CrossRef]
  17. G. M. Lerman and U. Levy, “Effect of radial polarization and apodization on spot size under tight focusing conditions,” Opt. Express16(7), 4567–4581 (2008).
    [CrossRef] [PubMed]
  18. K. Kitamura, K. Sakai, and S. Noda, “Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam,” Opt. Express18(5), 4518–4525 (2010).
    [CrossRef] [PubMed]
  19. Z. E. Bomzon, M. Gu, and J. Shamir, “Angular momentum and geometrical phase in tight-focused circularly polarized plane waves,” Appl. Phys. Lett.89(24), 241104 (2006).
    [CrossRef]
  20. S. J. Gitomer and R. D. Jones, “Laser-produced plasmas in Medicine,” IEEE Trans. Plasma Sci.19(6), 1209–1219 (1991).
    [CrossRef]
  21. A. Vogel, “Nonlinear absorption: intraocular microsurgery and laser lithotripsy,” Phys. Med. Biol.42(5), 895–912 (1997).
    [CrossRef] [PubMed]
  22. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett.21(23), 1948–1950 (1996).
    [CrossRef] [PubMed]
  23. E. W. B. Richards and E. Wolf, “Electromagnetic diffraction in optical system II. Structure of the imaged field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci.253(1274), 358–379 (1959).
    [CrossRef]
  24. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express7(2), 77–87 (2000).
    [CrossRef] [PubMed]
  25. C. Lecompte, G. Mainfray, C. Manus, and F. Sanchez, “Experimental demonstration of laser temporal coherence effects on multiphoton ionization processes,” Phys. Rev. Lett.32(6), 265–268 (1974).
    [CrossRef]
  26. V. Sankaran, M. J. Everett, D. J. Maitland, and J. T. J. Walsh., “Comparison of polarized-light propagation in biological tissue and phantoms,” Opt. Lett.24(15), 1044–1046 (1999).
    [CrossRef] [PubMed]
  27. V. Sankaran, J. T. J. Walsh, and D. J. Maitland, “Polarized light propagation through tissue phantoms containing densely packed scatterers,” Opt. Lett.25(4), 239–241 (2000).
    [CrossRef] [PubMed]
  28. M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng.36(12), 1146–1154 (1989).
    [CrossRef] [PubMed]
  29. L. Habbema, R. Verhagen, R. Van Hal, Y. Liu, and B. Varghese, “Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation,” J Biophotonics5(2), 194–199 (2012).
    [CrossRef] [PubMed]
  30. L. Habbema, R. Verhagen, R. Hal, Y. Liu, and B. Varghese, “Efficacy of minimally invasive nonthermal laser-induced optical breakdown technology for skin rejuvenation,” Lasers Med. Sci.28(3), 935–940 (2013).
    [CrossRef] [PubMed]

2013 (1)

L. Habbema, R. Verhagen, R. Hal, Y. Liu, and B. Varghese, “Efficacy of minimally invasive nonthermal laser-induced optical breakdown technology for skin rejuvenation,” Lasers Med. Sci.28(3), 935–940 (2013).
[CrossRef] [PubMed]

2012 (1)

L. Habbema, R. Verhagen, R. Van Hal, Y. Liu, and B. Varghese, “Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation,” J Biophotonics5(2), 194–199 (2012).
[CrossRef] [PubMed]

2010 (1)

2009 (1)

2008 (3)

2007 (1)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
[CrossRef]

2006 (2)

Z. E. Bomzon, M. Gu, and J. Shamir, “Angular momentum and geometrical phase in tight-focused circularly polarized plane waves,” Appl. Phys. Lett.89(24), 241104 (2006).
[CrossRef]

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett.97(23), 237403 (2006).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc.210(3), 220–224 (2003).
[CrossRef] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

2000 (3)

1999 (3)

V. Sankaran, M. J. Everett, D. J. Maitland, and J. T. J. Walsh., “Comparison of polarized-light propagation in biological tissue and phantoms,” Opt. Lett.24(15), 1044–1046 (1999).
[CrossRef] [PubMed]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron.35(8), 1156–1167 (1999).
[CrossRef]

Y. Liu, D. Cline, and P. He, “Vacuum laser acceleration using a radially polarized CO2 laser beam,” Nucl. Instrum. Methods Phys. Res. A424(2-3), 296–303 (1999).
[CrossRef]

1997 (2)

A. Vogel, “Nonlinear absorption: intraocular microsurgery and laser lithotripsy,” Phys. Med. Biol.42(5), 895–912 (1997).
[CrossRef] [PubMed]

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron.21(3), 155–248 (1997).
[CrossRef]

1996 (2)

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron.32(4), 670–678 (1996).
[CrossRef]

M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett.21(23), 1948–1950 (1996).
[CrossRef] [PubMed]

1991 (1)

S. J. Gitomer and R. D. Jones, “Laser-produced plasmas in Medicine,” IEEE Trans. Plasma Sci.19(6), 1209–1219 (1991).
[CrossRef]

1989 (1)

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng.36(12), 1146–1154 (1989).
[CrossRef] [PubMed]

1974 (1)

C. Lecompte, G. Mainfray, C. Manus, and F. Sanchez, “Experimental demonstration of laser temporal coherence effects on multiphoton ionization processes,” Phys. Rev. Lett.32(6), 265–268 (1974).
[CrossRef]

1972 (3)

S. Klarsfeld and A. Maquet, “Circular versus linear polarization in multiphoton ionization,” Phys. Rev. Lett.29(2), 79–81 (1972).
[CrossRef]

H. R. Reiss, “Polarization effects in high-order multiphoton ionization,” Phys. Rev. Lett.29(17), 1129–1131 (1972).
[CrossRef]

P. Lambropoulos, “Effect of light polarization on multiphoton ionization of atoms,” Phys. Rev. Lett.28(10), 585–587 (1972).
[CrossRef]

1959 (1)

E. W. B. Richards and E. Wolf, “Electromagnetic diffraction in optical system II. Structure of the imaged field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci.253(1274), 358–379 (1959).
[CrossRef]

Beversluis, M. R.

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc.210(3), 220–224 (2003).
[CrossRef] [PubMed]

Bomzon, Z. E.

Z. E. Bomzon, M. Gu, and J. Shamir, “Angular momentum and geometrical phase in tight-focused circularly polarized plane waves,” Appl. Phys. Lett.89(24), 241104 (2006).
[CrossRef]

Bouhelier, A.

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc.210(3), 220–224 (2003).
[CrossRef] [PubMed]

Brown, T.

Cline, D.

Y. Liu, D. Cline, and P. He, “Vacuum laser acceleration using a radially polarized CO2 laser beam,” Nucl. Instrum. Methods Phys. Res. A424(2-3), 296–303 (1999).
[CrossRef]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun.179(1-6), 1–7 (2000).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun.179(1-6), 1–7 (2000).
[CrossRef]

El-Khamhawy, A.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett.97(23), 237403 (2006).
[CrossRef] [PubMed]

Everett, M. J.

Feurer, T.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
[CrossRef]

Gitomer, S. J.

S. J. Gitomer and R. D. Jones, “Laser-produced plasmas in Medicine,” IEEE Trans. Plasma Sci.19(6), 1209–1219 (1991).
[CrossRef]

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun.179(1-6), 1–7 (2000).
[CrossRef]

Gu, M.

Z. E. Bomzon, M. Gu, and J. Shamir, “Angular momentum and geometrical phase in tight-focused circularly polarized plane waves,” Appl. Phys. Lett.89(24), 241104 (2006).
[CrossRef]

Habbema, L.

L. Habbema, R. Verhagen, R. Hal, Y. Liu, and B. Varghese, “Efficacy of minimally invasive nonthermal laser-induced optical breakdown technology for skin rejuvenation,” Lasers Med. Sci.28(3), 935–940 (2013).
[CrossRef] [PubMed]

L. Habbema, R. Verhagen, R. Van Hal, Y. Liu, and B. Varghese, “Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation,” J Biophotonics5(2), 194–199 (2012).
[CrossRef] [PubMed]

Hal, R.

L. Habbema, R. Verhagen, R. Hal, Y. Liu, and B. Varghese, “Efficacy of minimally invasive nonthermal laser-induced optical breakdown technology for skin rejuvenation,” Lasers Med. Sci.28(3), 935–940 (2013).
[CrossRef] [PubMed]

Hammer, D. X.

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron.21(3), 155–248 (1997).
[CrossRef]

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron.32(4), 670–678 (1996).
[CrossRef]

He, G. S.

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev.108(4), 1245–1330 (2008).
[CrossRef] [PubMed]

He, P.

Y. Liu, D. Cline, and P. He, “Vacuum laser acceleration using a radially polarized CO2 laser beam,” Nucl. Instrum. Methods Phys. Res. A424(2-3), 296–303 (1999).
[CrossRef]

Heckenberg, N. R.

Jacques, S. L.

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng.36(12), 1146–1154 (1989).
[CrossRef] [PubMed]

Jones, R. D.

S. J. Gitomer and R. D. Jones, “Laser-produced plasmas in Medicine,” IEEE Trans. Plasma Sci.19(6), 1209–1219 (1991).
[CrossRef]

Kennedy, P. K.

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron.21(3), 155–248 (1997).
[CrossRef]

Kennedy, P. P.

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron.32(4), 670–678 (1996).
[CrossRef]

Kitamura, K.

Klarsfeld, S.

S. Klarsfeld and A. Maquet, “Circular versus linear polarization in multiphoton ionization,” Phys. Rev. Lett.29(2), 79–81 (1972).
[CrossRef]

Lambropoulos, P.

P. Lambropoulos, “Effect of light polarization on multiphoton ionization of atoms,” Phys. Rev. Lett.28(10), 585–587 (1972).
[CrossRef]

Lecompte, C.

C. Lecompte, G. Mainfray, C. Manus, and F. Sanchez, “Experimental demonstration of laser temporal coherence effects on multiphoton ionization processes,” Phys. Rev. Lett.32(6), 265–268 (1974).
[CrossRef]

Lerman, G. M.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun.179(1-6), 1–7 (2000).
[CrossRef]

Levy, U.

Liu, Y.

L. Habbema, R. Verhagen, R. Hal, Y. Liu, and B. Varghese, “Efficacy of minimally invasive nonthermal laser-induced optical breakdown technology for skin rejuvenation,” Lasers Med. Sci.28(3), 935–940 (2013).
[CrossRef] [PubMed]

L. Habbema, R. Verhagen, R. Van Hal, Y. Liu, and B. Varghese, “Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation,” J Biophotonics5(2), 194–199 (2012).
[CrossRef] [PubMed]

Y. Liu, D. Cline, and P. He, “Vacuum laser acceleration using a radially polarized CO2 laser beam,” Nucl. Instrum. Methods Phys. Res. A424(2-3), 296–303 (1999).
[CrossRef]

Mainfray, G.

C. Lecompte, G. Mainfray, C. Manus, and F. Sanchez, “Experimental demonstration of laser temporal coherence effects on multiphoton ionization processes,” Phys. Rev. Lett.32(6), 265–268 (1974).
[CrossRef]

Maitland, D. J.

Manus, C.

C. Lecompte, G. Mainfray, C. Manus, and F. Sanchez, “Experimental demonstration of laser temporal coherence effects on multiphoton ionization processes,” Phys. Rev. Lett.32(6), 265–268 (1974).
[CrossRef]

Maquet, A.

S. Klarsfeld and A. Maquet, “Circular versus linear polarization in multiphoton ionization,” Phys. Rev. Lett.29(2), 79–81 (1972).
[CrossRef]

Meier, M.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
[CrossRef]

Nieminen, T. A.

Noack, J.

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron.35(8), 1156–1167 (1999).
[CrossRef]

Noda, S.

Noojin, G. D.

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron.32(4), 670–678 (1996).
[CrossRef]

Novotny, L.

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc.210(3), 220–224 (2003).
[CrossRef] [PubMed]

Prasad, P. N.

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev.108(4), 1245–1330 (2008).
[CrossRef] [PubMed]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun.179(1-6), 1–7 (2000).
[CrossRef]

Reiss, H. R.

H. R. Reiss, “Polarization effects in high-order multiphoton ionization,” Phys. Rev. Lett.29(17), 1129–1131 (1972).
[CrossRef]

Renger, J.

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc.210(3), 220–224 (2003).
[CrossRef] [PubMed]

Richards, E. W. B.

E. W. B. Richards and E. Wolf, “Electromagnetic diffraction in optical system II. Structure of the imaged field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci.253(1274), 358–379 (1959).
[CrossRef]

Roach, W. P.

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron.32(4), 670–678 (1996).
[CrossRef]

Rockwell, B. A.

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron.21(3), 155–248 (1997).
[CrossRef]

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron.32(4), 670–678 (1996).
[CrossRef]

Romano, V.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
[CrossRef]

Rubinsztein-Dunlop, H.

Sakai, K.

Sanchez, F.

C. Lecompte, G. Mainfray, C. Manus, and F. Sanchez, “Experimental demonstration of laser temporal coherence effects on multiphoton ionization processes,” Phys. Rev. Lett.32(6), 265–268 (1974).
[CrossRef]

Sankaran, V.

Schadt, M.

Shamir, J.

Z. E. Bomzon, M. Gu, and J. Shamir, “Angular momentum and geometrical phase in tight-focused circularly polarized plane waves,” Appl. Phys. Lett.89(24), 241104 (2006).
[CrossRef]

Sokolowski-Tinten, K.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett.97(23), 237403 (2006).
[CrossRef] [PubMed]

Stalder, M.

Star, W. M.

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng.36(12), 1146–1154 (1989).
[CrossRef] [PubMed]

Sterenborg, H. J. C. M.

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng.36(12), 1146–1154 (1989).
[CrossRef] [PubMed]

Tan, L.-S.

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev.108(4), 1245–1330 (2008).
[CrossRef] [PubMed]

Temnov, V. V.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett.97(23), 237403 (2006).
[CrossRef] [PubMed]

Thomas, R. J.

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron.32(4), 670–678 (1996).
[CrossRef]

Van Gemert, M. J. C.

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng.36(12), 1146–1154 (1989).
[CrossRef] [PubMed]

Van Hal, R.

L. Habbema, R. Verhagen, R. Van Hal, Y. Liu, and B. Varghese, “Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation,” J Biophotonics5(2), 194–199 (2012).
[CrossRef] [PubMed]

Varghese, B.

L. Habbema, R. Verhagen, R. Hal, Y. Liu, and B. Varghese, “Efficacy of minimally invasive nonthermal laser-induced optical breakdown technology for skin rejuvenation,” Lasers Med. Sci.28(3), 935–940 (2013).
[CrossRef] [PubMed]

L. Habbema, R. Verhagen, R. Van Hal, Y. Liu, and B. Varghese, “Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation,” J Biophotonics5(2), 194–199 (2012).
[CrossRef] [PubMed]

Verhagen, R.

L. Habbema, R. Verhagen, R. Hal, Y. Liu, and B. Varghese, “Efficacy of minimally invasive nonthermal laser-induced optical breakdown technology for skin rejuvenation,” Lasers Med. Sci.28(3), 935–940 (2013).
[CrossRef] [PubMed]

L. Habbema, R. Verhagen, R. Van Hal, Y. Liu, and B. Varghese, “Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation,” J Biophotonics5(2), 194–199 (2012).
[CrossRef] [PubMed]

Vogel, A.

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron.35(8), 1156–1167 (1999).
[CrossRef]

A. Vogel, “Nonlinear absorption: intraocular microsurgery and laser lithotripsy,” Phys. Med. Biol.42(5), 895–912 (1997).
[CrossRef] [PubMed]

von der Linde, D.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett.97(23), 237403 (2006).
[CrossRef] [PubMed]

Walsh, J. T. J.

Wolf, E.

E. W. B. Richards and E. Wolf, “Electromagnetic diffraction in optical system II. Structure of the imaged field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci.253(1274), 358–379 (1959).
[CrossRef]

Youngworth, K.

Zhan, Q.

Zheng, Q.

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev.108(4), 1245–1330 (2008).
[CrossRef] [PubMed]

Zhou, P.

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett.97(23), 237403 (2006).
[CrossRef] [PubMed]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

Z. E. Bomzon, M. Gu, and J. Shamir, “Angular momentum and geometrical phase in tight-focused circularly polarized plane waves,” Appl. Phys. Lett.89(24), 241104 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process.86(3), 329–334 (2007).
[CrossRef]

Chem. Rev. (1)

G. S. He, L.-S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev.108(4), 1245–1330 (2008).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (2)

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. P. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron.32(4), 670–678 (1996).
[CrossRef]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron.35(8), 1156–1167 (1999).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

M. J. C. Van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng.36(12), 1146–1154 (1989).
[CrossRef] [PubMed]

IEEE Trans. Plasma Sci. (1)

S. J. Gitomer and R. D. Jones, “Laser-produced plasmas in Medicine,” IEEE Trans. Plasma Sci.19(6), 1209–1219 (1991).
[CrossRef]

J Biophotonics (1)

L. Habbema, R. Verhagen, R. Van Hal, Y. Liu, and B. Varghese, “Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation,” J Biophotonics5(2), 194–199 (2012).
[CrossRef] [PubMed]

J. Microsc. (1)

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc.210(3), 220–224 (2003).
[CrossRef] [PubMed]

Lasers Med. Sci. (1)

L. Habbema, R. Verhagen, R. Hal, Y. Liu, and B. Varghese, “Efficacy of minimally invasive nonthermal laser-induced optical breakdown technology for skin rejuvenation,” Lasers Med. Sci.28(3), 935–940 (2013).
[CrossRef] [PubMed]

Nucl. Instrum. Methods Phys. Res. A (1)

Y. Liu, D. Cline, and P. He, “Vacuum laser acceleration using a radially polarized CO2 laser beam,” Nucl. Instrum. Methods Phys. Res. A424(2-3), 296–303 (1999).
[CrossRef]

Opt. Commun. (1)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun.179(1-6), 1–7 (2000).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Phys. Med. Biol. (1)

A. Vogel, “Nonlinear absorption: intraocular microsurgery and laser lithotripsy,” Phys. Med. Biol.42(5), 895–912 (1997).
[CrossRef] [PubMed]

Phys. Rev. Lett. (6)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

S. Klarsfeld and A. Maquet, “Circular versus linear polarization in multiphoton ionization,” Phys. Rev. Lett.29(2), 79–81 (1972).
[CrossRef]

H. R. Reiss, “Polarization effects in high-order multiphoton ionization,” Phys. Rev. Lett.29(17), 1129–1131 (1972).
[CrossRef]

P. Lambropoulos, “Effect of light polarization on multiphoton ionization of atoms,” Phys. Rev. Lett.28(10), 585–587 (1972).
[CrossRef]

V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett.97(23), 237403 (2006).
[CrossRef] [PubMed]

C. Lecompte, G. Mainfray, C. Manus, and F. Sanchez, “Experimental demonstration of laser temporal coherence effects on multiphoton ionization processes,” Phys. Rev. Lett.32(6), 265–268 (1974).
[CrossRef]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

E. W. B. Richards and E. Wolf, “Electromagnetic diffraction in optical system II. Structure of the imaged field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci.253(1274), 358–379 (1959).
[CrossRef]

Prog. Quantum Electron. (1)

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron.21(3), 155–248 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Pulse energy corresponding to optical breakdown threshold as a function of reduced scattering coefficient for linearly and radially polarized light (NA ratio = 0, 0.3 and 0.6).

Fig. 2
Fig. 2

Irradiance corresponding to optical breakdown threshold as a function of reduced scattering coefficient for linearly and radially polarized light (NA ratio = 0, 0.3 and 0.6).

Fig. 3
Fig. 3

Intensity distributions of transverse, orthogonal transverse and longitudinal focal fields, for linearly (Top) polarized (along the x direction) and radially (Bottom) polarized beam (NA = 0.67, NAmin/NAmax = 0, water as focusing medium n = 1.33).

Tables (1)

Tables Icon

Table 1 Spot Size (µm) Measured Using Knife Edge Method for Linearly and Radially Polarized Beam for Different Values of NA Ratios

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

W=α g (k 0 ) I ¯ k 0

Metrics