Abstract

Abstract: We demonstrate a silicon-based optoelectronic integrated circuit (OEIC) for label-free bio/chemical sensing application. Such on-chip OEIC sensor system consists of optical grating couplers for vertical light coupling into silicon waveguides, a thermal-tunable microring as a tunable filter, an exposed microring as an optical label-free sensor, and a Ge photodetector for a direct electrical readout. Different from the conventional wavelength-scanning method, we adopt low-cost broadband ASE light source, together with the on-chip tunable filter to generate sliced light source. The effective refractive index change of the sensing microring induced by the sensing target is traced by scanning the supplied electrical power applied onto the tracing microring, and the detected electrical signal is read out by the Ge photodetector. For bulk refractive index sensing, we demonstrate using such OEIC sensing system with a sensitivity of ~15 mW/RIU and a detection limit of 3.9 μ-RIU, while for surface sensing of biotin-streptavidin, we obtain a surface mass sensitivity of Sm = ~192 µW/ng·mm−2 and a surface detection limit of 0.3 pg/mm2. The presented OEIC sensing system is suitable for point-of-care applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Mukhrji and N. Punjabi, “Label-free integrated optical biosensors for multiplexed analysis,” J. Indian Inst. Sci.92, 254–293 (2012).
  2. M. Cooper, Label-free biosensors: Techniques and applications (Cambridge, U.K.: Cambridge University, 2009).
  3. J. S. Daniels and N. Pourmand, “Label-free impedance biosensors: opportunities and challenges,” Electroanalysis19(12), 1239–1257 (2007).
    [CrossRef] [PubMed]
  4. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
    [CrossRef] [PubMed]
  5. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods5(7), 591–596 (2008).
    [CrossRef] [PubMed]
  6. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express15(12), 7610–7615 (2007).
    [CrossRef] [PubMed]
  7. K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron.24(8), 2528–2533 (2009).
    [CrossRef] [PubMed]
  8. D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett.35(16), 2771–2773 (2010).
    [CrossRef] [PubMed]
  9. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron.16(3), 654–661 (2010).
    [CrossRef]
  10. S. Janz, D.-X. Xu, M. Vachon, N. Sabourin, P. Cheben, H. McIntosh, H. Ding, S. Wang, J. H. Schmid, A. Delâge, J. Lapointe, A. Densmore, R. Ma, W. Sinclair, S. M. Logan, R. Mackenzie, Q. Y. Liu, D. Zhang, G. Lopinski, O. Mozenson, M. Gilmour, and H. Tabor, “Photonic wire biosensor microarray chip and instrumentation with application to serotyping of Escherichia coli isolates,” Opt. Express21(4), 4623–4637 (2013).
    [CrossRef] [PubMed]
  11. J. Song, X. Luo, X. Tu, M. K. Park, J. S. Kee, H. Zhang, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Electrical tracing-assisted dual-microring label‑free optical bio/chemical sensors,” Opt. Express20(4), 4189–4197 (2012).
    [CrossRef] [PubMed]
  12. K. W. Kim, J. Song, J. S. Kee, Q. Liu, G.-Q. Lo, and M. K. Park, “Label-free biosensor based on an electrical tracing-assisted silicon microring resonator with a low-cost broadband source,” Biosens. Bioelectron.46, 15–21 (2013).
    [CrossRef] [PubMed]
  13. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
    [CrossRef] [PubMed]
  14. Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett.24(5), 350–352 (2012).
    [CrossRef]
  15. X. Tu, J. Song, T.-Y. Liow, M. K. Park, J. Q. Yiying, J. S. Kee, M. B. Yu, and G.-Q. Lo, “Thermal independent Silicon-Nitride slot waveguide biosensor with high sensitivity,” Opt. Express20(3), 2640–2648 (2012).
    [CrossRef] [PubMed]
  16. H. Gu, Z. Ng, T. C. Deivaraj, X. Su, and K. P. Loh, “Surface plasmon resonance spectroscopy and electrochemistry study of 4-nitro-1,2-phenylenediamine: A switchable redox polymer with nitro functional groups,” Langmuir22(8), 3929–3935 (2006).
    [CrossRef] [PubMed]

2013 (2)

2012 (4)

2010 (2)

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron.16(3), 654–661 (2010).
[CrossRef]

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett.35(16), 2771–2773 (2010).
[CrossRef] [PubMed]

2009 (1)

K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron.24(8), 2528–2533 (2009).
[CrossRef] [PubMed]

2008 (2)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods5(7), 591–596 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (1)

H. Gu, Z. Ng, T. C. Deivaraj, X. Su, and K. P. Loh, “Surface plasmon resonance spectroscopy and electrochemistry study of 4-nitro-1,2-phenylenediamine: A switchable redox polymer with nitro functional groups,” Langmuir22(8), 3929–3935 (2006).
[CrossRef] [PubMed]

1998 (1)

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods5(7), 591–596 (2008).
[CrossRef] [PubMed]

Baehr-Jones, T.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron.16(3), 654–661 (2010).
[CrossRef]

Baets, R.

K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron.24(8), 2528–2533 (2009).
[CrossRef] [PubMed]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express15(12), 7610–7615 (2007).
[CrossRef] [PubMed]

Bailey, R. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron.16(3), 654–661 (2010).
[CrossRef]

Bartolozzi, I.

Bienstman, P.

K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron.24(8), 2528–2533 (2009).
[CrossRef] [PubMed]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express15(12), 7610–7615 (2007).
[CrossRef] [PubMed]

Cheben, P.

Daniels, J. S.

J. S. Daniels and N. Pourmand, “Label-free impedance biosensors: opportunities and challenges,” Electroanalysis19(12), 1239–1257 (2007).
[CrossRef] [PubMed]

De Vos, K.

K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron.24(8), 2528–2533 (2009).
[CrossRef] [PubMed]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express15(12), 7610–7615 (2007).
[CrossRef] [PubMed]

Deivaraj, T. C.

H. Gu, Z. Ng, T. C. Deivaraj, X. Su, and K. P. Loh, “Surface plasmon resonance spectroscopy and electrochemistry study of 4-nitro-1,2-phenylenediamine: A switchable redox polymer with nitro functional groups,” Langmuir22(8), 3929–3935 (2006).
[CrossRef] [PubMed]

Delâge, A.

Densmore, A.

Ding, H.

Duffy, D. C.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Fang, Q.

Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett.24(5), 350–352 (2012).
[CrossRef]

Gilmour, M.

Girones, J.

K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron.24(8), 2528–2533 (2009).
[CrossRef] [PubMed]

Gleeson, M. A.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron.16(3), 654–661 (2010).
[CrossRef]

Gu, H.

H. Gu, Z. Ng, T. C. Deivaraj, X. Su, and K. P. Loh, “Surface plasmon resonance spectroscopy and electrochemistry study of 4-nitro-1,2-phenylenediamine: A switchable redox polymer with nitro functional groups,” Langmuir22(8), 3929–3935 (2006).
[CrossRef] [PubMed]

Gunn, L. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron.16(3), 654–661 (2010).
[CrossRef]

Gunn, W. G.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron.16(3), 654–661 (2010).
[CrossRef]

Hochberg, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron.16(3), 654–661 (2010).
[CrossRef]

Iqbal, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron.16(3), 654–661 (2010).
[CrossRef]

Janz, S.

Jia, L.

Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett.24(5), 350–352 (2012).
[CrossRef]

Kee, J. S.

Kim, K. W.

K. W. Kim, J. Song, J. S. Kee, Q. Liu, G.-Q. Lo, and M. K. Park, “Label-free biosensor based on an electrical tracing-assisted silicon microring resonator with a low-cost broadband source,” Biosens. Bioelectron.46, 15–21 (2013).
[CrossRef] [PubMed]

Kwong, D.-L.

Lapointe, J.

Li, Y.

Liow, T.-Y.

Liu, Q.

K. W. Kim, J. Song, J. S. Kee, Q. Liu, G.-Q. Lo, and M. K. Park, “Label-free biosensor based on an electrical tracing-assisted silicon microring resonator with a low-cost broadband source,” Biosens. Bioelectron.46, 15–21 (2013).
[CrossRef] [PubMed]

Liu, Q. Y.

Liu, Y.

Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett.24(5), 350–352 (2012).
[CrossRef]

Lo, G.

Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett.24(5), 350–352 (2012).
[CrossRef]

Lo, G.-Q.

Logan, S. M.

Loh, K. P.

H. Gu, Z. Ng, T. C. Deivaraj, X. Su, and K. P. Loh, “Surface plasmon resonance spectroscopy and electrochemistry study of 4-nitro-1,2-phenylenediamine: A switchable redox polymer with nitro functional groups,” Langmuir22(8), 3929–3935 (2006).
[CrossRef] [PubMed]

Lopinski, G.

Luo, X.

Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett.24(5), 350–352 (2012).
[CrossRef]

J. Song, X. Luo, X. Tu, M. K. Park, J. S. Kee, H. Zhang, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Electrical tracing-assisted dual-microring label‑free optical bio/chemical sensors,” Opt. Express20(4), 4189–4197 (2012).
[CrossRef] [PubMed]

Ma, R.

Mackenzie, R.

McDonald, J. C.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

McIntosh, H.

Mozenson, O.

Mukhrji, S.

S. Mukhrji and N. Punjabi, “Label-free integrated optical biosensors for multiplexed analysis,” J. Indian Inst. Sci.92, 254–293 (2012).

Ng, Z.

H. Gu, Z. Ng, T. C. Deivaraj, X. Su, and K. P. Loh, “Surface plasmon resonance spectroscopy and electrochemistry study of 4-nitro-1,2-phenylenediamine: A switchable redox polymer with nitro functional groups,” Langmuir22(8), 3929–3935 (2006).
[CrossRef] [PubMed]

Park, M. K.

Popelka, S.

K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron.24(8), 2528–2533 (2009).
[CrossRef] [PubMed]

Pourmand, N.

J. S. Daniels and N. Pourmand, “Label-free impedance biosensors: opportunities and challenges,” Electroanalysis19(12), 1239–1257 (2007).
[CrossRef] [PubMed]

Punjabi, N.

S. Mukhrji and N. Punjabi, “Label-free integrated optical biosensors for multiplexed analysis,” J. Indian Inst. Sci.92, 254–293 (2012).

Sabourin, N.

Schacht, E.

K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron.24(8), 2528–2533 (2009).
[CrossRef] [PubMed]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express15(12), 7610–7615 (2007).
[CrossRef] [PubMed]

Schmid, J. H.

Schueller, O. J. A.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Sinclair, W.

Song, J.

K. W. Kim, J. Song, J. S. Kee, Q. Liu, G.-Q. Lo, and M. K. Park, “Label-free biosensor based on an electrical tracing-assisted silicon microring resonator with a low-cost broadband source,” Biosens. Bioelectron.46, 15–21 (2013).
[CrossRef] [PubMed]

X. Tu, J. Song, T.-Y. Liow, M. K. Park, J. Q. Yiying, J. S. Kee, M. B. Yu, and G.-Q. Lo, “Thermal independent Silicon-Nitride slot waveguide biosensor with high sensitivity,” Opt. Express20(3), 2640–2648 (2012).
[CrossRef] [PubMed]

Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett.24(5), 350–352 (2012).
[CrossRef]

J. Song, X. Luo, X. Tu, M. K. Park, J. S. Kee, H. Zhang, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Electrical tracing-assisted dual-microring label‑free optical bio/chemical sensors,” Opt. Express20(4), 4189–4197 (2012).
[CrossRef] [PubMed]

Spaugh, B.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron.16(3), 654–661 (2010).
[CrossRef]

Su, X.

H. Gu, Z. Ng, T. C. Deivaraj, X. Su, and K. P. Loh, “Surface plasmon resonance spectroscopy and electrochemistry study of 4-nitro-1,2-phenylenediamine: A switchable redox polymer with nitro functional groups,” Langmuir22(8), 3929–3935 (2006).
[CrossRef] [PubMed]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Tabor, H.

Tu, X.

Tybor, F.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron.16(3), 654–661 (2010).
[CrossRef]

Vachon, M.

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods5(7), 591–596 (2008).
[CrossRef] [PubMed]

Wang, S.

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Whitesides, G. M.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Xu, D.-X.

Yiying, J. Q.

Yu, M.

Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett.24(5), 350–352 (2012).
[CrossRef]

J. Song, X. Luo, X. Tu, M. K. Park, J. S. Kee, H. Zhang, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Electrical tracing-assisted dual-microring label‑free optical bio/chemical sensors,” Opt. Express20(4), 4189–4197 (2012).
[CrossRef] [PubMed]

Yu, M. B.

Zhang, D.

Zhang, H.

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Anal. Chem. (1)

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Biosens. Bioelectron. (2)

K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications,” Biosens. Bioelectron.24(8), 2528–2533 (2009).
[CrossRef] [PubMed]

K. W. Kim, J. Song, J. S. Kee, Q. Liu, G.-Q. Lo, and M. K. Park, “Label-free biosensor based on an electrical tracing-assisted silicon microring resonator with a low-cost broadband source,” Biosens. Bioelectron.46, 15–21 (2013).
[CrossRef] [PubMed]

Electroanalysis (1)

J. S. Daniels and N. Pourmand, “Label-free impedance biosensors: opportunities and challenges,” Electroanalysis19(12), 1239–1257 (2007).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron.16(3), 654–661 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Q. Fang, J. Song, X. Luo, L. Jia, M. Yu, G. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett.24(5), 350–352 (2012).
[CrossRef]

J. Indian Inst. Sci. (1)

S. Mukhrji and N. Punjabi, “Label-free integrated optical biosensors for multiplexed analysis,” J. Indian Inst. Sci.92, 254–293 (2012).

Langmuir (1)

H. Gu, Z. Ng, T. C. Deivaraj, X. Su, and K. P. Loh, “Surface plasmon resonance spectroscopy and electrochemistry study of 4-nitro-1,2-phenylenediamine: A switchable redox polymer with nitro functional groups,” Langmuir22(8), 3929–3935 (2006).
[CrossRef] [PubMed]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods5(7), 591–596 (2008).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Other (1)

M. Cooper, Label-free biosensors: Techniques and applications (Cambridge, U.K.: Cambridge University, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic of the conventional wavelength-scanning method. (b) Schematic of the proposed silicon-based OEIC sensing system by using electrical-tracing-assisted sensing method.

Fig. 2
Fig. 2

Schematic of the proposed label-free optical bio/chemical sensing system. WB-LS: wideband light source. WG: waveguide; TF: tunable filter (tracing microring); SS: sensing microring; PD: photodetector.

Fig. 3
Fig. 3

The SEMs of the building blocks. (a) Optical one dimensional grating coupler. (b) Thermal-optical tunable ring filter. (c) Sensing microring. (d) Ge photodetector.

Fig. 4
Fig. 4

(a) Schematic of the testing setup. (b) The optical image of the biochip on the test setup.

Fig. 5
Fig. 5

(a) The measured transmission spectra of the tracing microring upon different electrical voltages. Voltage increases from 0 V to 1.2 V with step of 0.2V. (b) The resonance wavelength as function of the electrical power supplying to the tracing microring. Blue circles are experimental data from (a) and red line is linear fitting curve.

Fig. 6
Fig. 6

The resonance wavelength shift of the sensing microring with different concentration of the cladding NaCl solutions. Five different concentrations are adopted as 1%, 3%, 5%, 7% and 10%, respectively.

Fig. 7
Fig. 7

(a) The measured I-V curve of the Ge-Photodetector with (red) and without (blue) light illumination. (b) The enhancement of the photocurrent with and without light illumination.

Fig. 8
Fig. 8

(a) The measured photocurrent spectra upon the scanning of the electrical power to the tracing microring with different NaCl concentrations. The blue circle lines are the experimental measurements while the red lines are the fitting results. (b) The relationship between the extracted electrical power and the optical index of the NaCl solutions.

Fig. 9
Fig. 9

(a) The measured photocurrent spectra upon the supplied electrical power to the tracing microring. There are 20 times repeat measurements. (b) Zoom in of (a) around spectra peeks. (c) The electrical power deviation for 20 measurements. σ: standard deviation, 3σ: the extracted electrical power resolution.

Fig. 10
Fig. 10

Real time detection of biotin-streptavidin interaction. Blue triangles and circles are the experimental data of 10 µg/ml and 1 µg/ml, respectively. Red dashed line and solid line are the fitting results.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ λ r = λ r n g ( n eff T ΔT+ n eff n c Δ n c )
Δ λ r =AΔW
Δ λ r =SΔ n c
S= λ r n g δ n eff δ n c
W( t )= W 0 +( W W 0 )[ 1exp( t t 0 τ ) ]

Metrics