Abstract

We propose a new method for high-speed, three-dimensional (3-D) fluorescence imaging, which we refer to as dual-detection confocal fluorescence microscopy (DDCFM). In contrast to conventional beam-scanning confocal fluorescence microscopy, where the focal spot must be scanned either optically or mechanically over a sample volume to reconstruct a 3-D image, DDCFM can obtain the depth of a fluorescent emitter without depth scanning. DDCFM comprises two photodetectors, each with a pinhole of different size, in the confocal detection system. Axial information on fluorescent emitters can be measured by the axial response curve through the ratio of intensity signals. DDCFM can rapidly acquire a 3-D fluorescent image from a single two-dimensional scan with less phototoxicity and photobleaching than confocal fluorescence microscopy because no mechanical depth scans are needed. We demonstrated the feasibility of the proposed method by phantom studies.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Fischer, Y. Wu, P. Kanchanawong, H. Shroff, and C. M. Waterman, “Microscopy in 3D: a biologist’s toolbox,” Trends Cell Biol.21(12), 682–691 (2011).
    [CrossRef] [PubMed]
  2. E. A. Te Velde, T. Veerman, V. Subramaniam, and T. Ruers, “The use of fluorescent dyes and probes in surgical oncology,” Eur. J. Surg. Oncol.36(1), 6–15 (2010).
    [CrossRef] [PubMed]
  3. R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med.9(1), 123–128 (2003).
    [CrossRef] [PubMed]
  4. D. Li, W. Zheng, and J. Y. Qu, “Two-photon autofluorescence microscopy of multicolor excitation,” Opt. Lett.34(2), 202–204 (2009).
    [CrossRef] [PubMed]
  5. Y. Hiraoka, J. R. Swedlow, M. R. Paddy, D. A. Agard, and J. W. Sedat, “Three-dimensional multiple-wavelength fluorescence microscopy for the structural analysis of biological phenomena,” Semin. Cell Biol.2(3), 153–165 (1991).
    [PubMed]
  6. P. Prabhat, S. Ram, E. S. Ward, and R. J. Ober, “Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions,” IEEE Trans. Nanobioscience3(4), 237–242 (2004).
    [CrossRef] [PubMed]
  7. M. Gu, Principles of Three-dimensional Imaging in Confocal Microscopes (World Scientific, 1996).
  8. J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer, 1995).
  9. R. A. Hoebe, C. H. Van Oven, T. W. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol.25(2), 249–253 (2007).
    [CrossRef] [PubMed]
  10. R. Dixit and R. Cyr, “Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy,” Plant J.36(2), 280–290 (2003).
    [CrossRef] [PubMed]
  11. L. Song, C. A. Varma, J. W. Verhoeven, and H. J. Tanke, “Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy,” Biophys. J.70(6), 2959–2968 (1996).
    [CrossRef] [PubMed]
  12. J. Huisken and D. Y. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development136(12), 1963–1975 (2009).
    [CrossRef] [PubMed]
  13. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
    [CrossRef] [PubMed]
  14. S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods10(1), 60–63 (2012).
    [CrossRef] [PubMed]
  15. A. K. Ruprecht, T. F. Wiesendanger, and H. J. Tiziani, “Chromatic confocal microscopy with a finite pinhole size,” Opt. Lett.29(18), 2130–2132 (2004).
    [CrossRef] [PubMed]
  16. H. J. Tiziani and H. M. Uhde, “Three-dimensional image sensing by chromatic confocal microscopy,” Appl. Opt.33(10), 1838–1843 (1994).
    [CrossRef] [PubMed]
  17. S. Cha, P. C. Lin, L. Zhu, P. C. Sun, and Y. Fainman, “Nontranslational three-dimensional profilometry by chromatic confocal microscopy with dynamically configurable micromirror scanning,” Appl. Opt.39(16), 2605–2613 (2000).
    [CrossRef] [PubMed]
  18. T. Kim, S. H. Kim, D. Do, H. Yoo, and D. Gweon, “Chromatic confocal microscopy with a novel wavelength detection method using transmittance,” Opt. Express21(5), 6286–6294 (2013).
    [CrossRef] [PubMed]
  19. K. B. Shi, P. Li, S. Z. Yin, and Z. W. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express12(10), 2096–2101 (2004).
    [CrossRef] [PubMed]
  20. Q. Xu, K. Shi, S. Yin, and Z. Liu, “Chromatic two-photon excitation fluorescence imaging,” J. Microsc.235(1), 79–83 (2009).
    [CrossRef] [PubMed]
  21. C. A. Yang, K. B. Shi, H. F. Li, Q. A. Xu, V. Gopalan, and Z. W. Liu, “Chromatic second harmonic imaging,” Opt. Express18(23), 23837–23843 (2010).
    [CrossRef] [PubMed]
  22. C. J. R. Sheppard and C. J. Cogswell, “Confocal microscopy with detector arrays,” J. Mod. Opt.37(2), 267–279 (1990).
    [CrossRef]
  23. C. H. Lee and J. P. Wang, “Noninterferometric differential confocal microscopy with 2-nm depth resolution,” Opt. Commun.135(4-6), 233–237 (1997).
    [CrossRef]
  24. W. Q. Zhao, J. B. Tan, and L. R. Qiu, “Bipolar absolute differential confocal approach to higher spatial resolution,” Opt. Express12(21), 5013–5021 (2004).
    [CrossRef] [PubMed]
  25. J. B. Tan, J. Liu, and Y. H. Wang, “Differential confocal microscopy with a wide measuring range based on polychromatic illumination,” Meas. Sci. Technol.21(5), 054013 (2010).
    [CrossRef]
  26. Y. Wang, L. R. Qiu, Y. X. Song, and W. Q. Zhao, “Laser differential confocal lens thickness measurement,” Meas. Sci. Technol.23(5), 055204 (2012).
    [CrossRef]
  27. W. Q. Zhao, C. Liu, and L. R. Qiu, “Laser divided-aperture differential confocal sensing technology with improved axial resolution,” Opt. Express20(23), 25979–25989 (2012).
    [CrossRef] [PubMed]
  28. L. M. Zou, J. Q. Qu, S. L. Hou, and X. M. Ding, “Differential confocal technology based on radial birefringent pupil filtering principle,” Opt. Commun.285(8), 2022–2027 (2012).
    [CrossRef]
  29. A. Bilenca, A. Ozcan, B. Bouma, and G. Tearney, “Fluorescence coherence tomography,” Opt. Express14(16), 7134–7143 (2006).
    [CrossRef] [PubMed]
  30. M. de Groot, C. L. Evans, and J. F. de Boer, “Self-interference fluorescence microscopy: three dimensional fluorescence imaging without depth scanning,” Opt. Express20(14), 15253–15262 (2012).
    [CrossRef] [PubMed]
  31. T. Wilson and A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett.12(4), 227–229 (1987).
    [CrossRef] [PubMed]
  32. M. Gu and C. J. R. Sheppard, “Confocal fluorescent microscopy with a finite-sized circular detector,” J. Opt. Soc. Am. A9(1), 151–153 (1992).
    [CrossRef]
  33. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).

2013 (1)

2012 (5)

M. de Groot, C. L. Evans, and J. F. de Boer, “Self-interference fluorescence microscopy: three dimensional fluorescence imaging without depth scanning,” Opt. Express20(14), 15253–15262 (2012).
[CrossRef] [PubMed]

W. Q. Zhao, C. Liu, and L. R. Qiu, “Laser divided-aperture differential confocal sensing technology with improved axial resolution,” Opt. Express20(23), 25979–25989 (2012).
[CrossRef] [PubMed]

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods10(1), 60–63 (2012).
[CrossRef] [PubMed]

Y. Wang, L. R. Qiu, Y. X. Song, and W. Q. Zhao, “Laser differential confocal lens thickness measurement,” Meas. Sci. Technol.23(5), 055204 (2012).
[CrossRef]

L. M. Zou, J. Q. Qu, S. L. Hou, and X. M. Ding, “Differential confocal technology based on radial birefringent pupil filtering principle,” Opt. Commun.285(8), 2022–2027 (2012).
[CrossRef]

2011 (2)

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
[CrossRef] [PubMed]

R. S. Fischer, Y. Wu, P. Kanchanawong, H. Shroff, and C. M. Waterman, “Microscopy in 3D: a biologist’s toolbox,” Trends Cell Biol.21(12), 682–691 (2011).
[CrossRef] [PubMed]

2010 (3)

E. A. Te Velde, T. Veerman, V. Subramaniam, and T. Ruers, “The use of fluorescent dyes and probes in surgical oncology,” Eur. J. Surg. Oncol.36(1), 6–15 (2010).
[CrossRef] [PubMed]

C. A. Yang, K. B. Shi, H. F. Li, Q. A. Xu, V. Gopalan, and Z. W. Liu, “Chromatic second harmonic imaging,” Opt. Express18(23), 23837–23843 (2010).
[CrossRef] [PubMed]

J. B. Tan, J. Liu, and Y. H. Wang, “Differential confocal microscopy with a wide measuring range based on polychromatic illumination,” Meas. Sci. Technol.21(5), 054013 (2010).
[CrossRef]

2009 (3)

D. Li, W. Zheng, and J. Y. Qu, “Two-photon autofluorescence microscopy of multicolor excitation,” Opt. Lett.34(2), 202–204 (2009).
[CrossRef] [PubMed]

J. Huisken and D. Y. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development136(12), 1963–1975 (2009).
[CrossRef] [PubMed]

Q. Xu, K. Shi, S. Yin, and Z. Liu, “Chromatic two-photon excitation fluorescence imaging,” J. Microsc.235(1), 79–83 (2009).
[CrossRef] [PubMed]

2007 (1)

R. A. Hoebe, C. H. Van Oven, T. W. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol.25(2), 249–253 (2007).
[CrossRef] [PubMed]

2006 (1)

2004 (4)

2003 (2)

R. Dixit and R. Cyr, “Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy,” Plant J.36(2), 280–290 (2003).
[CrossRef] [PubMed]

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med.9(1), 123–128 (2003).
[CrossRef] [PubMed]

2000 (1)

1997 (1)

C. H. Lee and J. P. Wang, “Noninterferometric differential confocal microscopy with 2-nm depth resolution,” Opt. Commun.135(4-6), 233–237 (1997).
[CrossRef]

1996 (1)

L. Song, C. A. Varma, J. W. Verhoeven, and H. J. Tanke, “Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy,” Biophys. J.70(6), 2959–2968 (1996).
[CrossRef] [PubMed]

1994 (1)

1992 (1)

1991 (1)

Y. Hiraoka, J. R. Swedlow, M. R. Paddy, D. A. Agard, and J. W. Sedat, “Three-dimensional multiple-wavelength fluorescence microscopy for the structural analysis of biological phenomena,” Semin. Cell Biol.2(3), 153–165 (1991).
[PubMed]

1990 (1)

C. J. R. Sheppard and C. J. Cogswell, “Confocal microscopy with detector arrays,” J. Mod. Opt.37(2), 267–279 (1990).
[CrossRef]

1987 (1)

Abrahamsson, S.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods10(1), 60–63 (2012).
[CrossRef] [PubMed]

Agard, D. A.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods10(1), 60–63 (2012).
[CrossRef] [PubMed]

Y. Hiraoka, J. R. Swedlow, M. R. Paddy, D. A. Agard, and J. W. Sedat, “Three-dimensional multiple-wavelength fluorescence microscopy for the structural analysis of biological phenomena,” Semin. Cell Biol.2(3), 153–165 (1991).
[PubMed]

Bargmann, C. I.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods10(1), 60–63 (2012).
[CrossRef] [PubMed]

Betzig, E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
[CrossRef] [PubMed]

Bilenca, A.

Bouma, B.

Carlini, A. R.

Cha, S.

Chen, J.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods10(1), 60–63 (2012).
[CrossRef] [PubMed]

Cogswell, C. J.

C. J. R. Sheppard and C. J. Cogswell, “Confocal microscopy with detector arrays,” J. Mod. Opt.37(2), 267–279 (1990).
[CrossRef]

Cyr, R.

R. Dixit and R. Cyr, “Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy,” Plant J.36(2), 280–290 (2003).
[CrossRef] [PubMed]

Dahan, M.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods10(1), 60–63 (2012).
[CrossRef] [PubMed]

Darzacq, X.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods10(1), 60–63 (2012).
[CrossRef] [PubMed]

Davidson, M. W.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
[CrossRef] [PubMed]

de Boer, J. F.

de Groot, M.

Dhonukshe, P. B.

R. A. Hoebe, C. H. Van Oven, T. W. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol.25(2), 249–253 (2007).
[CrossRef] [PubMed]

Ding, X. M.

L. M. Zou, J. Q. Qu, S. L. Hou, and X. M. Ding, “Differential confocal technology based on radial birefringent pupil filtering principle,” Opt. Commun.285(8), 2022–2027 (2012).
[CrossRef]

Dixit, R.

R. Dixit and R. Cyr, “Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy,” Plant J.36(2), 280–290 (2003).
[CrossRef] [PubMed]

Do, D.

Dugast Darzacq, C.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods10(1), 60–63 (2012).
[CrossRef] [PubMed]

Evans, C. L.

Fainman, Y.

Fischer, R. S.

R. S. Fischer, Y. Wu, P. Kanchanawong, H. Shroff, and C. M. Waterman, “Microscopy in 3D: a biologist’s toolbox,” Trends Cell Biol.21(12), 682–691 (2011).
[CrossRef] [PubMed]

Gadella, T. W.

R. A. Hoebe, C. H. Van Oven, T. W. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol.25(2), 249–253 (2007).
[CrossRef] [PubMed]

Galbraith, C. G.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
[CrossRef] [PubMed]

Galbraith, J. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
[CrossRef] [PubMed]

Gao, L.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
[CrossRef] [PubMed]

Gopalan, V.

Gu, M.

Gustafsson, M. G.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods10(1), 60–63 (2012).
[CrossRef] [PubMed]

Gweon, D.

Hajj, B.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods10(1), 60–63 (2012).
[CrossRef] [PubMed]

Hiraoka, Y.

Y. Hiraoka, J. R. Swedlow, M. R. Paddy, D. A. Agard, and J. W. Sedat, “Three-dimensional multiple-wavelength fluorescence microscopy for the structural analysis of biological phenomena,” Semin. Cell Biol.2(3), 153–165 (1991).
[PubMed]

Hoebe, R. A.

R. A. Hoebe, C. H. Van Oven, T. W. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol.25(2), 249–253 (2007).
[CrossRef] [PubMed]

Hou, S. L.

L. M. Zou, J. Q. Qu, S. L. Hou, and X. M. Ding, “Differential confocal technology based on radial birefringent pupil filtering principle,” Opt. Commun.285(8), 2022–2027 (2012).
[CrossRef]

Huisken, J.

J. Huisken and D. Y. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development136(12), 1963–1975 (2009).
[CrossRef] [PubMed]

Kanchanawong, P.

R. S. Fischer, Y. Wu, P. Kanchanawong, H. Shroff, and C. M. Waterman, “Microscopy in 3D: a biologist’s toolbox,” Trends Cell Biol.21(12), 682–691 (2011).
[CrossRef] [PubMed]

Katsov, A. Y.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods10(1), 60–63 (2012).
[CrossRef] [PubMed]

Kim, S. H.

Kim, T.

Lee, C. H.

C. H. Lee and J. P. Wang, “Noninterferometric differential confocal microscopy with 2-nm depth resolution,” Opt. Commun.135(4-6), 233–237 (1997).
[CrossRef]

Li, D.

Li, H. F.

Li, P.

Lin, P. C.

Liu, C.

Liu, J.

J. B. Tan, J. Liu, and Y. H. Wang, “Differential confocal microscopy with a wide measuring range based on polychromatic illumination,” Meas. Sci. Technol.21(5), 054013 (2010).
[CrossRef]

Liu, Z.

Q. Xu, K. Shi, S. Yin, and Z. Liu, “Chromatic two-photon excitation fluorescence imaging,” J. Microsc.235(1), 79–83 (2009).
[CrossRef] [PubMed]

Liu, Z. W.

Manders, E. M.

R. A. Hoebe, C. H. Van Oven, T. W. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol.25(2), 249–253 (2007).
[CrossRef] [PubMed]

Milkie, D. E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
[CrossRef] [PubMed]

Mizuguchi, G.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods10(1), 60–63 (2012).
[CrossRef] [PubMed]

Mueller, F.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods10(1), 60–63 (2012).
[CrossRef] [PubMed]

Ntziachristos, V.

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med.9(1), 123–128 (2003).
[CrossRef] [PubMed]

Ober, R. J.

P. Prabhat, S. Ram, E. S. Ward, and R. J. Ober, “Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions,” IEEE Trans. Nanobioscience3(4), 237–242 (2004).
[CrossRef] [PubMed]

Ozcan, A.

Paddy, M. R.

Y. Hiraoka, J. R. Swedlow, M. R. Paddy, D. A. Agard, and J. W. Sedat, “Three-dimensional multiple-wavelength fluorescence microscopy for the structural analysis of biological phenomena,” Semin. Cell Biol.2(3), 153–165 (1991).
[PubMed]

Planchon, T. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
[CrossRef] [PubMed]

Prabhat, P.

P. Prabhat, S. Ram, E. S. Ward, and R. J. Ober, “Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions,” IEEE Trans. Nanobioscience3(4), 237–242 (2004).
[CrossRef] [PubMed]

Qiu, L. R.

Qu, J. Q.

L. M. Zou, J. Q. Qu, S. L. Hou, and X. M. Ding, “Differential confocal technology based on radial birefringent pupil filtering principle,” Opt. Commun.285(8), 2022–2027 (2012).
[CrossRef]

Qu, J. Y.

Ram, S.

P. Prabhat, S. Ram, E. S. Ward, and R. J. Ober, “Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions,” IEEE Trans. Nanobioscience3(4), 237–242 (2004).
[CrossRef] [PubMed]

Ruers, T.

E. A. Te Velde, T. Veerman, V. Subramaniam, and T. Ruers, “The use of fluorescent dyes and probes in surgical oncology,” Eur. J. Surg. Oncol.36(1), 6–15 (2010).
[CrossRef] [PubMed]

Ruprecht, A. K.

Sedat, J. W.

Y. Hiraoka, J. R. Swedlow, M. R. Paddy, D. A. Agard, and J. W. Sedat, “Three-dimensional multiple-wavelength fluorescence microscopy for the structural analysis of biological phenomena,” Semin. Cell Biol.2(3), 153–165 (1991).
[PubMed]

Sheppard, C. J. R.

M. Gu and C. J. R. Sheppard, “Confocal fluorescent microscopy with a finite-sized circular detector,” J. Opt. Soc. Am. A9(1), 151–153 (1992).
[CrossRef]

C. J. R. Sheppard and C. J. Cogswell, “Confocal microscopy with detector arrays,” J. Mod. Opt.37(2), 267–279 (1990).
[CrossRef]

Shi, K.

Q. Xu, K. Shi, S. Yin, and Z. Liu, “Chromatic two-photon excitation fluorescence imaging,” J. Microsc.235(1), 79–83 (2009).
[CrossRef] [PubMed]

Shi, K. B.

Shroff, H.

R. S. Fischer, Y. Wu, P. Kanchanawong, H. Shroff, and C. M. Waterman, “Microscopy in 3D: a biologist’s toolbox,” Trends Cell Biol.21(12), 682–691 (2011).
[CrossRef] [PubMed]

Song, L.

L. Song, C. A. Varma, J. W. Verhoeven, and H. J. Tanke, “Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy,” Biophys. J.70(6), 2959–2968 (1996).
[CrossRef] [PubMed]

Song, Y. X.

Y. Wang, L. R. Qiu, Y. X. Song, and W. Q. Zhao, “Laser differential confocal lens thickness measurement,” Meas. Sci. Technol.23(5), 055204 (2012).
[CrossRef]

Soule, P.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods10(1), 60–63 (2012).
[CrossRef] [PubMed]

Stainier, D. Y.

J. Huisken and D. Y. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development136(12), 1963–1975 (2009).
[CrossRef] [PubMed]

Stallinga, S.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods10(1), 60–63 (2012).
[CrossRef] [PubMed]

Subramaniam, V.

E. A. Te Velde, T. Veerman, V. Subramaniam, and T. Ruers, “The use of fluorescent dyes and probes in surgical oncology,” Eur. J. Surg. Oncol.36(1), 6–15 (2010).
[CrossRef] [PubMed]

Sun, P. C.

Swedlow, J. R.

Y. Hiraoka, J. R. Swedlow, M. R. Paddy, D. A. Agard, and J. W. Sedat, “Three-dimensional multiple-wavelength fluorescence microscopy for the structural analysis of biological phenomena,” Semin. Cell Biol.2(3), 153–165 (1991).
[PubMed]

Tan, J. B.

J. B. Tan, J. Liu, and Y. H. Wang, “Differential confocal microscopy with a wide measuring range based on polychromatic illumination,” Meas. Sci. Technol.21(5), 054013 (2010).
[CrossRef]

W. Q. Zhao, J. B. Tan, and L. R. Qiu, “Bipolar absolute differential confocal approach to higher spatial resolution,” Opt. Express12(21), 5013–5021 (2004).
[CrossRef] [PubMed]

Tanke, H. J.

L. Song, C. A. Varma, J. W. Verhoeven, and H. J. Tanke, “Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy,” Biophys. J.70(6), 2959–2968 (1996).
[CrossRef] [PubMed]

Te Velde, E. A.

E. A. Te Velde, T. Veerman, V. Subramaniam, and T. Ruers, “The use of fluorescent dyes and probes in surgical oncology,” Eur. J. Surg. Oncol.36(1), 6–15 (2010).
[CrossRef] [PubMed]

Tearney, G.

Tiziani, H. J.

Uhde, H. M.

Van Noorden, C. J.

R. A. Hoebe, C. H. Van Oven, T. W. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol.25(2), 249–253 (2007).
[CrossRef] [PubMed]

Van Oven, C. H.

R. A. Hoebe, C. H. Van Oven, T. W. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol.25(2), 249–253 (2007).
[CrossRef] [PubMed]

Varma, C. A.

L. Song, C. A. Varma, J. W. Verhoeven, and H. J. Tanke, “Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy,” Biophys. J.70(6), 2959–2968 (1996).
[CrossRef] [PubMed]

Veerman, T.

E. A. Te Velde, T. Veerman, V. Subramaniam, and T. Ruers, “The use of fluorescent dyes and probes in surgical oncology,” Eur. J. Surg. Oncol.36(1), 6–15 (2010).
[CrossRef] [PubMed]

Verhoeven, J. W.

L. Song, C. A. Varma, J. W. Verhoeven, and H. J. Tanke, “Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy,” Biophys. J.70(6), 2959–2968 (1996).
[CrossRef] [PubMed]

Wang, J. P.

C. H. Lee and J. P. Wang, “Noninterferometric differential confocal microscopy with 2-nm depth resolution,” Opt. Commun.135(4-6), 233–237 (1997).
[CrossRef]

Wang, Y.

Y. Wang, L. R. Qiu, Y. X. Song, and W. Q. Zhao, “Laser differential confocal lens thickness measurement,” Meas. Sci. Technol.23(5), 055204 (2012).
[CrossRef]

Wang, Y. H.

J. B. Tan, J. Liu, and Y. H. Wang, “Differential confocal microscopy with a wide measuring range based on polychromatic illumination,” Meas. Sci. Technol.21(5), 054013 (2010).
[CrossRef]

Ward, E. S.

P. Prabhat, S. Ram, E. S. Ward, and R. J. Ober, “Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions,” IEEE Trans. Nanobioscience3(4), 237–242 (2004).
[CrossRef] [PubMed]

Waterman, C. M.

R. S. Fischer, Y. Wu, P. Kanchanawong, H. Shroff, and C. M. Waterman, “Microscopy in 3D: a biologist’s toolbox,” Trends Cell Biol.21(12), 682–691 (2011).
[CrossRef] [PubMed]

Weissleder, R.

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med.9(1), 123–128 (2003).
[CrossRef] [PubMed]

Wiesendanger, T. F.

Wilson, T.

Wisniewski, J.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods10(1), 60–63 (2012).
[CrossRef] [PubMed]

Wu, C.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods10(1), 60–63 (2012).
[CrossRef] [PubMed]

Wu, Y.

R. S. Fischer, Y. Wu, P. Kanchanawong, H. Shroff, and C. M. Waterman, “Microscopy in 3D: a biologist’s toolbox,” Trends Cell Biol.21(12), 682–691 (2011).
[CrossRef] [PubMed]

Xu, Q.

Q. Xu, K. Shi, S. Yin, and Z. Liu, “Chromatic two-photon excitation fluorescence imaging,” J. Microsc.235(1), 79–83 (2009).
[CrossRef] [PubMed]

Xu, Q. A.

Yang, C. A.

Yin, S.

Q. Xu, K. Shi, S. Yin, and Z. Liu, “Chromatic two-photon excitation fluorescence imaging,” J. Microsc.235(1), 79–83 (2009).
[CrossRef] [PubMed]

Yin, S. Z.

Yoo, H.

Zhao, W. Q.

Zheng, W.

Zhu, L.

Zou, L. M.

L. M. Zou, J. Q. Qu, S. L. Hou, and X. M. Ding, “Differential confocal technology based on radial birefringent pupil filtering principle,” Opt. Commun.285(8), 2022–2027 (2012).
[CrossRef]

Appl. Opt. (2)

Biophys. J. (1)

L. Song, C. A. Varma, J. W. Verhoeven, and H. J. Tanke, “Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy,” Biophys. J.70(6), 2959–2968 (1996).
[CrossRef] [PubMed]

Development (1)

J. Huisken and D. Y. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development136(12), 1963–1975 (2009).
[CrossRef] [PubMed]

Eur. J. Surg. Oncol. (1)

E. A. Te Velde, T. Veerman, V. Subramaniam, and T. Ruers, “The use of fluorescent dyes and probes in surgical oncology,” Eur. J. Surg. Oncol.36(1), 6–15 (2010).
[CrossRef] [PubMed]

IEEE Trans. Nanobioscience (1)

P. Prabhat, S. Ram, E. S. Ward, and R. J. Ober, “Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions,” IEEE Trans. Nanobioscience3(4), 237–242 (2004).
[CrossRef] [PubMed]

J. Microsc. (1)

Q. Xu, K. Shi, S. Yin, and Z. Liu, “Chromatic two-photon excitation fluorescence imaging,” J. Microsc.235(1), 79–83 (2009).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

C. J. R. Sheppard and C. J. Cogswell, “Confocal microscopy with detector arrays,” J. Mod. Opt.37(2), 267–279 (1990).
[CrossRef]

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (2)

J. B. Tan, J. Liu, and Y. H. Wang, “Differential confocal microscopy with a wide measuring range based on polychromatic illumination,” Meas. Sci. Technol.21(5), 054013 (2010).
[CrossRef]

Y. Wang, L. R. Qiu, Y. X. Song, and W. Q. Zhao, “Laser differential confocal lens thickness measurement,” Meas. Sci. Technol.23(5), 055204 (2012).
[CrossRef]

Nat. Biotechnol. (1)

R. A. Hoebe, C. H. Van Oven, T. W. Gadella, P. B. Dhonukshe, C. J. Van Noorden, and E. M. Manders, “Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging,” Nat. Biotechnol.25(2), 249–253 (2007).
[CrossRef] [PubMed]

Nat. Med. (1)

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med.9(1), 123–128 (2003).
[CrossRef] [PubMed]

Nat. Methods (2)

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
[CrossRef] [PubMed]

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods10(1), 60–63 (2012).
[CrossRef] [PubMed]

Opt. Commun. (2)

C. H. Lee and J. P. Wang, “Noninterferometric differential confocal microscopy with 2-nm depth resolution,” Opt. Commun.135(4-6), 233–237 (1997).
[CrossRef]

L. M. Zou, J. Q. Qu, S. L. Hou, and X. M. Ding, “Differential confocal technology based on radial birefringent pupil filtering principle,” Opt. Commun.285(8), 2022–2027 (2012).
[CrossRef]

Opt. Express (7)

Opt. Lett. (3)

Plant J. (1)

R. Dixit and R. Cyr, “Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy,” Plant J.36(2), 280–290 (2003).
[CrossRef] [PubMed]

Semin. Cell Biol. (1)

Y. Hiraoka, J. R. Swedlow, M. R. Paddy, D. A. Agard, and J. W. Sedat, “Three-dimensional multiple-wavelength fluorescence microscopy for the structural analysis of biological phenomena,” Semin. Cell Biol.2(3), 153–165 (1991).
[PubMed]

Trends Cell Biol. (1)

R. S. Fischer, Y. Wu, P. Kanchanawong, H. Shroff, and C. M. Waterman, “Microscopy in 3D: a biologist’s toolbox,” Trends Cell Biol.21(12), 682–691 (2011).
[CrossRef] [PubMed]

Other (3)

M. Gu, Principles of Three-dimensional Imaging in Confocal Microscopes (World Scientific, 1996).

J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer, 1995).

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of DDCFM. Light from a point source is reflected by a dichroic mirror (DM) and illuminates the sample. Light from a fluorescent emitter within the focal volume in the sample passes through the DM and is split by a beam splitter (BS). Each beam is directed to the photomultiplier tube (PMT) through a pinhole. Pinhole 1 (P1) is smaller than pinhole 2 (P2).

Fig. 2
Fig. 2

Theoretical axial response curves of the intensity and intensity ratio in DDCFM. The intensity signals measured by each PMT differ because of different pinhole sizes. The blue and green line graphs show the axial response curves of the small (vp = 2.7) and large (vp = 13.5) pinholes, respectively. The ratio of the axial response curves is indicated by the red line. Since the relationship between the intensity ratio and the axial position is one-to-one, the intensity ratio directly indicates the axial position of the fluorescence source.

Fig. 3
Fig. 3

Schematic of the experimental setup. The laser source was collimated then passed through an excitation filter. The beam was reflected by a dichroic mirror (DM) and scanned by an x-y scanner. A relay lens optical system directed the beam to the center of a 0.045-NA objective, despite various beam angles. The sample was precisely moved in the axial direction by a PZT stage. Light emitted from the sample passed inversely through the optical components and then through a dichroic mirror (DM) and emission filter. A 50/50 beam splitter (BS) divided the beam path equally, and two collecting lenses (C1, C2) focused the beam onto the PMTs. The pinhole in front of PMT 1 was smaller than the pinhole in front of PMT 2. The pinhole diameters were 30 μm and 150 μm.

Fig. 4
Fig. 4

Axial response curves. At each height, intensity was measured with 30 μm (blue) and 150 μm (green) pinholes. The intensity ratio of pinholes 1 and 2 is shown in red. Using the intensity ratio curve, the axial position of a fluorescent particle can be measured.

Fig. 5
Fig. 5

Height variation measurement. The solid line represents the real PZT movement, and closed circles are the measured axial positions of a bead. (a) Linear bead movement. (b) Step bead movement.

Fig. 6
Fig. 6

DDCFM measurement of a fluorescent sample comprising two levels of 6 μm fluorescent beads separated by 105 μm. (a) Schematic of the sample. (b) 3-D surface image of a step sample taken with confocal reflectance microscopy. (c,d) Fluorescence intensity images of beads measured by the small and large pinholes, respectively. (e) Normalized ratio of intensity image. (f) Corresponding height image of beads. The beads on levels ① and ② are separated by 105.6 μm on average. Scale bars: 100 μm.

Fig. 7
Fig. 7

DDCFM measurement of a fluorescent sample comprising 6 μm fluorescent beads with two different quantum yields on a glass slide. (a) Schematic of a sample. (b,c) Fluorescence intensity images of beads measured by the small and large pinholes, respectively. (d) Normalized intensity ratio image. (e) Corresponding height image. Despite varying quantum yields, bead heights were measured uniformly. Scale bars: 100 μm.

Fig. 8
Fig. 8

DDCFM images of the 3-D structure of knitted nylon fabric. (a,b) Fluorescence intensity images of fabric with small and large pinhole, respectively. (c) Corresponding height image of nylon fabric. (d) Representative images of 2D stack of confocal microscope mode. (e) Reconstructed height map of nylon fabric by confocal microscope mode with high NA objective (NA = 0.16). (f) Optically zoomed height map of ROI (white dashed square) in (c) by DDCFM with low NA objective (NA = 0.045). (g) xz cross-section (1800 × 180 μm) of white dashed line in (e). (h) xz cross-section (1800 × 180 μm) of white dashed line in (f) with SD of 10 μm. Color bars in (d),(g), and (h) show normalized intensity. Scale bars, 1mm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

h i (u,v)= | h(u,v) | 2 [ | h(u,v) | 2 D(v) ],
h(u,v)= 0 1 P(ρ)exp(iu ρ 2 /2) J 0 (vρ)ρdρ,
{ v= 2π λ rsinα u= 2π λ z sin 2 α,
I(u)= 0 v p | 0 1 exp(iu ρ 2 ) J 0 (vρ)ρdρ | 2 dv,
I(Φ,z)=Φ×I(z),
I R (z)= Φ× I 1 (z) Φ× I 2 (z) = I 1 (z) I 2 (z) ,

Metrics