Abstract

A method that remotely measures blood oxygen saturation through two cameras under regular lighting is proposed and experimentally demonstrated. Two narrow-band filters with their visible wavelength of 660nm and 520nm are mounted to two cameras respectively, which are then used to capture two photoplethysmographic (PPG) from the subject simultaneously. The data gathered from this system, including both blood oxygen saturation and heart rate, is compared to the output of a traditional figure blood volume pulse (BVP) senor that was employed on the subject at the same time. Result of the comparison showed that the data from the new, non-contact system is consistent and comparable with the BVP senor. Compared to other camera-based measuring method, which requires additional close-up lighting, this new method is achievable under regular lighting condition, therefore more stable and easier to implement. This is the first demonstration of an accurate video-based method for non-contact oxygen saturation measurements by using ambient light with their respective visible wavelength of 660nm and 520nm which is free from interference of the light in other bands.

© 2013 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Non-contact, automated cardiac pulse measurements using video imaging and blind source separation.

Ming-Zher Poh, Daniel J. McDuff, and Rosalind W. Picard
Opt. Express 18(10) 10762-10774 (2010)

Non-contact measurement of oxygen saturation with an RGB camera

Alessandro R. Guazzi, Mauricio Villarroel, João Jorge, Jonathan Daly, Matthew C. Frise, Peter A. Robbins, and Lionel Tarassenko
Biomed. Opt. Express 6(9) 3320-3338 (2015)

References

  • View by:
  • |
  • |
  • |

  1. X. F. Teng and Y. T. Zhang, “The effect of contacting force on photoplethysmographic signals,” Physiol. Meas. 25(5), 1323–1335 (2004).
    [Crossref] [PubMed]
  2. C. Takano and Y. Ohta, “Heart rate measurement based on a time-lapse image,” Med. Eng. Phys. 29(8), 853–857 (2007).
    [Crossref] [PubMed]
  3. M. Z. Poh, D. J. McDuff, and R. W. Picard, “Non-contact, automated cardiac pulse measurements using video imaging and blind source separation,” Opt. Express 18(10), 10762–10774 (2010).
    [Crossref] [PubMed]
  4. W. Verkruysse, L. O. Svaasand, and J. S. Nelson, “Remote plethysmographic imaging using ambient light,” Opt. Express 16(26), 21434–21445 (2008).
    [Crossref] [PubMed]
  5. F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO(2) camera’ technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
    [Crossref] [PubMed]
  6. M. Z. Poh, D. J. McDuff, and R. W. Picard, “Advancements in noncontact, multiparameter physiological measurements using a webcam,” IEEE Trans. Biomed. Eng. 58(1), 7–11 (2011).
    [Crossref] [PubMed]
  7. C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng. 59(2), 303–306 (2012).
    [Crossref] [PubMed]
  8. J. A. Pollard, “Cardiac arrhythmias and pulse variability: a plethysmographic study,” Anaesthesia 25(1), 63–72 (1970).
    [Crossref] [PubMed]
  9. H. D. Hummler, A. Engelmann, F. Pohlandt, J. Högel, and A. R. Franz, “Accuracy of pulse oximetry readings in an animal model of low perfusion caused by emerging pneumonia and sepsis,” Intensive Care Med. 30(4), 709–713 (2004).
    [Crossref] [PubMed]
  10. N. S. Trivedi, A. F. Ghouri, N. K. Shah, E. Lai, and S. J. Barker, “Effects of motion, ambient light, and hypoperfusion on pulse oximeter function,” J. Clin. Anesth. 9(3), 179–183 (1997).
    [Crossref] [PubMed]
  11. K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum. 78(4), 044304 (2007).
    [Crossref] [PubMed]
  12. K. Humphreys, T. Ward, and C. Markham, “A CMOS camera-based pulse oximetry imaging system,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 4, 3494–3497 (2005).
    [PubMed]
  13. J. Zheng, S. Hu, A. S. Echiadis, V. A. Peris, P. Shi, and V. Chouliaras, “A remote approach to measure blood perfusion from the human face,” Proc. SPIE 7169, 171–177 (2009).
    [Crossref]
  14. W. Verkruysse, L. O. Svaasand, and J. S. Nelson, “Remote plethysmographic imaging using ambient light,” Opt. Express 16(26), 21434–21445 (2008).
    [Crossref] [PubMed]
  15. H. S. Zhu, Y. J. Zhao, and L. Q. Dong, “Non-contact detection of cardiac rate based on visible light imaging device,” Proc. SPIE 8498, 849806, 849806-7 (2012).
    [Crossref]
  16. J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
    [Crossref] [PubMed]
  17. Y. Sun, C. Papin, V. Azorin-Peris, R. Kalawsky, S. Greenwald, and S. Hu, “Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam,” J. Biomed. Opt. 17(3), 037005 (2012).
    [Crossref] [PubMed]
  18. Y. Sun, S. Hu, V. Azorin-Peris, S. Greenwald, J. Chambers, and Y. Zhu, “Motion-compensated noncontact imaging photoplethysmography to monitor cardiorespiratory status during exercise,” J. Biomed. Opt. 16(7), 077010 (2011).
    [Crossref] [PubMed]

2012 (3)

C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng. 59(2), 303–306 (2012).
[Crossref] [PubMed]

H. S. Zhu, Y. J. Zhao, and L. Q. Dong, “Non-contact detection of cardiac rate based on visible light imaging device,” Proc. SPIE 8498, 849806, 849806-7 (2012).
[Crossref]

Y. Sun, C. Papin, V. Azorin-Peris, R. Kalawsky, S. Greenwald, and S. Hu, “Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam,” J. Biomed. Opt. 17(3), 037005 (2012).
[Crossref] [PubMed]

2011 (2)

Y. Sun, S. Hu, V. Azorin-Peris, S. Greenwald, J. Chambers, and Y. Zhu, “Motion-compensated noncontact imaging photoplethysmography to monitor cardiorespiratory status during exercise,” J. Biomed. Opt. 16(7), 077010 (2011).
[Crossref] [PubMed]

M. Z. Poh, D. J. McDuff, and R. W. Picard, “Advancements in noncontact, multiparameter physiological measurements using a webcam,” IEEE Trans. Biomed. Eng. 58(1), 7–11 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

J. Zheng, S. Hu, A. S. Echiadis, V. A. Peris, P. Shi, and V. Chouliaras, “A remote approach to measure blood perfusion from the human face,” Proc. SPIE 7169, 171–177 (2009).
[Crossref]

2008 (2)

2007 (2)

C. Takano and Y. Ohta, “Heart rate measurement based on a time-lapse image,” Med. Eng. Phys. 29(8), 853–857 (2007).
[Crossref] [PubMed]

K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum. 78(4), 044304 (2007).
[Crossref] [PubMed]

2005 (2)

K. Humphreys, T. Ward, and C. Markham, “A CMOS camera-based pulse oximetry imaging system,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 4, 3494–3497 (2005).
[PubMed]

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO(2) camera’ technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
[Crossref] [PubMed]

2004 (2)

X. F. Teng and Y. T. Zhang, “The effect of contacting force on photoplethysmographic signals,” Physiol. Meas. 25(5), 1323–1335 (2004).
[Crossref] [PubMed]

H. D. Hummler, A. Engelmann, F. Pohlandt, J. Högel, and A. R. Franz, “Accuracy of pulse oximetry readings in an animal model of low perfusion caused by emerging pneumonia and sepsis,” Intensive Care Med. 30(4), 709–713 (2004).
[Crossref] [PubMed]

1997 (1)

N. S. Trivedi, A. F. Ghouri, N. K. Shah, E. Lai, and S. J. Barker, “Effects of motion, ambient light, and hypoperfusion on pulse oximeter function,” J. Clin. Anesth. 9(3), 179–183 (1997).
[Crossref] [PubMed]

1986 (1)

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
[Crossref] [PubMed]

1970 (1)

J. A. Pollard, “Cardiac arrhythmias and pulse variability: a plethysmographic study,” Anaesthesia 25(1), 63–72 (1970).
[Crossref] [PubMed]

Altman, D. G.

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
[Crossref] [PubMed]

Azorin-Peris, V.

Y. Sun, C. Papin, V. Azorin-Peris, R. Kalawsky, S. Greenwald, and S. Hu, “Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam,” J. Biomed. Opt. 17(3), 037005 (2012).
[Crossref] [PubMed]

Y. Sun, S. Hu, V. Azorin-Peris, S. Greenwald, J. Chambers, and Y. Zhu, “Motion-compensated noncontact imaging photoplethysmography to monitor cardiorespiratory status during exercise,” J. Biomed. Opt. 16(7), 077010 (2011).
[Crossref] [PubMed]

Barker, S. J.

N. S. Trivedi, A. F. Ghouri, N. K. Shah, E. Lai, and S. J. Barker, “Effects of motion, ambient light, and hypoperfusion on pulse oximeter function,” J. Clin. Anesth. 9(3), 179–183 (1997).
[Crossref] [PubMed]

Bland, J. M.

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
[Crossref] [PubMed]

Chambers, J.

Y. Sun, S. Hu, V. Azorin-Peris, S. Greenwald, J. Chambers, and Y. Zhu, “Motion-compensated noncontact imaging photoplethysmography to monitor cardiorespiratory status during exercise,” J. Biomed. Opt. 16(7), 077010 (2011).
[Crossref] [PubMed]

Chon, K. H.

C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng. 59(2), 303–306 (2012).
[Crossref] [PubMed]

Chouliaras, V.

J. Zheng, S. Hu, A. S. Echiadis, V. A. Peris, P. Shi, and V. Chouliaras, “A remote approach to measure blood perfusion from the human face,” Proc. SPIE 7169, 171–177 (2009).
[Crossref]

Dong, L. Q.

H. S. Zhu, Y. J. Zhao, and L. Q. Dong, “Non-contact detection of cardiac rate based on visible light imaging device,” Proc. SPIE 8498, 849806, 849806-7 (2012).
[Crossref]

Echiadis, A. S.

J. Zheng, S. Hu, A. S. Echiadis, V. A. Peris, P. Shi, and V. Chouliaras, “A remote approach to measure blood perfusion from the human face,” Proc. SPIE 7169, 171–177 (2009).
[Crossref]

Engelmann, A.

H. D. Hummler, A. Engelmann, F. Pohlandt, J. Högel, and A. R. Franz, “Accuracy of pulse oximetry readings in an animal model of low perfusion caused by emerging pneumonia and sepsis,” Intensive Care Med. 30(4), 709–713 (2004).
[Crossref] [PubMed]

Franz, A. R.

H. D. Hummler, A. Engelmann, F. Pohlandt, J. Högel, and A. R. Franz, “Accuracy of pulse oximetry readings in an animal model of low perfusion caused by emerging pneumonia and sepsis,” Intensive Care Med. 30(4), 709–713 (2004).
[Crossref] [PubMed]

Ghouri, A. F.

N. S. Trivedi, A. F. Ghouri, N. K. Shah, E. Lai, and S. J. Barker, “Effects of motion, ambient light, and hypoperfusion on pulse oximeter function,” J. Clin. Anesth. 9(3), 179–183 (1997).
[Crossref] [PubMed]

Gorbach, A. M.

C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng. 59(2), 303–306 (2012).
[Crossref] [PubMed]

Granquist-Fraser, D.

C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng. 59(2), 303–306 (2012).
[Crossref] [PubMed]

Greenwald, S.

Y. Sun, C. Papin, V. Azorin-Peris, R. Kalawsky, S. Greenwald, and S. Hu, “Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam,” J. Biomed. Opt. 17(3), 037005 (2012).
[Crossref] [PubMed]

Y. Sun, S. Hu, V. Azorin-Peris, S. Greenwald, J. Chambers, and Y. Zhu, “Motion-compensated noncontact imaging photoplethysmography to monitor cardiorespiratory status during exercise,” J. Biomed. Opt. 16(7), 077010 (2011).
[Crossref] [PubMed]

Högel, J.

H. D. Hummler, A. Engelmann, F. Pohlandt, J. Högel, and A. R. Franz, “Accuracy of pulse oximetry readings in an animal model of low perfusion caused by emerging pneumonia and sepsis,” Intensive Care Med. 30(4), 709–713 (2004).
[Crossref] [PubMed]

Hu, S.

Y. Sun, C. Papin, V. Azorin-Peris, R. Kalawsky, S. Greenwald, and S. Hu, “Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam,” J. Biomed. Opt. 17(3), 037005 (2012).
[Crossref] [PubMed]

Y. Sun, S. Hu, V. Azorin-Peris, S. Greenwald, J. Chambers, and Y. Zhu, “Motion-compensated noncontact imaging photoplethysmography to monitor cardiorespiratory status during exercise,” J. Biomed. Opt. 16(7), 077010 (2011).
[Crossref] [PubMed]

J. Zheng, S. Hu, A. S. Echiadis, V. A. Peris, P. Shi, and V. Chouliaras, “A remote approach to measure blood perfusion from the human face,” Proc. SPIE 7169, 171–177 (2009).
[Crossref]

Hummler, H. D.

H. D. Hummler, A. Engelmann, F. Pohlandt, J. Högel, and A. R. Franz, “Accuracy of pulse oximetry readings in an animal model of low perfusion caused by emerging pneumonia and sepsis,” Intensive Care Med. 30(4), 709–713 (2004).
[Crossref] [PubMed]

Humphreys, K.

K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum. 78(4), 044304 (2007).
[Crossref] [PubMed]

K. Humphreys, T. Ward, and C. Markham, “A CMOS camera-based pulse oximetry imaging system,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 4, 3494–3497 (2005).
[PubMed]

Kalawsky, R.

Y. Sun, C. Papin, V. Azorin-Peris, R. Kalawsky, S. Greenwald, and S. Hu, “Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam,” J. Biomed. Opt. 17(3), 037005 (2012).
[Crossref] [PubMed]

Lai, E.

N. S. Trivedi, A. F. Ghouri, N. K. Shah, E. Lai, and S. J. Barker, “Effects of motion, ambient light, and hypoperfusion on pulse oximeter function,” J. Clin. Anesth. 9(3), 179–183 (1997).
[Crossref] [PubMed]

Lee, J.

C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng. 59(2), 303–306 (2012).
[Crossref] [PubMed]

Markham, C.

K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum. 78(4), 044304 (2007).
[Crossref] [PubMed]

K. Humphreys, T. Ward, and C. Markham, “A CMOS camera-based pulse oximetry imaging system,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 4, 3494–3497 (2005).
[PubMed]

Mastik, F.

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO(2) camera’ technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
[Crossref] [PubMed]

McDuff, D. J.

M. Z. Poh, D. J. McDuff, and R. W. Picard, “Advancements in noncontact, multiparameter physiological measurements using a webcam,” IEEE Trans. Biomed. Eng. 58(1), 7–11 (2011).
[Crossref] [PubMed]

M. Z. Poh, D. J. McDuff, and R. W. Picard, “Non-contact, automated cardiac pulse measurements using video imaging and blind source separation,” Opt. Express 18(10), 10762–10774 (2010).
[Crossref] [PubMed]

Mendelson, Y.

C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng. 59(2), 303–306 (2012).
[Crossref] [PubMed]

Meyer, J.

C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng. 59(2), 303–306 (2012).
[Crossref] [PubMed]

Nelson, J. S.

Ohta, Y.

C. Takano and Y. Ohta, “Heart rate measurement based on a time-lapse image,” Med. Eng. Phys. 29(8), 853–857 (2007).
[Crossref] [PubMed]

Papin, C.

Y. Sun, C. Papin, V. Azorin-Peris, R. Kalawsky, S. Greenwald, and S. Hu, “Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam,” J. Biomed. Opt. 17(3), 037005 (2012).
[Crossref] [PubMed]

Peris, V. A.

J. Zheng, S. Hu, A. S. Echiadis, V. A. Peris, P. Shi, and V. Chouliaras, “A remote approach to measure blood perfusion from the human face,” Proc. SPIE 7169, 171–177 (2009).
[Crossref]

Picard, R. W.

M. Z. Poh, D. J. McDuff, and R. W. Picard, “Advancements in noncontact, multiparameter physiological measurements using a webcam,” IEEE Trans. Biomed. Eng. 58(1), 7–11 (2011).
[Crossref] [PubMed]

M. Z. Poh, D. J. McDuff, and R. W. Picard, “Non-contact, automated cardiac pulse measurements using video imaging and blind source separation,” Opt. Express 18(10), 10762–10774 (2010).
[Crossref] [PubMed]

Poh, M. Z.

M. Z. Poh, D. J. McDuff, and R. W. Picard, “Advancements in noncontact, multiparameter physiological measurements using a webcam,” IEEE Trans. Biomed. Eng. 58(1), 7–11 (2011).
[Crossref] [PubMed]

M. Z. Poh, D. J. McDuff, and R. W. Picard, “Non-contact, automated cardiac pulse measurements using video imaging and blind source separation,” Opt. Express 18(10), 10762–10774 (2010).
[Crossref] [PubMed]

Pohlandt, F.

H. D. Hummler, A. Engelmann, F. Pohlandt, J. Högel, and A. R. Franz, “Accuracy of pulse oximetry readings in an animal model of low perfusion caused by emerging pneumonia and sepsis,” Intensive Care Med. 30(4), 709–713 (2004).
[Crossref] [PubMed]

Pollard, J. A.

J. A. Pollard, “Cardiac arrhythmias and pulse variability: a plethysmographic study,” Anaesthesia 25(1), 63–72 (1970).
[Crossref] [PubMed]

Scully, C. G.

C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng. 59(2), 303–306 (2012).
[Crossref] [PubMed]

Shah, N. K.

N. S. Trivedi, A. F. Ghouri, N. K. Shah, E. Lai, and S. J. Barker, “Effects of motion, ambient light, and hypoperfusion on pulse oximeter function,” J. Clin. Anesth. 9(3), 179–183 (1997).
[Crossref] [PubMed]

Shi, P.

J. Zheng, S. Hu, A. S. Echiadis, V. A. Peris, P. Shi, and V. Chouliaras, “A remote approach to measure blood perfusion from the human face,” Proc. SPIE 7169, 171–177 (2009).
[Crossref]

Sun, Y.

Y. Sun, C. Papin, V. Azorin-Peris, R. Kalawsky, S. Greenwald, and S. Hu, “Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam,” J. Biomed. Opt. 17(3), 037005 (2012).
[Crossref] [PubMed]

Y. Sun, S. Hu, V. Azorin-Peris, S. Greenwald, J. Chambers, and Y. Zhu, “Motion-compensated noncontact imaging photoplethysmography to monitor cardiorespiratory status during exercise,” J. Biomed. Opt. 16(7), 077010 (2011).
[Crossref] [PubMed]

Svaasand, L. O.

Takano, C.

C. Takano and Y. Ohta, “Heart rate measurement based on a time-lapse image,” Med. Eng. Phys. 29(8), 853–857 (2007).
[Crossref] [PubMed]

Teng, X. F.

X. F. Teng and Y. T. Zhang, “The effect of contacting force on photoplethysmographic signals,” Physiol. Meas. 25(5), 1323–1335 (2004).
[Crossref] [PubMed]

Trivedi, N. S.

N. S. Trivedi, A. F. Ghouri, N. K. Shah, E. Lai, and S. J. Barker, “Effects of motion, ambient light, and hypoperfusion on pulse oximeter function,” J. Clin. Anesth. 9(3), 179–183 (1997).
[Crossref] [PubMed]

van der Steen, A. F. W.

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO(2) camera’ technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
[Crossref] [PubMed]

Verkruysse, W.

Ward, T.

K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum. 78(4), 044304 (2007).
[Crossref] [PubMed]

K. Humphreys, T. Ward, and C. Markham, “A CMOS camera-based pulse oximetry imaging system,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 4, 3494–3497 (2005).
[PubMed]

Wieringa, F. P.

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO(2) camera’ technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
[Crossref] [PubMed]

Zhang, Y. T.

X. F. Teng and Y. T. Zhang, “The effect of contacting force on photoplethysmographic signals,” Physiol. Meas. 25(5), 1323–1335 (2004).
[Crossref] [PubMed]

Zhao, Y. J.

H. S. Zhu, Y. J. Zhao, and L. Q. Dong, “Non-contact detection of cardiac rate based on visible light imaging device,” Proc. SPIE 8498, 849806, 849806-7 (2012).
[Crossref]

Zheng, J.

J. Zheng, S. Hu, A. S. Echiadis, V. A. Peris, P. Shi, and V. Chouliaras, “A remote approach to measure blood perfusion from the human face,” Proc. SPIE 7169, 171–177 (2009).
[Crossref]

Zhu, H. S.

H. S. Zhu, Y. J. Zhao, and L. Q. Dong, “Non-contact detection of cardiac rate based on visible light imaging device,” Proc. SPIE 8498, 849806, 849806-7 (2012).
[Crossref]

Zhu, Y.

Y. Sun, S. Hu, V. Azorin-Peris, S. Greenwald, J. Chambers, and Y. Zhu, “Motion-compensated noncontact imaging photoplethysmography to monitor cardiorespiratory status during exercise,” J. Biomed. Opt. 16(7), 077010 (2011).
[Crossref] [PubMed]

Anaesthesia (1)

J. A. Pollard, “Cardiac arrhythmias and pulse variability: a plethysmographic study,” Anaesthesia 25(1), 63–72 (1970).
[Crossref] [PubMed]

Ann. Biomed. Eng. (1)

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO(2) camera’ technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
[Crossref] [PubMed]

Conf. Proc. IEEE Eng. Med. Biol. Soc. (1)

K. Humphreys, T. Ward, and C. Markham, “A CMOS camera-based pulse oximetry imaging system,” Conf. Proc. IEEE Eng. Med. Biol. Soc. 4, 3494–3497 (2005).
[PubMed]

IEEE Trans. Biomed. Eng. (2)

M. Z. Poh, D. J. McDuff, and R. W. Picard, “Advancements in noncontact, multiparameter physiological measurements using a webcam,” IEEE Trans. Biomed. Eng. 58(1), 7–11 (2011).
[Crossref] [PubMed]

C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng. 59(2), 303–306 (2012).
[Crossref] [PubMed]

Intensive Care Med. (1)

H. D. Hummler, A. Engelmann, F. Pohlandt, J. Högel, and A. R. Franz, “Accuracy of pulse oximetry readings in an animal model of low perfusion caused by emerging pneumonia and sepsis,” Intensive Care Med. 30(4), 709–713 (2004).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

Y. Sun, C. Papin, V. Azorin-Peris, R. Kalawsky, S. Greenwald, and S. Hu, “Use of ambient light in remote photoplethysmographic systems: comparison between a high-performance camera and a low-cost webcam,” J. Biomed. Opt. 17(3), 037005 (2012).
[Crossref] [PubMed]

Y. Sun, S. Hu, V. Azorin-Peris, S. Greenwald, J. Chambers, and Y. Zhu, “Motion-compensated noncontact imaging photoplethysmography to monitor cardiorespiratory status during exercise,” J. Biomed. Opt. 16(7), 077010 (2011).
[Crossref] [PubMed]

J. Clin. Anesth. (1)

N. S. Trivedi, A. F. Ghouri, N. K. Shah, E. Lai, and S. J. Barker, “Effects of motion, ambient light, and hypoperfusion on pulse oximeter function,” J. Clin. Anesth. 9(3), 179–183 (1997).
[Crossref] [PubMed]

Lancet (1)

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
[Crossref] [PubMed]

Med. Eng. Phys. (1)

C. Takano and Y. Ohta, “Heart rate measurement based on a time-lapse image,” Med. Eng. Phys. 29(8), 853–857 (2007).
[Crossref] [PubMed]

Opt. Express (3)

Physiol. Meas. (1)

X. F. Teng and Y. T. Zhang, “The effect of contacting force on photoplethysmographic signals,” Physiol. Meas. 25(5), 1323–1335 (2004).
[Crossref] [PubMed]

Proc. SPIE (2)

H. S. Zhu, Y. J. Zhao, and L. Q. Dong, “Non-contact detection of cardiac rate based on visible light imaging device,” Proc. SPIE 8498, 849806, 849806-7 (2012).
[Crossref]

J. Zheng, S. Hu, A. S. Echiadis, V. A. Peris, P. Shi, and V. Chouliaras, “A remote approach to measure blood perfusion from the human face,” Proc. SPIE 7169, 171–177 (2009).
[Crossref]

Rev. Sci. Instrum. (1)

K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum. 78(4), 044304 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The absorption spectrum of HbO2 and Hb.

Fig. 2
Fig. 2

Schematic of the monitoring of oxygen saturation with visible light imaging device.

Fig. 3
Fig. 3

The process of extraction of PPG signals from a video sequence. (a) A video sequence is illustrated along the time axis and the ROI marked with solid line box. (b) Evolution of the spatially-averaged pixels value during the recorded video. (c) The Fourier spectra corresponding to b. (d) The PPG signals after band pass filtering(B1-B2, B1 = 0.7Hz, B2 = 3Hz).

Fig. 4
Fig. 4

Comparison of the R measured by noncontact device proposed and the SPO2 measured by contact device versus time. (i) The linear fitting curve of SPO2 and R (the valid data in shadow section).

Fig. 5
Fig. 5

Scatter plot showing noncontact device’s measurement of heart rate and oxygen saturation versus the contact device’s measurement. (a) heart rate. (b) oxygen saturation.

Fig. 6
Fig. 6

Bland-Altman plot of the mean of the measurements by both devices for each subject versus the difference between the measurements by both devices for each subject. (a) heart rate, (b) SPO2 (The number next to the data point is the sample number at that location).

Tables (1)

Tables Icon

Table 1 Descriptive Statistics for the effect of the ambient light intensity on SPO2

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

SP O 2 = HbO 2 HbO 2 +Hb ×100%
SP O 2 =A I AC λ1 / I DC λ1 I AC λ2 / I DC λ2 +B=AR+B
SP O 2 =12526R

Metrics