Abstract

We report the experimental demonstration of fluorescence enhancement in fluorescent thin film using surface plasmon excitation in deep-ultraviolet (deep-UV) region. Surface plasmon resonance in deep-UV is excited on aluminum thin film in the Kretschmann-Raether geometry. Considering the oxidation thickness of aluminum, the experimentally measured incident angle dependence of reflectance show good agreement with Fresnel theory. Surface plasmon resonance was excited at the incident angle of 49 degrees for 266 nm p-polarized excitation light on the film of 18 nm-thick aluminum with 6.5 nm-thick alumina. Fluorescence of CdS quantum dots coated on this aluminum film was enhanced to 18-fold in intensity by the surface plasmon excitation.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kawata, Near-field and surface plasmon polaritons (Springer, 2001).
  2. A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. V. Duyne, “A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer’s disease,” Nano Lett.4(6), 1029–1034 (2004).
    [CrossRef]
  3. T. Okamoto, I. Yamaguchi, and T. Kobayashi, “Local plasmon sensor with gold colloid monolayers deposited upon glass substrates,” Opt. Lett.25(6), 372–374 (2000).
    [CrossRef] [PubMed]
  4. Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett.19(3), 159–161 (1994).
    [CrossRef] [PubMed]
  5. A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett.95(26), 267407 (2005).
    [CrossRef] [PubMed]
  6. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  7. M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. J. Ventura, and Z. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophoton.1(3-4), 235–248 (2012).
    [CrossRef]
  8. R. K. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
    [CrossRef]
  9. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
    [CrossRef] [PubMed]
  10. H. S. Sands, F. Demangeot, E. Bonera, S. Webster, R. Bennett, I. P. Hayward, F. Marchi, D. A. Smith, and D. N. Batchelder, “Development of a combined confocal and scanning near-field Raman microscope for deep UV laser excitation,” J. Raman Spectrosc.33(9), 730–739 (2002).
    [CrossRef]
  11. T. Dörfer, M. Schmitt, and J. Popp, “Deep-UV surface-enhanced Raman scattering,” J. Raman Spectrosc.38(11), 1379–1382 (2007).
    [CrossRef]
  12. A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc.40(9), 1324–1330 (2009).
    [CrossRef]
  13. Y. Ekinci, H. H. Solak, and J. F. Loffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys.104(8), 083107 (2008).
    [CrossRef]
  14. J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled ultraviolet emission of 2,5-diphenyl-1,3,4-oxadiazole,” J. Phys. Chem. B108(50), 19114–19118 (2004).
    [CrossRef] [PubMed]
  15. K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem.79(17), 6480–6487 (2007).
    [CrossRef] [PubMed]
  16. Y. Watanabe, W. Inami, and Y. Kawata, “Deep-ultraviolet light excites surface plasmon for the enhancement of photoelectron emission,” J. Appl. Phys.109(2), 023112 (2011).
    [CrossRef]
  17. P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir12(3), 788–800 (1996).
    [CrossRef]
  18. I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano5(4), 2535–2546 (2011).
    [CrossRef] [PubMed]
  19. C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett.8(5), 1461–1471 (2008).
    [CrossRef] [PubMed]
  20. G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C112(36), 13958–13963 (2008).
    [CrossRef]
  21. M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett.12(11), 6000–6004 (2012).
    [CrossRef] [PubMed]
  22. R. D. Olney and R. J. Romagnoli, “Optical effects of surface plasma waves with damping in metallic thin films,” Appl. Opt.26(11), 2279–2282 (1987).
    [CrossRef] [PubMed]
  23. Z. Gueroui and A. Libchaber, “Single-molecule measurements of gold-quenched quantum dots,” Phys. Rev. Lett.93(16), 166108 (2004).
    [CrossRef] [PubMed]
  24. T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
    [CrossRef] [PubMed]
  25. J. Zhu, J.-J. Li, and J.-W. Zhao, “Distance-dependent fluorescence quenching efficiency of gold nanodisk: effect of aspect ratio-dependent plasmonic absorption,” Plasmonics7(2), 201–207 (2012).
    [CrossRef]
  26. W. Zhang, F. Ding, W.-D. Li, Y. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology23(22), 225301 (2012).
    [CrossRef] [PubMed]
  27. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7(2), 496–501 (2007).
    [CrossRef] [PubMed]

2012 (4)

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. J. Ventura, and Z. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophoton.1(3-4), 235–248 (2012).
[CrossRef]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett.12(11), 6000–6004 (2012).
[CrossRef] [PubMed]

J. Zhu, J.-J. Li, and J.-W. Zhao, “Distance-dependent fluorescence quenching efficiency of gold nanodisk: effect of aspect ratio-dependent plasmonic absorption,” Plasmonics7(2), 201–207 (2012).
[CrossRef]

W. Zhang, F. Ding, W.-D. Li, Y. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology23(22), 225301 (2012).
[CrossRef] [PubMed]

2011 (2)

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano5(4), 2535–2546 (2011).
[CrossRef] [PubMed]

Y. Watanabe, W. Inami, and Y. Kawata, “Deep-ultraviolet light excites surface plasmon for the enhancement of photoelectron emission,” J. Appl. Phys.109(2), 023112 (2011).
[CrossRef]

2010 (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

2009 (1)

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc.40(9), 1324–1330 (2009).
[CrossRef]

2008 (4)

Y. Ekinci, H. H. Solak, and J. F. Loffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys.104(8), 083107 (2008).
[CrossRef]

R. K. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett.8(5), 1461–1471 (2008).
[CrossRef] [PubMed]

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C112(36), 13958–13963 (2008).
[CrossRef]

2007 (4)

T. Dörfer, M. Schmitt, and J. Popp, “Deep-UV surface-enhanced Raman scattering,” J. Raman Spectrosc.38(11), 1379–1382 (2007).
[CrossRef]

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem.79(17), 6480–6487 (2007).
[CrossRef] [PubMed]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7(2), 496–501 (2007).
[CrossRef] [PubMed]

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
[CrossRef] [PubMed]

2006 (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

2005 (1)

A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett.95(26), 267407 (2005).
[CrossRef] [PubMed]

2004 (3)

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled ultraviolet emission of 2,5-diphenyl-1,3,4-oxadiazole,” J. Phys. Chem. B108(50), 19114–19118 (2004).
[CrossRef] [PubMed]

Z. Gueroui and A. Libchaber, “Single-molecule measurements of gold-quenched quantum dots,” Phys. Rev. Lett.93(16), 166108 (2004).
[CrossRef] [PubMed]

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. V. Duyne, “A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer’s disease,” Nano Lett.4(6), 1029–1034 (2004).
[CrossRef]

2002 (1)

H. S. Sands, F. Demangeot, E. Bonera, S. Webster, R. Bennett, I. P. Hayward, F. Marchi, D. A. Smith, and D. N. Batchelder, “Development of a combined confocal and scanning near-field Raman microscope for deep UV laser excitation,” J. Raman Spectrosc.33(9), 730–739 (2002).
[CrossRef]

2000 (1)

1996 (1)

P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir12(3), 788–800 (1996).
[CrossRef]

1994 (1)

1987 (1)

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Batchelder, D. N.

H. S. Sands, F. Demangeot, E. Bonera, S. Webster, R. Bennett, I. P. Hayward, F. Marchi, D. A. Smith, and D. N. Batchelder, “Development of a combined confocal and scanning near-field Raman microscope for deep UV laser excitation,” J. Raman Spectrosc.33(9), 730–739 (2002).
[CrossRef]

Bennett, R.

H. S. Sands, F. Demangeot, E. Bonera, S. Webster, R. Bennett, I. P. Hayward, F. Marchi, D. A. Smith, and D. N. Batchelder, “Development of a combined confocal and scanning near-field Raman microscope for deep UV laser excitation,” J. Raman Spectrosc.33(9), 730–739 (2002).
[CrossRef]

Bonera, E.

H. S. Sands, F. Demangeot, E. Bonera, S. Webster, R. Bennett, I. P. Hayward, F. Marchi, D. A. Smith, and D. N. Batchelder, “Development of a combined confocal and scanning near-field Raman microscope for deep UV laser excitation,” J. Raman Spectrosc.33(9), 730–739 (2002).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Brown, L.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett.12(11), 6000–6004 (2012).
[CrossRef] [PubMed]

Catchpole, R. K.

R. K. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

Chan, G. H.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C112(36), 13958–13963 (2008).
[CrossRef]

Chang, L.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. V. Duyne, “A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer’s disease,” Nano Lett.4(6), 1029–1034 (2004).
[CrossRef]

Chen, X.

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. J. Ventura, and Z. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophoton.1(3-4), 235–248 (2012).
[CrossRef]

Chou, S. Y.

W. Zhang, F. Ding, W.-D. Li, Y. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology23(22), 225301 (2012).
[CrossRef] [PubMed]

Chowdhury, M. H.

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem.79(17), 6480–6487 (2007).
[CrossRef] [PubMed]

Demangeot, F.

H. S. Sands, F. Demangeot, E. Bonera, S. Webster, R. Bennett, I. P. Hayward, F. Marchi, D. A. Smith, and D. N. Batchelder, “Development of a combined confocal and scanning near-field Raman microscope for deep UV laser excitation,” J. Raman Spectrosc.33(9), 730–739 (2002).
[CrossRef]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Ding, F.

W. Zhang, F. Ding, W.-D. Li, Y. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology23(22), 225301 (2012).
[CrossRef] [PubMed]

Dörfer, T.

T. Dörfer, M. Schmitt, and J. Popp, “Deep-UV surface-enhanced Raman scattering,” J. Raman Spectrosc.38(11), 1379–1382 (2007).
[CrossRef]

Duyne, R. P. V.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C112(36), 13958–13963 (2008).
[CrossRef]

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. V. Duyne, “A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer’s disease,” Nano Lett.4(6), 1029–1034 (2004).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Ekinci, Y.

Y. Ekinci, H. H. Solak, and J. F. Loffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys.104(8), 083107 (2008).
[CrossRef]

English, D. S.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
[CrossRef] [PubMed]

Everitt, H. O.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett.12(11), 6000–6004 (2012).
[CrossRef] [PubMed]

Fahim, N.

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. J. Ventura, and Z. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophoton.1(3-4), 235–248 (2012).
[CrossRef]

Furusawa, K.

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc.40(9), 1324–1330 (2009).
[CrossRef]

Goodrich, G. P.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7(2), 496–501 (2007).
[CrossRef] [PubMed]

Grimes, A. F.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
[CrossRef] [PubMed]

Gryczynski, I.

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled ultraviolet emission of 2,5-diphenyl-1,3,4-oxadiazole,” J. Phys. Chem. B108(50), 19114–19118 (2004).
[CrossRef] [PubMed]

Gryczynski, Z.

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled ultraviolet emission of 2,5-diphenyl-1,3,4-oxadiazole,” J. Phys. Chem. B108(50), 19114–19118 (2004).
[CrossRef] [PubMed]

Gu, M.

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. J. Ventura, and Z. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophoton.1(3-4), 235–248 (2012).
[CrossRef]

Gueroui, Z.

Z. Gueroui and A. Libchaber, “Single-molecule measurements of gold-quenched quantum dots,” Phys. Rev. Lett.93(16), 166108 (2004).
[CrossRef] [PubMed]

Haes, A. J.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. V. Duyne, “A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer’s disease,” Nano Lett.4(6), 1029–1034 (2004).
[CrossRef]

Halas, N. J.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett.12(11), 6000–6004 (2012).
[CrossRef] [PubMed]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7(2), 496–501 (2007).
[CrossRef] [PubMed]

Hall, W. P.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. V. Duyne, “A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer’s disease,” Nano Lett.4(6), 1029–1034 (2004).
[CrossRef]

Hayazawa, N.

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc.40(9), 1324–1330 (2009).
[CrossRef]

Hayward, I. P.

H. S. Sands, F. Demangeot, E. Bonera, S. Webster, R. Bennett, I. P. Hayward, F. Marchi, D. A. Smith, and D. N. Batchelder, “Development of a combined confocal and scanning near-field Raman microscope for deep UV laser excitation,” J. Raman Spectrosc.33(9), 730–739 (2002).
[CrossRef]

Higashiya, S.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
[CrossRef] [PubMed]

Hu, J.

W. Zhang, F. Ding, W.-D. Li, Y. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology23(22), 225301 (2012).
[CrossRef] [PubMed]

Inami, W.

Y. Watanabe, W. Inami, and Y. Kawata, “Deep-ultraviolet light excites surface plasmon for the enhancement of photoelectron emission,” J. Appl. Phys.109(2), 023112 (2011).
[CrossRef]

Inouye, Y.

Ishitobi, H.

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc.40(9), 1324–1330 (2009).
[CrossRef]

Jia, B.

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. J. Ventura, and Z. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophoton.1(3-4), 235–248 (2012).
[CrossRef]

Johnson, B. R.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7(2), 496–501 (2007).
[CrossRef] [PubMed]

Kasemo, B.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano5(4), 2535–2546 (2011).
[CrossRef] [PubMed]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett.8(5), 1461–1471 (2008).
[CrossRef] [PubMed]

Kato, J.

A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett.95(26), 267407 (2005).
[CrossRef] [PubMed]

Kawata, S.

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc.40(9), 1324–1330 (2009).
[CrossRef]

A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett.95(26), 267407 (2005).
[CrossRef] [PubMed]

Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett.19(3), 159–161 (1994).
[CrossRef] [PubMed]

Kawata, Y.

Y. Watanabe, W. Inami, and Y. Kawata, “Deep-ultraviolet light excites surface plasmon for the enhancement of photoelectron emission,” J. Appl. Phys.109(2), 023112 (2011).
[CrossRef]

King, N. S.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett.12(11), 6000–6004 (2012).
[CrossRef] [PubMed]

Klein, W. L.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. V. Duyne, “A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer’s disease,” Nano Lett.4(6), 1029–1034 (2004).
[CrossRef]

Knight, M. W.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett.12(11), 6000–6004 (2012).
[CrossRef] [PubMed]

Kobayashi, T.

Lakowicz, J. R.

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem.79(17), 6480–6487 (2007).
[CrossRef] [PubMed]

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled ultraviolet emission of 2,5-diphenyl-1,3,4-oxadiazole,” J. Phys. Chem. B108(50), 19114–19118 (2004).
[CrossRef] [PubMed]

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Langhammer, C.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano5(4), 2535–2546 (2011).
[CrossRef] [PubMed]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett.8(5), 1461–1471 (2008).
[CrossRef] [PubMed]

Li, J.-J.

J. Zhu, J.-J. Li, and J.-W. Zhao, “Distance-dependent fluorescence quenching efficiency of gold nanodisk: effect of aspect ratio-dependent plasmonic absorption,” Plasmonics7(2), 201–207 (2012).
[CrossRef]

Li, W.-D.

W. Zhang, F. Ding, W.-D. Li, Y. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology23(22), 225301 (2012).
[CrossRef] [PubMed]

Li, X.

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. J. Ventura, and Z. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophoton.1(3-4), 235–248 (2012).
[CrossRef]

Libchaber, A.

Z. Gueroui and A. Libchaber, “Single-molecule measurements of gold-quenched quantum dots,” Phys. Rev. Lett.93(16), 166108 (2004).
[CrossRef] [PubMed]

Liu, L.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett.12(11), 6000–6004 (2012).
[CrossRef] [PubMed]

Loffler, J. F.

Y. Ekinci, H. H. Solak, and J. F. Loffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys.104(8), 083107 (2008).
[CrossRef]

Malicka, J.

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled ultraviolet emission of 2,5-diphenyl-1,3,4-oxadiazole,” J. Phys. Chem. B108(50), 19114–19118 (2004).
[CrossRef] [PubMed]

Marchi, F.

H. S. Sands, F. Demangeot, E. Bonera, S. Webster, R. Bennett, I. P. Hayward, F. Marchi, D. A. Smith, and D. N. Batchelder, “Development of a combined confocal and scanning near-field Raman microscope for deep UV laser excitation,” J. Raman Spectrosc.33(9), 730–739 (2002).
[CrossRef]

Mattoussi, H.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
[CrossRef] [PubMed]

Medintz, I. L.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
[CrossRef] [PubMed]

Mukherjee, S.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett.12(11), 6000–6004 (2012).
[CrossRef] [PubMed]

Mulvaney, P.

P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir12(3), 788–800 (1996).
[CrossRef]

Nordlander, P.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett.12(11), 6000–6004 (2012).
[CrossRef] [PubMed]

Okamoto, T.

Olney, R. D.

Ono, A.

A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett.95(26), 267407 (2005).
[CrossRef] [PubMed]

Ouyang, Z.

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. J. Ventura, and Z. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophoton.1(3-4), 235–248 (2012).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

R. K. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

Pons, T.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
[CrossRef] [PubMed]

Popp, J.

T. Dörfer, M. Schmitt, and J. Popp, “Deep-UV surface-enhanced Raman scattering,” J. Raman Spectrosc.38(11), 1379–1382 (2007).
[CrossRef]

Ray, K.

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem.79(17), 6480–6487 (2007).
[CrossRef] [PubMed]

Romagnoli, R. J.

Sands, H. S.

H. S. Sands, F. Demangeot, E. Bonera, S. Webster, R. Bennett, I. P. Hayward, F. Marchi, D. A. Smith, and D. N. Batchelder, “Development of a combined confocal and scanning near-field Raman microscope for deep UV laser excitation,” J. Raman Spectrosc.33(9), 730–739 (2002).
[CrossRef]

Sapsford, K. E.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
[CrossRef] [PubMed]

Schatz, G. C.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C112(36), 13958–13963 (2008).
[CrossRef]

Schmitt, M.

T. Dörfer, M. Schmitt, and J. Popp, “Deep-UV surface-enhanced Raman scattering,” J. Raman Spectrosc.38(11), 1379–1382 (2007).
[CrossRef]

Schwind, M.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett.8(5), 1461–1471 (2008).
[CrossRef] [PubMed]

Shi, Z.

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. J. Ventura, and Z. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophoton.1(3-4), 235–248 (2012).
[CrossRef]

Smith, D. A.

H. S. Sands, F. Demangeot, E. Bonera, S. Webster, R. Bennett, I. P. Hayward, F. Marchi, D. A. Smith, and D. N. Batchelder, “Development of a combined confocal and scanning near-field Raman microscope for deep UV laser excitation,” J. Raman Spectrosc.33(9), 730–739 (2002).
[CrossRef]

Solak, H. H.

Y. Ekinci, H. H. Solak, and J. F. Loffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys.104(8), 083107 (2008).
[CrossRef]

Stokes, N.

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. J. Ventura, and Z. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophoton.1(3-4), 235–248 (2012).
[CrossRef]

Taguchi, A.

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc.40(9), 1324–1330 (2009).
[CrossRef]

Tam, F.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7(2), 496–501 (2007).
[CrossRef] [PubMed]

Ventura, M. J.

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. J. Ventura, and Z. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophoton.1(3-4), 235–248 (2012).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Wang, Y.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett.12(11), 6000–6004 (2012).
[CrossRef] [PubMed]

W. Zhang, F. Ding, W.-D. Li, Y. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology23(22), 225301 (2012).
[CrossRef] [PubMed]

Watanabe, Y.

Y. Watanabe, W. Inami, and Y. Kawata, “Deep-ultraviolet light excites surface plasmon for the enhancement of photoelectron emission,” J. Appl. Phys.109(2), 023112 (2011).
[CrossRef]

Webster, S.

H. S. Sands, F. Demangeot, E. Bonera, S. Webster, R. Bennett, I. P. Hayward, F. Marchi, D. A. Smith, and D. N. Batchelder, “Development of a combined confocal and scanning near-field Raman microscope for deep UV laser excitation,” J. Raman Spectrosc.33(9), 730–739 (2002).
[CrossRef]

Yamaguchi, I.

Zäch, M.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano5(4), 2535–2546 (2011).
[CrossRef] [PubMed]

Zhang, W.

W. Zhang, F. Ding, W.-D. Li, Y. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology23(22), 225301 (2012).
[CrossRef] [PubMed]

Zhao, J.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C112(36), 13958–13963 (2008).
[CrossRef]

Zhao, J.-W.

J. Zhu, J.-J. Li, and J.-W. Zhao, “Distance-dependent fluorescence quenching efficiency of gold nanodisk: effect of aspect ratio-dependent plasmonic absorption,” Plasmonics7(2), 201–207 (2012).
[CrossRef]

Zhu, J.

J. Zhu, J.-J. Li, and J.-W. Zhao, “Distance-dependent fluorescence quenching efficiency of gold nanodisk: effect of aspect ratio-dependent plasmonic absorption,” Plasmonics7(2), 201–207 (2012).
[CrossRef]

Zoric, I.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano5(4), 2535–2546 (2011).
[CrossRef] [PubMed]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett.8(5), 1461–1471 (2008).
[CrossRef] [PubMed]

ACS Nano (1)

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano5(4), 2535–2546 (2011).
[CrossRef] [PubMed]

Anal. Chem. (1)

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem.79(17), 6480–6487 (2007).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. K. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

J. Appl. Phys. (2)

Y. Watanabe, W. Inami, and Y. Kawata, “Deep-ultraviolet light excites surface plasmon for the enhancement of photoelectron emission,” J. Appl. Phys.109(2), 023112 (2011).
[CrossRef]

Y. Ekinci, H. H. Solak, and J. F. Loffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys.104(8), 083107 (2008).
[CrossRef]

J. Phys. Chem. B (1)

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled ultraviolet emission of 2,5-diphenyl-1,3,4-oxadiazole,” J. Phys. Chem. B108(50), 19114–19118 (2004).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C112(36), 13958–13963 (2008).
[CrossRef]

J. Raman Spectrosc. (3)

H. S. Sands, F. Demangeot, E. Bonera, S. Webster, R. Bennett, I. P. Hayward, F. Marchi, D. A. Smith, and D. N. Batchelder, “Development of a combined confocal and scanning near-field Raman microscope for deep UV laser excitation,” J. Raman Spectrosc.33(9), 730–739 (2002).
[CrossRef]

T. Dörfer, M. Schmitt, and J. Popp, “Deep-UV surface-enhanced Raman scattering,” J. Raman Spectrosc.38(11), 1379–1382 (2007).
[CrossRef]

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc.40(9), 1324–1330 (2009).
[CrossRef]

Langmuir (1)

P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir12(3), 788–800 (1996).
[CrossRef]

Nano Lett. (5)

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett.8(5), 1461–1471 (2008).
[CrossRef] [PubMed]

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. V. Duyne, “A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer’s disease,” Nano Lett.4(6), 1029–1034 (2004).
[CrossRef]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett.12(11), 6000–6004 (2012).
[CrossRef] [PubMed]

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007).
[CrossRef] [PubMed]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7(2), 496–501 (2007).
[CrossRef] [PubMed]

Nanophoton. (1)

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. J. Ventura, and Z. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophoton.1(3-4), 235–248 (2012).
[CrossRef]

Nanotechnology (1)

W. Zhang, F. Ding, W.-D. Li, Y. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology23(22), 225301 (2012).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Nature (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (2)

A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett.95(26), 267407 (2005).
[CrossRef] [PubMed]

Z. Gueroui and A. Libchaber, “Single-molecule measurements of gold-quenched quantum dots,” Phys. Rev. Lett.93(16), 166108 (2004).
[CrossRef] [PubMed]

Plasmonics (1)

J. Zhu, J.-J. Li, and J.-W. Zhao, “Distance-dependent fluorescence quenching efficiency of gold nanodisk: effect of aspect ratio-dependent plasmonic absorption,” Plasmonics7(2), 201–207 (2012).
[CrossRef]

Other (1)

S. Kawata, Near-field and surface plasmon polaritons (Springer, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Calculation results of (a) reflectance and (b) electric field intensity with respect to the incident angle for various thickness of aluminum 15-30 nm with 5-nm step that is coated on quartz prism. The incident wavelength is 266 nm. The lowest dip appears at the incident angle of 44 degrees when the aluminum thickness is 20 nm.

Fig. 2
Fig. 2

Calculation results of (a) reflectance and (b) electric field intensity with respect to the incident angle for various thickness of alumina 0-10 nm with 2-nm step. The aluminum thickness is constant to 20 nm. The dip of reflectance curve shifts to larger incident angle without changing the reflectance at the dip. The enhancement factor of more than 10-fold in intensity is promised in several nanometers of thickness of alumina.

Fig. 3
Fig. 3

Experimental setup for the measurement of reflectance and fluorescence intensity with the incident angle dependence. Fluorescence spectrum is also measured with same setup by guiding to the monochromator using fiber at the steady angle.

Fig. 4
Fig. 4

Measured (solid lines) and calculated (dashed line) incident angle dependence of reflectance in (a)-(c) p-polarized excitation and (d)-(f) s-polarized excitation. The experimental curve shows good agreement with calculation by regarding it as containing the oxidized thickness. (a), (d) Al: 9.5 nm with Al2O3: 4 nm, (b), (e) Al: 18 nm with Al2O3: 6.5 nm, (c), (f) Al: 33 nm with Al2O3: 6 nm.

Fig. 5
Fig. 5

(a) Incident angle dependence of normalized fluorescence intensity of CdS quantum dots coated on aluminum (Al: 18 nm with Al2O3: 6.5 nm). The fluorescence intensity increases as the SPR excitation efficiency. (b) Measured spectrum of fluorescence intensity fixed at the incident angle of 48 degrees. Fluorescence peak was observed at 380-nm wavelength. (c), (d) Incident angle dependence with the other film thicknesses as controls.

Metrics