Abstract

Possibility to form three-dimensional (3D) micro-structures in silicone elastomer (polydimethylsiloxane; PDMS) doped with different photo-initiators was systematically investigated using direct laser writing with femtosecond laser pulses at different exposure conditions. Accuracy of the 3D structuring with resolution of ∼ 5 μm and a fabrication throughput of ∼720 μm3/s, which is exceeding the previously reported values by ∼ 300×, was achieved. Practical recording velocities of ∼ 1 mm/s were used in PDMS with isopropyl-9H-thioxanthen-9-one (ISO) and thioxanthen-9-one (THIO) photo-initiators which both have absorption at around 360 nm wavelength. The 3D laser fabrication in PDMS without any photo-initiator resulting in a fully bio-compatible material has been achieved for the first time. Rates of multi-photon absorption and avalanche for the structuring of silicone are revealed: the two-photon absorption is seeding the avalanche of a radical generation for subsequent cross-linking. Direct writing enables a maskless manufacturing of molds for soft-lithography and 3D components for microfluidics as well as scaffolds for grafts in biomedical applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Lotters, W. Olthuis, P. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng.7, 145–147 (2006).
    [CrossRef]
  2. J. Lee, X. Jiang, D. Ryan, and G. Whitesides, “Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane),” Langmuir20, 11684–11691 (2004).
    [CrossRef] [PubMed]
  3. T. Thorsen, S. Maerkl, and S. Quake, “Microfluidic large scale integration,” Science298, 580–584 (2002).
    [CrossRef] [PubMed]
  4. E. Leclerc, Y. Sakai, and T. Fujii, “Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane),” Biomed. Microdev.5, 109–114 (2003).
    [CrossRef]
  5. N.-T. Nguyen, “Micro-optofluidic lenses: a review,” Biomicrofluidics4, 031501 (2010).
    [CrossRef] [PubMed]
  6. A. Werber and H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt.44, 3238–3245 (2005).
    [CrossRef] [PubMed]
  7. J.-H. Jang, C. Ullal, T. Gorishnyy, V. Tsukruk, and E.L. Thomas, “Mechanically tunable three-dimensional elastomeric network/air structures via interference lithography,” Nano Lett.6, 740–743 (2006).
    [CrossRef] [PubMed]
  8. B. Gates, Q. Xu, J. Love, D. Wolfe, and G. Whitesides, “Unconventional nanofabrication,” Annu. Rev. Mater. Res.34, 339–372 (2004).
    [CrossRef]
  9. C. Coenjarts and C. Ober, “Two-photon three-dimensional microfabrication of poly(dimethylsiloxane) elastomers,” Chem. Mater.16, 5556–5558 (2004).
    [CrossRef]
  10. T. Hasegawa, K. Oishi, and S. Maruo, “Three-dimensional microstructuring of PDMS by two-photon microstereolithography,” IEEE06, 158–161 (2006).
  11. H. Selvaraj, B. Tan, and K. Venkatakrishnan, “Maskless direct micro-structuring of pdms by femtosecond laser localized rapid curing,” J. Micromech. Microeng.21, 075018 (2011).
    [CrossRef]
  12. P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012).
    [CrossRef]
  13. M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
    [CrossRef]
  14. A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011).
    [CrossRef]
  15. S. Turunen, E. Kapyla, K. Terzaki, J. Viitanen, C. Fotakis, M. Kellomaki, and M. Farsari, “Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity,” Biofabrication p. 045002 (2011).
    [CrossRef] [PubMed]
  16. M. Malinauskas, G. Kiršanskė, S. Rekštytė, T. Jonavičius, E. Kaziulionytė, L. Jonušauskas, A. Žukauskas, R. Gadonas, and A. Piskarskas, “Nanophotonic lithography: A versatile tool for manufacturing functional three-dimensional micro-/nano-objects,” Lith. J. Phys.52, 312–326 (2012).
    [CrossRef]
  17. G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20, 1038–1052 (2010).
    [CrossRef]
  18. J. Trull, L. Maigyte, V. Mizeikis, M. Malinauskas, S. Juodkazis, C. Cojocaru, M. Rutkauskas, M. Peckus, V. Sirutkaitis, and K. Staliunas, “Formation of collimated beams behind the woodpile photonic crystal,” Phys. Rev. A84, 033812 (2011).
    [CrossRef]
  19. E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Let.97, 211108 (2010).
    [CrossRef]
  20. S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography,” J. Microelectromechanic. Syst.12, 533–539 (2003).
    [CrossRef]
  21. C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol.48, 435–441 (2010).
    [CrossRef]
  22. Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today5, 435–448 (2010).
    [CrossRef]
  23. D. Lipomi, R. Martinez, L. Cademartiri, and G. Whitesides, “Soft lithographic approaches to nanofabrication,” Polymer Sci.7, 211–231 (2012).
  24. C. LaFratta, L. Li, and J. Fourkas, “Soft-lithographic replication of 3d microstructures with closed loops,” PNAS103, 8589–8594 (2006).
    [CrossRef] [PubMed]
  25. P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, V. Sirvydis, A. Piskarskas, and M. Malinauskas, “Laser 3D micro/nanofabrication of polymers for tissue engineering applications,” Opt. Laser Technol.45, 518–524 (2013).
    [CrossRef]
  26. E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010).
    [CrossRef]
  27. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multi-megabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
    [CrossRef] [PubMed]
  28. E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B73, 214101 (2006).
    [CrossRef]
  29. M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiutė, and R. Gadonas, “Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers,” Lith. J. Phys.50, 201–208 (2010).
    [CrossRef]
  30. F. Claeyssens, E. A. Hasan, A. Gaidukevičiūtė, D. S. Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikov, X. Shizhou, C. Fotakis, M. Vamvakaki, B. N. Chichkov, and M. Farsari, “Production of biodegradable tissue engineering scaffold materials via 2-photon polymerisation,” Langmuir25, 3219–3223 (2009).
    [CrossRef] [PubMed]
  31. 3DPoli@gmail.com.
  32. M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys.50, 135–140 (2010).
    [CrossRef]
  33. Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Nonuniform shrinkage and stretching of plymerized nanostructures fabricated by two-photon photopolymerization,” Nanotechnology19, 055303 (2008).
    [CrossRef] [PubMed]
  34. Y. Li, H. Cui, F. Qi, H. Yang, and Q. Gong, “Uniform suspended nanorods fabricated by bidirectional scanning via two-photon photopolymerization,” Nanotechnology19, 375304 (2008).
    [CrossRef] [PubMed]
  35. K. Takada, D. Wu, Q.-D. Chen, S. Shoji, H. Xia, S. Kawata, and H.-B. Sun, “Size-dependent behaviors of femtosecond laser-prototyped polymer micronanowires,” Opt. Lett.34, 566–568 (2009).
    [CrossRef] [PubMed]
  36. S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn.81, 411–448 (2008).
    [CrossRef]
  37. S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett.91, 241904 (2007).
    [CrossRef]
  38. S. Juodkazis, Y. Nishi, H. Misawa, V. Mizeikis, O. Schecker, R. Waitz, P. Leiderer, and E. Scheer, “Optical transmission and laser structuring of silicon membranes,” Opt. Express17, 15308–15317 (2009).
    [CrossRef] [PubMed]
  39. M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010).
    [CrossRef] [PubMed]
  40. M. Malinauskas, P. Danilevicius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19, 5602–5610 (2011).
    [CrossRef] [PubMed]
  41. E. G. Gamaly, Femtosecond Laser-Matter Interactions: Theory, Experiments and Applications (Pan Stanford Publishing, USA, 2011).
  42. S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B77, 361–368 (2003).
    [CrossRef]
  43. K. Hatanaka, T. Ida, H. Ono, S.-I. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses,” Opt. Express16, 12650–12657 (2008).
    [CrossRef] [PubMed]
  44. S. Juodkazis, K. Nishimura, and H. Misawa, “Three-dimensional laser structuring of materials at tight focusing,” Chin. Opt. Lett.5, S198–200 (2007).
  45. S. Juodkazis, “Writing 3D patterns of microvessels,” Int. J. Nanomed.2012, 3701–3702 (2012).
    [CrossRef]
  46. C. Williams, A. Malika, T. Kima, P. Mansonb, and J. Elisseeffa, “Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation,” Biomaterials26, 12111218 (2005).
    [CrossRef]

2013 (1)

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, V. Sirvydis, A. Piskarskas, and M. Malinauskas, “Laser 3D micro/nanofabrication of polymers for tissue engineering applications,” Opt. Laser Technol.45, 518–524 (2013).
[CrossRef]

2012 (4)

S. Juodkazis, “Writing 3D patterns of microvessels,” Int. J. Nanomed.2012, 3701–3702 (2012).
[CrossRef]

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012).
[CrossRef]

M. Malinauskas, G. Kiršanskė, S. Rekštytė, T. Jonavičius, E. Kaziulionytė, L. Jonušauskas, A. Žukauskas, R. Gadonas, and A. Piskarskas, “Nanophotonic lithography: A versatile tool for manufacturing functional three-dimensional micro-/nano-objects,” Lith. J. Phys.52, 312–326 (2012).
[CrossRef]

D. Lipomi, R. Martinez, L. Cademartiri, and G. Whitesides, “Soft lithographic approaches to nanofabrication,” Polymer Sci.7, 211–231 (2012).

2011 (5)

J. Trull, L. Maigyte, V. Mizeikis, M. Malinauskas, S. Juodkazis, C. Cojocaru, M. Rutkauskas, M. Peckus, V. Sirutkaitis, and K. Staliunas, “Formation of collimated beams behind the woodpile photonic crystal,” Phys. Rev. A84, 033812 (2011).
[CrossRef]

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011).
[CrossRef]

S. Turunen, E. Kapyla, K. Terzaki, J. Viitanen, C. Fotakis, M. Kellomaki, and M. Farsari, “Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity,” Biofabrication p. 045002 (2011).
[CrossRef] [PubMed]

H. Selvaraj, B. Tan, and K. Venkatakrishnan, “Maskless direct micro-structuring of pdms by femtosecond laser localized rapid curing,” J. Micromech. Microeng.21, 075018 (2011).
[CrossRef]

M. Malinauskas, P. Danilevicius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19, 5602–5610 (2011).
[CrossRef] [PubMed]

2010 (10)

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010).
[CrossRef] [PubMed]

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Let.97, 211108 (2010).
[CrossRef]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20, 1038–1052 (2010).
[CrossRef]

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol.48, 435–441 (2010).
[CrossRef]

Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today5, 435–448 (2010).
[CrossRef]

M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiutė, and R. Gadonas, “Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers,” Lith. J. Phys.50, 201–208 (2010).
[CrossRef]

N.-T. Nguyen, “Micro-optofluidic lenses: a review,” Biomicrofluidics4, 031501 (2010).
[CrossRef] [PubMed]

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010).
[CrossRef]

M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys.50, 135–140 (2010).
[CrossRef]

2009 (3)

F. Claeyssens, E. A. Hasan, A. Gaidukevičiūtė, D. S. Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikov, X. Shizhou, C. Fotakis, M. Vamvakaki, B. N. Chichkov, and M. Farsari, “Production of biodegradable tissue engineering scaffold materials via 2-photon polymerisation,” Langmuir25, 3219–3223 (2009).
[CrossRef] [PubMed]

K. Takada, D. Wu, Q.-D. Chen, S. Shoji, H. Xia, S. Kawata, and H.-B. Sun, “Size-dependent behaviors of femtosecond laser-prototyped polymer micronanowires,” Opt. Lett.34, 566–568 (2009).
[CrossRef] [PubMed]

S. Juodkazis, Y. Nishi, H. Misawa, V. Mizeikis, O. Schecker, R. Waitz, P. Leiderer, and E. Scheer, “Optical transmission and laser structuring of silicon membranes,” Opt. Express17, 15308–15317 (2009).
[CrossRef] [PubMed]

2008 (4)

K. Hatanaka, T. Ida, H. Ono, S.-I. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses,” Opt. Express16, 12650–12657 (2008).
[CrossRef] [PubMed]

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn.81, 411–448 (2008).
[CrossRef]

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Nonuniform shrinkage and stretching of plymerized nanostructures fabricated by two-photon photopolymerization,” Nanotechnology19, 055303 (2008).
[CrossRef] [PubMed]

Y. Li, H. Cui, F. Qi, H. Yang, and Q. Gong, “Uniform suspended nanorods fabricated by bidirectional scanning via two-photon photopolymerization,” Nanotechnology19, 375304 (2008).
[CrossRef] [PubMed]

2007 (2)

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett.91, 241904 (2007).
[CrossRef]

S. Juodkazis, K. Nishimura, and H. Misawa, “Three-dimensional laser structuring of materials at tight focusing,” Chin. Opt. Lett.5, S198–200 (2007).

2006 (6)

J. Lotters, W. Olthuis, P. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng.7, 145–147 (2006).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multi-megabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

C. LaFratta, L. Li, and J. Fourkas, “Soft-lithographic replication of 3d microstructures with closed loops,” PNAS103, 8589–8594 (2006).
[CrossRef] [PubMed]

T. Hasegawa, K. Oishi, and S. Maruo, “Three-dimensional microstructuring of PDMS by two-photon microstereolithography,” IEEE06, 158–161 (2006).

J.-H. Jang, C. Ullal, T. Gorishnyy, V. Tsukruk, and E.L. Thomas, “Mechanically tunable three-dimensional elastomeric network/air structures via interference lithography,” Nano Lett.6, 740–743 (2006).
[CrossRef] [PubMed]

2005 (2)

C. Williams, A. Malika, T. Kima, P. Mansonb, and J. Elisseeffa, “Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation,” Biomaterials26, 12111218 (2005).
[CrossRef]

A. Werber and H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt.44, 3238–3245 (2005).
[CrossRef] [PubMed]

2004 (3)

J. Lee, X. Jiang, D. Ryan, and G. Whitesides, “Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane),” Langmuir20, 11684–11691 (2004).
[CrossRef] [PubMed]

B. Gates, Q. Xu, J. Love, D. Wolfe, and G. Whitesides, “Unconventional nanofabrication,” Annu. Rev. Mater. Res.34, 339–372 (2004).
[CrossRef]

C. Coenjarts and C. Ober, “Two-photon three-dimensional microfabrication of poly(dimethylsiloxane) elastomers,” Chem. Mater.16, 5556–5558 (2004).
[CrossRef]

2003 (3)

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography,” J. Microelectromechanic. Syst.12, 533–539 (2003).
[CrossRef]

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B77, 361–368 (2003).
[CrossRef]

E. Leclerc, Y. Sakai, and T. Fujii, “Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane),” Biomed. Microdev.5, 109–114 (2003).
[CrossRef]

2002 (1)

T. Thorsen, S. Maerkl, and S. Quake, “Microfluidic large scale integration,” Science298, 580–584 (2002).
[CrossRef] [PubMed]

Achilleos, D. S.

F. Claeyssens, E. A. Hasan, A. Gaidukevičiūtė, D. S. Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikov, X. Shizhou, C. Fotakis, M. Vamvakaki, B. N. Chichkov, and M. Farsari, “Production of biodegradable tissue engineering scaffold materials via 2-photon polymerisation,” Langmuir25, 3219–3223 (2009).
[CrossRef] [PubMed]

Balciunas, E.

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, V. Sirvydis, A. Piskarskas, and M. Malinauskas, “Laser 3D micro/nanofabrication of polymers for tissue engineering applications,” Opt. Laser Technol.45, 518–524 (2013).
[CrossRef]

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012).
[CrossRef]

Baltriukiene, D.

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, V. Sirvydis, A. Piskarskas, and M. Malinauskas, “Laser 3D micro/nanofabrication of polymers for tissue engineering applications,” Opt. Laser Technol.45, 518–524 (2013).
[CrossRef]

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012).
[CrossRef]

Belazaras, K.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

Bergveld, P.

J. Lotters, W. Olthuis, P. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng.7, 145–147 (2006).
[CrossRef]

Bickauskaite, G.

M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys.50, 135–140 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010).
[CrossRef] [PubMed]

Brasselet, E.

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Let.97, 211108 (2010).
[CrossRef]

Bukelskiene, V.

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, V. Sirvydis, A. Piskarskas, and M. Malinauskas, “Laser 3D micro/nanofabrication of polymers for tissue engineering applications,” Opt. Laser Technol.45, 518–524 (2013).
[CrossRef]

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012).
[CrossRef]

Busch, K.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20, 1038–1052 (2010).
[CrossRef]

Cademartiri, L.

D. Lipomi, R. Martinez, L. Cademartiri, and G. Whitesides, “Soft lithographic approaches to nanofabrication,” Polymer Sci.7, 211–231 (2012).

Chen, Q.-D.

Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today5, 435–448 (2010).
[CrossRef]

K. Takada, D. Wu, Q.-D. Chen, S. Shoji, H. Xia, S. Kawata, and H.-B. Sun, “Size-dependent behaviors of femtosecond laser-prototyped polymer micronanowires,” Opt. Lett.34, 566–568 (2009).
[CrossRef] [PubMed]

Chichkov, B.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011).
[CrossRef]

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol.48, 435–441 (2010).
[CrossRef]

Chichkov, B. N.

F. Claeyssens, E. A. Hasan, A. Gaidukevičiūtė, D. S. Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikov, X. Shizhou, C. Fotakis, M. Vamvakaki, B. N. Chichkov, and M. Farsari, “Production of biodegradable tissue engineering scaffold materials via 2-photon polymerisation,” Langmuir25, 3219–3223 (2009).
[CrossRef] [PubMed]

Claeyssens, F.

F. Claeyssens, E. A. Hasan, A. Gaidukevičiūtė, D. S. Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikov, X. Shizhou, C. Fotakis, M. Vamvakaki, B. N. Chichkov, and M. Farsari, “Production of biodegradable tissue engineering scaffold materials via 2-photon polymerisation,” Langmuir25, 3219–3223 (2009).
[CrossRef] [PubMed]

Coenjarts, C.

C. Coenjarts and C. Ober, “Two-photon three-dimensional microfabrication of poly(dimethylsiloxane) elastomers,” Chem. Mater.16, 5556–5558 (2004).
[CrossRef]

Cojocaru, C.

J. Trull, L. Maigyte, V. Mizeikis, M. Malinauskas, S. Juodkazis, C. Cojocaru, M. Rutkauskas, M. Peckus, V. Sirutkaitis, and K. Staliunas, “Formation of collimated beams behind the woodpile photonic crystal,” Phys. Rev. A84, 033812 (2011).
[CrossRef]

Cui, H.

Y. Li, H. Cui, F. Qi, H. Yang, and Q. Gong, “Uniform suspended nanorods fabricated by bidirectional scanning via two-photon photopolymerization,” Nanotechnology19, 375304 (2008).
[CrossRef] [PubMed]

Danilevicius, P.

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, V. Sirvydis, A. Piskarskas, and M. Malinauskas, “Laser 3D micro/nanofabrication of polymers for tissue engineering applications,” Opt. Laser Technol.45, 518–524 (2013).
[CrossRef]

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012).
[CrossRef]

M. Malinauskas, P. Danilevicius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19, 5602–5610 (2011).
[CrossRef] [PubMed]

Dedoussis, V.

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol.48, 435–441 (2010).
[CrossRef]

Dong, X.

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Nonuniform shrinkage and stretching of plymerized nanostructures fabricated by two-photon photopolymerization,” Nanotechnology19, 055303 (2008).
[CrossRef] [PubMed]

Duan, X.

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Nonuniform shrinkage and stretching of plymerized nanostructures fabricated by two-photon photopolymerization,” Nanotechnology19, 055303 (2008).
[CrossRef] [PubMed]

Elisseeffa, J.

C. Williams, A. Malika, T. Kima, P. Mansonb, and J. Elisseeffa, “Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation,” Biomaterials26, 12111218 (2005).
[CrossRef]

Essig, S.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20, 1038–1052 (2010).
[CrossRef]

Farsari, M.

S. Turunen, E. Kapyla, K. Terzaki, J. Viitanen, C. Fotakis, M. Kellomaki, and M. Farsari, “Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity,” Biofabrication p. 045002 (2011).
[CrossRef] [PubMed]

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol.48, 435–441 (2010).
[CrossRef]

F. Claeyssens, E. A. Hasan, A. Gaidukevičiūtė, D. S. Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikov, X. Shizhou, C. Fotakis, M. Vamvakaki, B. N. Chichkov, and M. Farsari, “Production of biodegradable tissue engineering scaffold materials via 2-photon polymerisation,” Langmuir25, 3219–3223 (2009).
[CrossRef] [PubMed]

Fotakis, C.

S. Turunen, E. Kapyla, K. Terzaki, J. Viitanen, C. Fotakis, M. Kellomaki, and M. Farsari, “Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity,” Biofabrication p. 045002 (2011).
[CrossRef] [PubMed]

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol.48, 435–441 (2010).
[CrossRef]

F. Claeyssens, E. A. Hasan, A. Gaidukevičiūtė, D. S. Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikov, X. Shizhou, C. Fotakis, M. Vamvakaki, B. N. Chichkov, and M. Farsari, “Production of biodegradable tissue engineering scaffold materials via 2-photon polymerisation,” Langmuir25, 3219–3223 (2009).
[CrossRef] [PubMed]

Fourkas, J.

C. LaFratta, L. Li, and J. Fourkas, “Soft-lithographic replication of 3d microstructures with closed loops,” PNAS103, 8589–8594 (2006).
[CrossRef] [PubMed]

Fujii, T.

E. Leclerc, Y. Sakai, and T. Fujii, “Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane),” Biomed. Microdev.5, 109–114 (2003).
[CrossRef]

Fukumura, H.

Gadonas, R.

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, V. Sirvydis, A. Piskarskas, and M. Malinauskas, “Laser 3D micro/nanofabrication of polymers for tissue engineering applications,” Opt. Laser Technol.45, 518–524 (2013).
[CrossRef]

M. Malinauskas, G. Kiršanskė, S. Rekštytė, T. Jonavičius, E. Kaziulionytė, L. Jonušauskas, A. Žukauskas, R. Gadonas, and A. Piskarskas, “Nanophotonic lithography: A versatile tool for manufacturing functional three-dimensional micro-/nano-objects,” Lith. J. Phys.52, 312–326 (2012).
[CrossRef]

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012).
[CrossRef]

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010).
[CrossRef] [PubMed]

M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys.50, 135–140 (2010).
[CrossRef]

M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiutė, and R. Gadonas, “Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers,” Lith. J. Phys.50, 201–208 (2010).
[CrossRef]

Gaidukeviciute, A.

M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiutė, and R. Gadonas, “Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers,” Lith. J. Phys.50, 201–208 (2010).
[CrossRef]

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol.48, 435–441 (2010).
[CrossRef]

F. Claeyssens, E. A. Hasan, A. Gaidukevičiūtė, D. S. Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikov, X. Shizhou, C. Fotakis, M. Vamvakaki, B. N. Chichkov, and M. Farsari, “Production of biodegradable tissue engineering scaffold materials via 2-photon polymerisation,” Langmuir25, 3219–3223 (2009).
[CrossRef] [PubMed]

Gamaly, E.

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010).
[CrossRef]

Gamaly, E. E.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multi-megabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

Gamaly, E. G.

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B77, 361–368 (2003).
[CrossRef]

E. G. Gamaly, Femtosecond Laser-Matter Interactions: Theory, Experiments and Applications (Pan Stanford Publishing, USA, 2011).

Gates, B.

B. Gates, Q. Xu, J. Love, D. Wolfe, and G. Whitesides, “Unconventional nanofabrication,” Annu. Rev. Mater. Res.34, 339–372 (2004).
[CrossRef]

Gilbergs, H.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

Gittard, S.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011).
[CrossRef]

Gong, Q.

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Nonuniform shrinkage and stretching of plymerized nanostructures fabricated by two-photon photopolymerization,” Nanotechnology19, 055303 (2008).
[CrossRef] [PubMed]

Y. Li, H. Cui, F. Qi, H. Yang, and Q. Gong, “Uniform suspended nanorods fabricated by bidirectional scanning via two-photon photopolymerization,” Nanotechnology19, 375304 (2008).
[CrossRef] [PubMed]

Gorishnyy, T.

J.-H. Jang, C. Ullal, T. Gorishnyy, V. Tsukruk, and E.L. Thomas, “Mechanically tunable three-dimensional elastomeric network/air structures via interference lithography,” Nano Lett.6, 740–743 (2006).
[CrossRef] [PubMed]

Hallo, L.

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multi-megabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

Hasan, E. A.

F. Claeyssens, E. A. Hasan, A. Gaidukevičiūtė, D. S. Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikov, X. Shizhou, C. Fotakis, M. Vamvakaki, B. N. Chichkov, and M. Farsari, “Production of biodegradable tissue engineering scaffold materials via 2-photon polymerisation,” Langmuir25, 3219–3223 (2009).
[CrossRef] [PubMed]

Hasegawa, T.

T. Hasegawa, K. Oishi, and S. Maruo, “Three-dimensional microstructuring of PDMS by two-photon microstereolithography,” IEEE06, 158–161 (2006).

Hatanaka, K.

Haverich, A.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011).
[CrossRef]

Ida, T.

Ikuta, K.

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography,” J. Microelectromechanic. Syst.12, 533–539 (2003).
[CrossRef]

Jang, J.-H.

J.-H. Jang, C. Ullal, T. Gorishnyy, V. Tsukruk, and E.L. Thomas, “Mechanically tunable three-dimensional elastomeric network/air structures via interference lithography,” Nano Lett.6, 740–743 (2006).
[CrossRef] [PubMed]

Jarasiene, R.

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012).
[CrossRef]

Jiang, X.

J. Lee, X. Jiang, D. Ryan, and G. Whitesides, “Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane),” Langmuir20, 11684–11691 (2004).
[CrossRef] [PubMed]

Jonavicius, T.

M. Malinauskas, G. Kiršanskė, S. Rekštytė, T. Jonavičius, E. Kaziulionytė, L. Jonušauskas, A. Žukauskas, R. Gadonas, and A. Piskarskas, “Nanophotonic lithography: A versatile tool for manufacturing functional three-dimensional micro-/nano-objects,” Lith. J. Phys.52, 312–326 (2012).
[CrossRef]

Jonušauskas, L.

M. Malinauskas, G. Kiršanskė, S. Rekštytė, T. Jonavičius, E. Kaziulionytė, L. Jonušauskas, A. Žukauskas, R. Gadonas, and A. Piskarskas, “Nanophotonic lithography: A versatile tool for manufacturing functional three-dimensional micro-/nano-objects,” Lith. J. Phys.52, 312–326 (2012).
[CrossRef]

Juodkazis, S.

S. Juodkazis, “Writing 3D patterns of microvessels,” Int. J. Nanomed.2012, 3701–3702 (2012).
[CrossRef]

M. Malinauskas, P. Danilevicius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19, 5602–5610 (2011).
[CrossRef] [PubMed]

J. Trull, L. Maigyte, V. Mizeikis, M. Malinauskas, S. Juodkazis, C. Cojocaru, M. Rutkauskas, M. Peckus, V. Sirutkaitis, and K. Staliunas, “Formation of collimated beams behind the woodpile photonic crystal,” Phys. Rev. A84, 033812 (2011).
[CrossRef]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010).
[CrossRef] [PubMed]

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Let.97, 211108 (2010).
[CrossRef]

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010).
[CrossRef]

S. Juodkazis, Y. Nishi, H. Misawa, V. Mizeikis, O. Schecker, R. Waitz, P. Leiderer, and E. Scheer, “Optical transmission and laser structuring of silicon membranes,” Opt. Express17, 15308–15317 (2009).
[CrossRef] [PubMed]

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn.81, 411–448 (2008).
[CrossRef]

K. Hatanaka, T. Ida, H. Ono, S.-I. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses,” Opt. Express16, 12650–12657 (2008).
[CrossRef] [PubMed]

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett.91, 241904 (2007).
[CrossRef]

S. Juodkazis, K. Nishimura, and H. Misawa, “Three-dimensional laser structuring of materials at tight focusing,” Chin. Opt. Lett.5, S198–200 (2007).

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multi-megabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B77, 361–368 (2003).
[CrossRef]

Kapyla, E.

S. Turunen, E. Kapyla, K. Terzaki, J. Viitanen, C. Fotakis, M. Kellomaki, and M. Farsari, “Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity,” Biofabrication p. 045002 (2011).
[CrossRef] [PubMed]

Karalekas, D.

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol.48, 435–441 (2010).
[CrossRef]

Kawata, S.

Kaziulionyte, E.

M. Malinauskas, G. Kiršanskė, S. Rekštytė, T. Jonavičius, E. Kaziulionytė, L. Jonušauskas, A. Žukauskas, R. Gadonas, and A. Piskarskas, “Nanophotonic lithography: A versatile tool for manufacturing functional three-dimensional micro-/nano-objects,” Lith. J. Phys.52, 312–326 (2012).
[CrossRef]

Kellomaki, M.

S. Turunen, E. Kapyla, K. Terzaki, J. Viitanen, C. Fotakis, M. Kellomaki, and M. Farsari, “Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity,” Biofabrication p. 045002 (2011).
[CrossRef] [PubMed]

Kima, T.

C. Williams, A. Malika, T. Kima, P. Mansonb, and J. Elisseeffa, “Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation,” Biomaterials26, 12111218 (2005).
[CrossRef]

Kiršanske, G.

M. Malinauskas, G. Kiršanskė, S. Rekštytė, T. Jonavičius, E. Kaziulionytė, L. Jonušauskas, A. Žukauskas, R. Gadonas, and A. Piskarskas, “Nanophotonic lithography: A versatile tool for manufacturing functional three-dimensional micro-/nano-objects,” Lith. J. Phys.52, 312–326 (2012).
[CrossRef]

Korogi, H.

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography,” J. Microelectromechanic. Syst.12, 533–539 (2003).
[CrossRef]

Kraniauskas, A.

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, V. Sirvydis, A. Piskarskas, and M. Malinauskas, “Laser 3D micro/nanofabrication of polymers for tissue engineering applications,” Opt. Laser Technol.45, 518–524 (2013).
[CrossRef]

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012).
[CrossRef]

Krolokowski, W.

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010).
[CrossRef]

LaFratta, C.

C. LaFratta, L. Li, and J. Fourkas, “Soft-lithographic replication of 3d microstructures with closed loops,” PNAS103, 8589–8594 (2006).
[CrossRef] [PubMed]

Leclerc, E.

E. Leclerc, Y. Sakai, and T. Fujii, “Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane),” Biomed. Microdev.5, 109–114 (2003).
[CrossRef]

Ledermann, A.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20, 1038–1052 (2010).
[CrossRef]

Lee, J.

J. Lee, X. Jiang, D. Ryan, and G. Whitesides, “Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane),” Langmuir20, 11684–11691 (2004).
[CrossRef] [PubMed]

Leiderer, P.

Li, L.

C. LaFratta, L. Li, and J. Fourkas, “Soft-lithographic replication of 3d microstructures with closed loops,” PNAS103, 8589–8594 (2006).
[CrossRef] [PubMed]

Li, Y.

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Nonuniform shrinkage and stretching of plymerized nanostructures fabricated by two-photon photopolymerization,” Nanotechnology19, 055303 (2008).
[CrossRef] [PubMed]

Y. Li, H. Cui, F. Qi, H. Yang, and Q. Gong, “Uniform suspended nanorods fabricated by bidirectional scanning via two-photon photopolymerization,” Nanotechnology19, 375304 (2008).
[CrossRef] [PubMed]

Lipomi, D.

D. Lipomi, R. Martinez, L. Cademartiri, and G. Whitesides, “Soft lithographic approaches to nanofabrication,” Polymer Sci.7, 211–231 (2012).

Löbler, M.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011).
[CrossRef]

Lotters, J.

J. Lotters, W. Olthuis, P. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng.7, 145–147 (2006).
[CrossRef]

Love, J.

B. Gates, Q. Xu, J. Love, D. Wolfe, and G. Whitesides, “Unconventional nanofabrication,” Annu. Rev. Mater. Res.34, 339–372 (2004).
[CrossRef]

Luther-Davies, B.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multi-megabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

Maerkl, S.

T. Thorsen, S. Maerkl, and S. Quake, “Microfluidic large scale integration,” Science298, 580–584 (2002).
[CrossRef] [PubMed]

Maigyte, L.

J. Trull, L. Maigyte, V. Mizeikis, M. Malinauskas, S. Juodkazis, C. Cojocaru, M. Rutkauskas, M. Peckus, V. Sirutkaitis, and K. Staliunas, “Formation of collimated beams behind the woodpile photonic crystal,” Phys. Rev. A84, 033812 (2011).
[CrossRef]

Malika, A.

C. Williams, A. Malika, T. Kima, P. Mansonb, and J. Elisseeffa, “Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation,” Biomaterials26, 12111218 (2005).
[CrossRef]

Malinauskas, M.

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, V. Sirvydis, A. Piskarskas, and M. Malinauskas, “Laser 3D micro/nanofabrication of polymers for tissue engineering applications,” Opt. Laser Technol.45, 518–524 (2013).
[CrossRef]

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012).
[CrossRef]

M. Malinauskas, G. Kiršanskė, S. Rekštytė, T. Jonavičius, E. Kaziulionytė, L. Jonušauskas, A. Žukauskas, R. Gadonas, and A. Piskarskas, “Nanophotonic lithography: A versatile tool for manufacturing functional three-dimensional micro-/nano-objects,” Lith. J. Phys.52, 312–326 (2012).
[CrossRef]

M. Malinauskas, P. Danilevicius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express19, 5602–5610 (2011).
[CrossRef] [PubMed]

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011).
[CrossRef]

J. Trull, L. Maigyte, V. Mizeikis, M. Malinauskas, S. Juodkazis, C. Cojocaru, M. Rutkauskas, M. Peckus, V. Sirutkaitis, and K. Staliunas, “Formation of collimated beams behind the woodpile photonic crystal,” Phys. Rev. A84, 033812 (2011).
[CrossRef]

M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys.50, 135–140 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010).
[CrossRef] [PubMed]

M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiutė, and R. Gadonas, “Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers,” Lith. J. Phys.50, 201–208 (2010).
[CrossRef]

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Let.97, 211108 (2010).
[CrossRef]

Mansonb, P.

C. Williams, A. Malika, T. Kima, P. Mansonb, and J. Elisseeffa, “Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation,” Biomaterials26, 12111218 (2005).
[CrossRef]

Martinez, R.

D. Lipomi, R. Martinez, L. Cademartiri, and G. Whitesides, “Soft lithographic approaches to nanofabrication,” Polymer Sci.7, 211–231 (2012).

Maruo, S.

T. Hasegawa, K. Oishi, and S. Maruo, “Three-dimensional microstructuring of PDMS by two-photon microstereolithography,” IEEE06, 158–161 (2006).

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography,” J. Microelectromechanic. Syst.12, 533–539 (2003).
[CrossRef]

Matsuo, S.

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn.81, 411–448 (2008).
[CrossRef]

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B77, 361–368 (2003).
[CrossRef]

Matsushima, S.-I.

Melissinaki, V.

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol.48, 435–441 (2010).
[CrossRef]

Misawa, H.

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010).
[CrossRef]

S. Juodkazis, Y. Nishi, H. Misawa, V. Mizeikis, O. Schecker, R. Waitz, P. Leiderer, and E. Scheer, “Optical transmission and laser structuring of silicon membranes,” Opt. Express17, 15308–15317 (2009).
[CrossRef] [PubMed]

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn.81, 411–448 (2008).
[CrossRef]

K. Hatanaka, T. Ida, H. Ono, S.-I. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, “Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses,” Opt. Express16, 12650–12657 (2008).
[CrossRef] [PubMed]

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett.91, 241904 (2007).
[CrossRef]

S. Juodkazis, K. Nishimura, and H. Misawa, “Three-dimensional laser structuring of materials at tight focusing,” Chin. Opt. Lett.5, S198–200 (2007).

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multi-megabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B77, 361–368 (2003).
[CrossRef]

Mizeikis, V.

J. Trull, L. Maigyte, V. Mizeikis, M. Malinauskas, S. Juodkazis, C. Cojocaru, M. Rutkauskas, M. Peckus, V. Sirutkaitis, and K. Staliunas, “Formation of collimated beams behind the woodpile photonic crystal,” Phys. Rev. A84, 033812 (2011).
[CrossRef]

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010).
[CrossRef]

S. Juodkazis, Y. Nishi, H. Misawa, V. Mizeikis, O. Schecker, R. Waitz, P. Leiderer, and E. Scheer, “Optical transmission and laser structuring of silicon membranes,” Opt. Express17, 15308–15317 (2009).
[CrossRef] [PubMed]

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn.81, 411–448 (2008).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett.91, 241904 (2007).
[CrossRef]

Momot, A.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

Narayan, R.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011).
[CrossRef]

Nguyen, N.-T.

N.-T. Nguyen, “Micro-optofluidic lenses: a review,” Biomicrofluidics4, 031501 (2010).
[CrossRef] [PubMed]

Nicolai, P.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multi-megabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

Nishi, Y.

Nishimura, K.

S. Juodkazis, K. Nishimura, and H. Misawa, “Three-dimensional laser structuring of materials at tight focusing,” Chin. Opt. Lett.5, S198–200 (2007).

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multi-megabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

Ober, C.

C. Coenjarts and C. Ober, “Two-photon three-dimensional microfabrication of poly(dimethylsiloxane) elastomers,” Chem. Mater.16, 5556–5558 (2004).
[CrossRef]

Ohrt, C.

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol.48, 435–441 (2010).
[CrossRef]

Oishi, K.

T. Hasegawa, K. Oishi, and S. Maruo, “Three-dimensional microstructuring of PDMS by two-photon microstereolithography,” IEEE06, 158–161 (2006).

Olthuis, W.

J. Lotters, W. Olthuis, P. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng.7, 145–147 (2006).
[CrossRef]

Ono, H.

Ovsianikov, A.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011).
[CrossRef]

F. Claeyssens, E. A. Hasan, A. Gaidukevičiūtė, D. S. Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikov, X. Shizhou, C. Fotakis, M. Vamvakaki, B. N. Chichkov, and M. Farsari, “Production of biodegradable tissue engineering scaffold materials via 2-photon polymerisation,” Langmuir25, 3219–3223 (2009).
[CrossRef] [PubMed]

Paipulas, D.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys.50, 135–140 (2010).
[CrossRef]

Peckus, M.

J. Trull, L. Maigyte, V. Mizeikis, M. Malinauskas, S. Juodkazis, C. Cojocaru, M. Rutkauskas, M. Peckus, V. Sirutkaitis, and K. Staliunas, “Formation of collimated beams behind the woodpile photonic crystal,” Phys. Rev. A84, 033812 (2011).
[CrossRef]

Piskarskas, A.

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, V. Sirvydis, A. Piskarskas, and M. Malinauskas, “Laser 3D micro/nanofabrication of polymers for tissue engineering applications,” Opt. Laser Technol.45, 518–524 (2013).
[CrossRef]

M. Malinauskas, G. Kiršanskė, S. Rekštytė, T. Jonavičius, E. Kaziulionytė, L. Jonušauskas, A. Žukauskas, R. Gadonas, and A. Piskarskas, “Nanophotonic lithography: A versatile tool for manufacturing functional three-dimensional micro-/nano-objects,” Lith. J. Phys.52, 312–326 (2012).
[CrossRef]

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

Purlys, V.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys.50, 135–140 (2010).
[CrossRef]

M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiutė, and R. Gadonas, “Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers,” Lith. J. Phys.50, 201–208 (2010).
[CrossRef]

Qi, F.

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Nonuniform shrinkage and stretching of plymerized nanostructures fabricated by two-photon photopolymerization,” Nanotechnology19, 055303 (2008).
[CrossRef] [PubMed]

Y. Li, H. Cui, F. Qi, H. Yang, and Q. Gong, “Uniform suspended nanorods fabricated by bidirectional scanning via two-photon photopolymerization,” Nanotechnology19, 375304 (2008).
[CrossRef] [PubMed]

Quake, S.

T. Thorsen, S. Maerkl, and S. Quake, “Microfluidic large scale integration,” Science298, 580–584 (2002).
[CrossRef] [PubMed]

Ranella, A.

F. Claeyssens, E. A. Hasan, A. Gaidukevičiūtė, D. S. Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikov, X. Shizhou, C. Fotakis, M. Vamvakaki, B. N. Chichkov, and M. Farsari, “Production of biodegradable tissue engineering scaffold materials via 2-photon polymerisation,” Langmuir25, 3219–3223 (2009).
[CrossRef] [PubMed]

Reinhardt, C.

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol.48, 435–441 (2010).
[CrossRef]

F. Claeyssens, E. A. Hasan, A. Gaidukevičiūtė, D. S. Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikov, X. Shizhou, C. Fotakis, M. Vamvakaki, B. N. Chichkov, and M. Farsari, “Production of biodegradable tissue engineering scaffold materials via 2-photon polymerisation,” Langmuir25, 3219–3223 (2009).
[CrossRef] [PubMed]

Rekstyte, S.

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, V. Sirvydis, A. Piskarskas, and M. Malinauskas, “Laser 3D micro/nanofabrication of polymers for tissue engineering applications,” Opt. Laser Technol.45, 518–524 (2013).
[CrossRef]

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012).
[CrossRef]

Rekštyte, S.

M. Malinauskas, G. Kiršanskė, S. Rekštytė, T. Jonavičius, E. Kaziulionytė, L. Jonušauskas, A. Žukauskas, R. Gadonas, and A. Piskarskas, “Nanophotonic lithography: A versatile tool for manufacturing functional three-dimensional micro-/nano-objects,” Lith. J. Phys.52, 312–326 (2012).
[CrossRef]

Rode, A.

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010).
[CrossRef]

Rode, A. V.

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B77, 361–368 (2003).
[CrossRef]

Rutkauskas, M.

J. Trull, L. Maigyte, V. Mizeikis, M. Malinauskas, S. Juodkazis, C. Cojocaru, M. Rutkauskas, M. Peckus, V. Sirutkaitis, and K. Staliunas, “Formation of collimated beams behind the woodpile photonic crystal,” Phys. Rev. A84, 033812 (2011).
[CrossRef]

M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys.50, 135–140 (2010).
[CrossRef]

M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiutė, and R. Gadonas, “Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers,” Lith. J. Phys.50, 201–208 (2010).
[CrossRef]

Ryan, D.

J. Lee, X. Jiang, D. Ryan, and G. Whitesides, “Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane),” Langmuir20, 11684–11691 (2004).
[CrossRef] [PubMed]

Sakai, Y.

E. Leclerc, Y. Sakai, and T. Fujii, “Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane),” Biomed. Microdev.5, 109–114 (2003).
[CrossRef]

Sakellari, I.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

Schecker, O.

Scheer, E.

Schizas, C.

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol.48, 435–441 (2010).
[CrossRef]

Schlie, S.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011).
[CrossRef]

Schmitz, K.-P.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011).
[CrossRef]

Seet, K. K.

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett.91, 241904 (2007).
[CrossRef]

Selvaraj, H.

H. Selvaraj, B. Tan, and K. Venkatakrishnan, “Maskless direct micro-structuring of pdms by femtosecond laser localized rapid curing,” J. Micromech. Microeng.21, 075018 (2011).
[CrossRef]

Shizhou, X.

F. Claeyssens, E. A. Hasan, A. Gaidukevičiūtė, D. S. Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikov, X. Shizhou, C. Fotakis, M. Vamvakaki, B. N. Chichkov, and M. Farsari, “Production of biodegradable tissue engineering scaffold materials via 2-photon polymerisation,” Langmuir25, 3219–3223 (2009).
[CrossRef] [PubMed]

Shoji, S.

Sirmenis, R.

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, V. Sirvydis, A. Piskarskas, and M. Malinauskas, “Laser 3D micro/nanofabrication of polymers for tissue engineering applications,” Opt. Laser Technol.45, 518–524 (2013).
[CrossRef]

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012).
[CrossRef]

Sirutkaitis, V.

J. Trull, L. Maigyte, V. Mizeikis, M. Malinauskas, S. Juodkazis, C. Cojocaru, M. Rutkauskas, M. Peckus, V. Sirutkaitis, and K. Staliunas, “Formation of collimated beams behind the woodpile photonic crystal,” Phys. Rev. A84, 033812 (2011).
[CrossRef]

Sirvydis, V.

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, V. Sirvydis, A. Piskarskas, and M. Malinauskas, “Laser 3D micro/nanofabrication of polymers for tissue engineering applications,” Opt. Laser Technol.45, 518–524 (2013).
[CrossRef]

Staliunas, K.

J. Trull, L. Maigyte, V. Mizeikis, M. Malinauskas, S. Juodkazis, C. Cojocaru, M. Rutkauskas, M. Peckus, V. Sirutkaitis, and K. Staliunas, “Formation of collimated beams behind the woodpile photonic crystal,” Phys. Rev. A84, 033812 (2011).
[CrossRef]

Staude, I.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20, 1038–1052 (2010).
[CrossRef]

Sternberg, K.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011).
[CrossRef]

Sun, H.-B.

Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today5, 435–448 (2010).
[CrossRef]

K. Takada, D. Wu, Q.-D. Chen, S. Shoji, H. Xia, S. Kawata, and H.-B. Sun, “Size-dependent behaviors of femtosecond laser-prototyped polymer micronanowires,” Opt. Lett.34, 566–568 (2009).
[CrossRef] [PubMed]

Takada, K.

Tan, B.

H. Selvaraj, B. Tan, and K. Venkatakrishnan, “Maskless direct micro-structuring of pdms by femtosecond laser localized rapid curing,” J. Micromech. Microeng.21, 075018 (2011).
[CrossRef]

Tanaka, S.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multi-megabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

Terzaki, K.

S. Turunen, E. Kapyla, K. Terzaki, J. Viitanen, C. Fotakis, M. Kellomaki, and M. Farsari, “Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity,” Biofabrication p. 045002 (2011).
[CrossRef] [PubMed]

Thiel, M.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20, 1038–1052 (2010).
[CrossRef]

Thomas, E.L.

J.-H. Jang, C. Ullal, T. Gorishnyy, V. Tsukruk, and E.L. Thomas, “Mechanically tunable three-dimensional elastomeric network/air structures via interference lithography,” Nano Lett.6, 740–743 (2006).
[CrossRef] [PubMed]

Thorsen, T.

T. Thorsen, S. Maerkl, and S. Quake, “Microfluidic large scale integration,” Science298, 580–584 (2002).
[CrossRef] [PubMed]

Tikhonchuk, V.

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multi-megabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

Trull, J.

J. Trull, L. Maigyte, V. Mizeikis, M. Malinauskas, S. Juodkazis, C. Cojocaru, M. Rutkauskas, M. Peckus, V. Sirutkaitis, and K. Staliunas, “Formation of collimated beams behind the woodpile photonic crystal,” Phys. Rev. A84, 033812 (2011).
[CrossRef]

Tsukruk, V.

J.-H. Jang, C. Ullal, T. Gorishnyy, V. Tsukruk, and E.L. Thomas, “Mechanically tunable three-dimensional elastomeric network/air structures via interference lithography,” Nano Lett.6, 740–743 (2006).
[CrossRef] [PubMed]

Turunen, S.

S. Turunen, E. Kapyla, K. Terzaki, J. Viitanen, C. Fotakis, M. Kellomaki, and M. Farsari, “Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity,” Biofabrication p. 045002 (2011).
[CrossRef] [PubMed]

Ueno, K.

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn.81, 411–448 (2008).
[CrossRef]

Ullal, C.

J.-H. Jang, C. Ullal, T. Gorishnyy, V. Tsukruk, and E.L. Thomas, “Mechanically tunable three-dimensional elastomeric network/air structures via interference lithography,” Nano Lett.6, 740–743 (2006).
[CrossRef] [PubMed]

Vamvakaki, M.

F. Claeyssens, E. A. Hasan, A. Gaidukevičiūtė, D. S. Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikov, X. Shizhou, C. Fotakis, M. Vamvakaki, B. N. Chichkov, and M. Farsari, “Production of biodegradable tissue engineering scaffold materials via 2-photon polymerisation,” Langmuir25, 3219–3223 (2009).
[CrossRef] [PubMed]

Veltink, P.

J. Lotters, W. Olthuis, P. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng.7, 145–147 (2006).
[CrossRef]

Venkatakrishnan, K.

H. Selvaraj, B. Tan, and K. Venkatakrishnan, “Maskless direct micro-structuring of pdms by femtosecond laser localized rapid curing,” J. Micromech. Microeng.21, 075018 (2011).
[CrossRef]

Viitanen, J.

S. Turunen, E. Kapyla, K. Terzaki, J. Viitanen, C. Fotakis, M. Kellomaki, and M. Farsari, “Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity,” Biofabrication p. 045002 (2011).
[CrossRef] [PubMed]

von Freymann, G.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20, 1038–1052 (2010).
[CrossRef]

Waitz, R.

Wegener, M.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20, 1038–1052 (2010).
[CrossRef]

Wegst, U. G. K.

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett.91, 241904 (2007).
[CrossRef]

Werber, A.

Whitesides, G.

D. Lipomi, R. Martinez, L. Cademartiri, and G. Whitesides, “Soft lithographic approaches to nanofabrication,” Polymer Sci.7, 211–231 (2012).

B. Gates, Q. Xu, J. Love, D. Wolfe, and G. Whitesides, “Unconventional nanofabrication,” Annu. Rev. Mater. Res.34, 339–372 (2004).
[CrossRef]

J. Lee, X. Jiang, D. Ryan, and G. Whitesides, “Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane),” Langmuir20, 11684–11691 (2004).
[CrossRef] [PubMed]

Williams, C.

C. Williams, A. Malika, T. Kima, P. Mansonb, and J. Elisseeffa, “Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation,” Biomaterials26, 12111218 (2005).
[CrossRef]

Wolfe, D.

B. Gates, Q. Xu, J. Love, D. Wolfe, and G. Whitesides, “Unconventional nanofabrication,” Annu. Rev. Mater. Res.34, 339–372 (2004).
[CrossRef]

Wu, D.

Xia, H.

Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today5, 435–448 (2010).
[CrossRef]

K. Takada, D. Wu, Q.-D. Chen, S. Shoji, H. Xia, S. Kawata, and H.-B. Sun, “Size-dependent behaviors of femtosecond laser-prototyped polymer micronanowires,” Opt. Lett.34, 566–568 (2009).
[CrossRef] [PubMed]

Xu, Q.

B. Gates, Q. Xu, J. Love, D. Wolfe, and G. Whitesides, “Unconventional nanofabrication,” Annu. Rev. Mater. Res.34, 339–372 (2004).
[CrossRef]

Yang, H.

Y. Li, H. Cui, F. Qi, H. Yang, and Q. Gong, “Uniform suspended nanorods fabricated by bidirectional scanning via two-photon photopolymerization,” Nanotechnology19, 375304 (2008).
[CrossRef] [PubMed]

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Nonuniform shrinkage and stretching of plymerized nanostructures fabricated by two-photon photopolymerization,” Nanotechnology19, 055303 (2008).
[CrossRef] [PubMed]

Zappe, H.

Zhang, Y.-L.

Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today5, 435–448 (2010).
[CrossRef]

Zukauskas, A.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

Žukauskas, A.

M. Malinauskas, G. Kiršanskė, S. Rekštytė, T. Jonavičius, E. Kaziulionytė, L. Jonušauskas, A. Žukauskas, R. Gadonas, and A. Piskarskas, “Nanophotonic lithography: A versatile tool for manufacturing functional three-dimensional micro-/nano-objects,” Lith. J. Phys.52, 312–326 (2012).
[CrossRef]

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Let.97, 211108 (2010).
[CrossRef]

M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express18, 10209–10221 (2010).
[CrossRef] [PubMed]

Acta Biomater. (1)

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater.7, 967–974 (2011).
[CrossRef]

Adv. Funct. Mater. (1)

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20, 1038–1052 (2010).
[CrossRef]

Annu. Rev. Mater. Res. (1)

B. Gates, Q. Xu, J. Love, D. Wolfe, and G. Whitesides, “Unconventional nanofabrication,” Annu. Rev. Mater. Res.34, 339–372 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B77, 361–368 (2003).
[CrossRef]

Appl. Phys. Let. (1)

E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum,” Appl. Phys. Let.97, 211108 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett.91, 241904 (2007).
[CrossRef]

Biofabrication (1)

S. Turunen, E. Kapyla, K. Terzaki, J. Viitanen, C. Fotakis, M. Kellomaki, and M. Farsari, “Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity,” Biofabrication p. 045002 (2011).
[CrossRef] [PubMed]

Biomaterials (1)

C. Williams, A. Malika, T. Kima, P. Mansonb, and J. Elisseeffa, “Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation,” Biomaterials26, 12111218 (2005).
[CrossRef]

Biomed. Microdev. (1)

E. Leclerc, Y. Sakai, and T. Fujii, “Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane),” Biomed. Microdev.5, 109–114 (2003).
[CrossRef]

Biomicrofluidics (1)

N.-T. Nguyen, “Micro-optofluidic lenses: a review,” Biomicrofluidics4, 031501 (2010).
[CrossRef] [PubMed]

Bull. Chem. Soc. Jpn. (1)

S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn.81, 411–448 (2008).
[CrossRef]

Chem. Mater. (1)

C. Coenjarts and C. Ober, “Two-photon three-dimensional microfabrication of poly(dimethylsiloxane) elastomers,” Chem. Mater.16, 5556–5558 (2004).
[CrossRef]

Chin. Opt. Lett. (1)

IEEE (1)

T. Hasegawa, K. Oishi, and S. Maruo, “Three-dimensional microstructuring of PDMS by two-photon microstereolithography,” IEEE06, 158–161 (2006).

Int. J. Adv. Manuf. Technol. (1)

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol.48, 435–441 (2010).
[CrossRef]

Int. J. Nanomed. (1)

S. Juodkazis, “Writing 3D patterns of microvessels,” Int. J. Nanomed.2012, 3701–3702 (2012).
[CrossRef]

J. Biomed. Optics (1)

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, “Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering,” J. Biomed. Optics17, 081405 (2012).
[CrossRef]

J. Microelectromechanic. Syst. (1)

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography,” J. Microelectromechanic. Syst.12, 533–539 (2003).
[CrossRef]

J. Micromech. Microeng. (2)

H. Selvaraj, B. Tan, and K. Venkatakrishnan, “Maskless direct micro-structuring of pdms by femtosecond laser localized rapid curing,” J. Micromech. Microeng.21, 075018 (2011).
[CrossRef]

J. Lotters, W. Olthuis, P. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng.7, 145–147 (2006).
[CrossRef]

J. Opt. (1)

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt.12, 124010 (2010).
[CrossRef]

Langmuir (2)

J. Lee, X. Jiang, D. Ryan, and G. Whitesides, “Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane),” Langmuir20, 11684–11691 (2004).
[CrossRef] [PubMed]

F. Claeyssens, E. A. Hasan, A. Gaidukevičiūtė, D. S. Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikov, X. Shizhou, C. Fotakis, M. Vamvakaki, B. N. Chichkov, and M. Farsari, “Production of biodegradable tissue engineering scaffold materials via 2-photon polymerisation,” Langmuir25, 3219–3223 (2009).
[CrossRef] [PubMed]

Lith. J. Phys. (3)

M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, “Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption,” Lith. J. Phys.50, 135–140 (2010).
[CrossRef]

M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiutė, and R. Gadonas, “Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers,” Lith. J. Phys.50, 201–208 (2010).
[CrossRef]

M. Malinauskas, G. Kiršanskė, S. Rekštytė, T. Jonavičius, E. Kaziulionytė, L. Jonušauskas, A. Žukauskas, R. Gadonas, and A. Piskarskas, “Nanophotonic lithography: A versatile tool for manufacturing functional three-dimensional micro-/nano-objects,” Lith. J. Phys.52, 312–326 (2012).
[CrossRef]

Nano Lett. (1)

J.-H. Jang, C. Ullal, T. Gorishnyy, V. Tsukruk, and E.L. Thomas, “Mechanically tunable three-dimensional elastomeric network/air structures via interference lithography,” Nano Lett.6, 740–743 (2006).
[CrossRef] [PubMed]

Nano Today (1)

Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today5, 435–448 (2010).
[CrossRef]

Nanotechnology (2)

Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Nonuniform shrinkage and stretching of plymerized nanostructures fabricated by two-photon photopolymerization,” Nanotechnology19, 055303 (2008).
[CrossRef] [PubMed]

Y. Li, H. Cui, F. Qi, H. Yang, and Q. Gong, “Uniform suspended nanorods fabricated by bidirectional scanning via two-photon photopolymerization,” Nanotechnology19, 375304 (2008).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Laser Technol. (1)

P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, V. Sirvydis, A. Piskarskas, and M. Malinauskas, “Laser 3D micro/nanofabrication of polymers for tissue engineering applications,” Opt. Laser Technol.45, 518–524 (2013).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

J. Trull, L. Maigyte, V. Mizeikis, M. Malinauskas, S. Juodkazis, C. Cojocaru, M. Rutkauskas, M. Peckus, V. Sirutkaitis, and K. Staliunas, “Formation of collimated beams behind the woodpile photonic crystal,” Phys. Rev. A84, 033812 (2011).
[CrossRef]

Phys. Rev. B (2)

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B81, 054113 (2010).
[CrossRef]

E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined micro-explosion and void formation,” Phys. Rev. B73, 214101 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multi-megabar pressures,” Phys. Rev. Lett.96, 166101 (2006).
[CrossRef] [PubMed]

PNAS (1)

C. LaFratta, L. Li, and J. Fourkas, “Soft-lithographic replication of 3d microstructures with closed loops,” PNAS103, 8589–8594 (2006).
[CrossRef] [PubMed]

Polymer Sci. (1)

D. Lipomi, R. Martinez, L. Cademartiri, and G. Whitesides, “Soft lithographic approaches to nanofabrication,” Polymer Sci.7, 211–231 (2012).

Science (1)

T. Thorsen, S. Maerkl, and S. Quake, “Microfluidic large scale integration,” Science298, 580–584 (2002).
[CrossRef] [PubMed]

Other (2)

E. G. Gamaly, Femtosecond Laser-Matter Interactions: Theory, Experiments and Applications (Pan Stanford Publishing, USA, 2011).

3DPoli@gmail.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Absorption spectra of PDMS samples with different photo-initiators (see, Table 1). Absorption spectra are clipped at optical density OD = 3 (Intensity/103-level). Thickness of drop cast photo-polymer was ∼1 mm.

Fig. 2
Fig. 2

(a) Fs laser fabrication setup with in situ monitoring of fabrication (setups No.1 and 2 (Sec. 2.2) differed in wavelength, pulse duration, and sample scanning). (b) Close-up view of sample: polymerization is performed starting from the substrate’s surface, when further layers are being formed as the laser beam is focussed through previously polymerized parts of the structure. (c) Multipath scanning. A – a line is formed by several parallel laser beam scans; B – the line is scanned repeatedly along the same path to strengthen the polymerized region.

Fig. 3
Fig. 3

(a,b) 2D grid fabricated in PDMS with 1% ISO. Exposure conditions: Pav = 64 mW (Ip ≈ 5.25 TW/cm2), vs = 150 μm/s (throughput of 30 μm2/s); 6 layers in z-axis dz = 0.5 μm, 0.2 μm hatching in x and y-axis. Intersections of the grid walls are taller than other areas due to double exposure dose acquired due to overlapping scanning trajectories.

Fig. 4
Fig. 4

(a, b) 3D structure fabricated in PDMS:ISO 1%. Parameters used: incremental power Pav = 62 – 64 – 67 mW (Ip ≈ 5.09 – 5.25 – 5.50 TW/cm2), vs = 150 μm/s (throughput of 20 μm3/s), 30 layers in z-axis Δz = 0.5 μm, hatching laterally 0.2 μm. (c–d) 3D structure fabricated out of ISO 1%. Parameters used: Pav = 64 mW (Ip ≈ 5.25 TW/cm2) and second scanning with Pav 55 mW (Ip ≈ 4.51 TW/cm2) for the last two layers, vs = 150 μm/s (throughput of 15 μm3/s), 24 layers in z-axis Δz = 0.5 μm, hatching laterally 0.2 μm.

Fig. 5
Fig. 5

SEM micrograph of 3D structures fabricated in PDMS. (a) THIO 0.2%. Parameters used: power Pav = 0.8 mW (Ip ≈ 1.92 TW/cm2), vs = 150 μm/s, Δz = 0.4 μm, hatching 0.3 μm. (b) ISO 0.5%. Parameters used: power Pav = 0.7 mW (Ip ≈ 1.68 TW/cm2), vs = 4 mm/s, Δz = 0.4 μm, hatching 0.3 μm. The designed models are shown in the insets.

Fig. 6
Fig. 6

SEM micrograph of an array of 3D structures fabricated out of pure PDMS. The cumulative energy E a c = E p v s ( 2 w 0 f r ) P a v v s scales linearly with an average power Pav = Epfr. The best fabrication conditions (a fidelity of recovered 3D structures) scales linearly in presentation Pav vs. vs (this is more clearly appreciated in a log - log presentation) indicating a linear process of polymerization. Dashed lines mark good quality structures.

Fig. 7
Fig. 7

(a – b) 3D structures fabricated using only linear translation stages for sample translation; (c – d) using stages combined with galvanometric scanners. (b) and (d) show magnified images of the structures, fabricated using the same parameters (Pav = 0.5 mW, Ip ≈ 1.20 TW/cm2, vs = 1.2 mm/s.)

Tables (2)

Tables Icon

Table 1 PDMS structuring with different photo-initiators (PI). Exposure conditions (laser setup No. 2): objective lens 100× magnification, numerical aperture NA = 1.4, average power Pav = 53 mW (before the lens), scan velocity vs = 10 – 40 μm/s at the repetition rate fr = 75 MHz. Overall transmission coefficient through the lens to the exposure point was T = 0.235 for the 800 nm wavelength. After the laser fabrication, samples were immersed in a methyl isobutyl ketone for ≈ 30 min to rinse the unexposed resin.

Tables Icon

Table 2 PDMS structuring with different photo-initiators using laser setup No. 1 (λ = 515 nm, tp = 300 fs, fr = 200 kHz). PI numbering is kept from Table 1 with addition of 3-c corresponding to 0.2 % concentration of ISO which was not used previously.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

w m p i w n p h 3 / 2 ( ε o s c 2 J i ) n p h ,
w i m p ε o s c J i 2 ω 2 ν e p h ( ν e p h 2 + ω 2 ) ,
d n e d t = n e w i m p + n a w m p i ,
n e ( I , λ , t ) = [ n e 0 + n a w m p i w i m p [ 1 e w i m p t ] ] e w i m p t

Metrics