Abstract

Polarization mode dispersion (PMD) has been recognized as a significant barrier to sensitive and reproducible birefringence measurements with fiber-based, polarization-sensitive optical coherence tomography systems. Here, we present a signal processing strategy that reconstructs the local retardation robustly in the presence of system PMD. The algorithm uses a spectral binning approach to limit the detrimental impact of system PMD and benefits from the final averaging of the PMD-corrected retardation vectors of the spectral bins. The algorithm was validated with numerical simulations and experimental measurements of a rubber phantom. When applied to the imaging of human cadaveric coronary arteries, the algorithm was found to yield a substantial improvement in the reconstructed birefringence maps.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003).
    [CrossRef] [PubMed]
  2. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B9(6), 903–908 (1992).
    [CrossRef]
  3. J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt.7(3), 359–371 (2002).
    [CrossRef] [PubMed]
  4. D. K. Kasaragod, Z. Lu, J. Jacobs, and S. J. Matcher, “Experimental validation of an extended Jones matrix calculus model to study the 3D structural orientation of the collagen fibers in articular cartilage using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express3(3), 378–387 (2012).
    [CrossRef] [PubMed]
  5. Y. Yang, A. Rupani, P. Bagnaninchi, I. Wimpenny, and A. Weightman, “Study of optical properties and proteoglycan content of tendons by polarization sensitive optical coherence tomography,” J. Biomed. Opt.17(8), 081417 (2012).
    [CrossRef] [PubMed]
  6. K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
    [CrossRef] [PubMed]
  7. C. K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express9(13), 780–790 (2001).
    [CrossRef] [PubMed]
  8. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett.27(18), 1610–1612 (2002).
    [CrossRef] [PubMed]
  9. W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res.27(1), 45–88 (2008).
    [CrossRef] [PubMed]
  10. M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res.30(6), 431–451 (2011).
    [CrossRef] [PubMed]
  11. S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of Collagen and Smooth Muscle Cell Content in Atherosclerotic Plaques Using Polarization-Sensitive Optical Coherence Tomography,” J. Am. Coll. Cardiol.49(13), 1474–1481 (2007).
    [CrossRef] [PubMed]
  12. W.-C. Kuo, N.-K. Chou, C. Chou, C.-M. Lai, H.-J. Huang, S.-S. Wang, and J.-J. Shyu, “Polarization-sensitive optical coherence tomography for imaging human atherosclerosis,” Appl. Opt.46(13), 2520–2527 (2007).
    [CrossRef] [PubMed]
  13. C. E. Saxer, J. F. de Boer, B. H. Park, Y. H. Zhao, Z. P. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett.25(18), 1355–1357 (2000).
    [CrossRef] [PubMed]
  14. W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express16(2), 1096–1103 (2008).
    [CrossRef] [PubMed]
  15. M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express16(8), 5892–5906 (2008).
    [CrossRef] [PubMed]
  16. E. Z. Zhang and B. J. Vakoc, “Polarimetry noise in fiber-based optical coherence tomography instrumentation,” Opt. Express19(18), 16830–16842 (2011).
    [CrossRef] [PubMed]
  17. M. Villiger, E. Z. Zhang, S. Nadkarni, W.-Y. Oh, B. E. Bouma, and B. J. Vakoc, “Artifacts in polarization-sensitive optical coherence tomography caused by polarization mode dispersion,” Opt. Lett.38(6), 923–925 (2013).
    [CrossRef] [PubMed]
  18. J. P. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A.97(9), 4541–4550 (2000).
    [CrossRef] [PubMed]
  19. S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I. K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med.12(12), 1429–1433 (2007).
    [CrossRef] [PubMed]
  20. S. Yun, G. Tearney, J. de Boer, and B. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express12(20), 4822–4828 (2004).
    [CrossRef] [PubMed]
  21. A. Dal Forno, A. Paradisi, R. Passy, and J. Von der Weid, “Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers,” IEEE Photon. Technol. Lett.12(3), 296–298 (2000).
    [CrossRef]
  22. E. Ibragimov, G. Shtengel, and S. Suh, “Statistical correlation between first and second-order PMD,” J. Lightwave Technol.20(4), 586–590 (2002).
    [CrossRef]
  23. G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, and A. F. W. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt.17(7), 076018 (2012).
    [CrossRef] [PubMed]
  24. E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express16(21), 16410–16422 (2008).
    [CrossRef] [PubMed]
  25. B. Park, M. Pierce, B. Cense, and J. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express11(7), 782–793 (2003).
    [CrossRef] [PubMed]
  26. J. Park, N. J. Kemp, H. N. Zaatari, H. G. Rylander, and T. E. Milner, “Differential geometry of normalized Stokes vector trajectories in anisotropic media,” J. Opt. Soc. Am. A23(3), 679–690 (2006).
    [CrossRef] [PubMed]
  27. E. Z. Zhang, W.-Y. Oh, M. L. Villiger, L. Chen, B. E. Bouma, and B. J. Vakoc, “Numerical compensation of system polarization mode dispersion in polarization-sensitive optical coherence tomography,” Opt. Express21(1), 1163–1180 (2013).
    [CrossRef] [PubMed]
  28. I. Sharf, A. Wolf, and M. B. Rubin, “Arithmetic and geometric solutions for average rigid-body rotation,” Mechanism Mach. Theory45(9), 1239–1251 (2010).
    [CrossRef]
  29. M. Geissbuehler and T. Lasser, “How to Display Data by Color Schemes Compatible with Red-Green Color Perception Deficiencies,” Opt. Express21(8), 9862–9874 (2013).
    [CrossRef]
  30. E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express17(25), 22704–22717 (2009).
    [CrossRef] [PubMed]
  31. M. K. Al-Qaisi and T. Akkin, “Swept-source polarization-sensitive optical coherence tomography based on polarization-maintaining fiber,” Opt. Express18(4), 3392–3403 (2010).
    [CrossRef] [PubMed]

2013

2012

G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, and A. F. W. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt.17(7), 076018 (2012).
[CrossRef] [PubMed]

D. K. Kasaragod, Z. Lu, J. Jacobs, and S. J. Matcher, “Experimental validation of an extended Jones matrix calculus model to study the 3D structural orientation of the collagen fibers in articular cartilage using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express3(3), 378–387 (2012).
[CrossRef] [PubMed]

Y. Yang, A. Rupani, P. Bagnaninchi, I. Wimpenny, and A. Weightman, “Study of optical properties and proteoglycan content of tendons by polarization sensitive optical coherence tomography,” J. Biomed. Opt.17(8), 081417 (2012).
[CrossRef] [PubMed]

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

2011

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res.30(6), 431–451 (2011).
[CrossRef] [PubMed]

E. Z. Zhang and B. J. Vakoc, “Polarimetry noise in fiber-based optical coherence tomography instrumentation,” Opt. Express19(18), 16830–16842 (2011).
[CrossRef] [PubMed]

2010

I. Sharf, A. Wolf, and M. B. Rubin, “Arithmetic and geometric solutions for average rigid-body rotation,” Mechanism Mach. Theory45(9), 1239–1251 (2010).
[CrossRef]

M. K. Al-Qaisi and T. Akkin, “Swept-source polarization-sensitive optical coherence tomography based on polarization-maintaining fiber,” Opt. Express18(4), 3392–3403 (2010).
[CrossRef] [PubMed]

2009

2008

2007

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of Collagen and Smooth Muscle Cell Content in Atherosclerotic Plaques Using Polarization-Sensitive Optical Coherence Tomography,” J. Am. Coll. Cardiol.49(13), 1474–1481 (2007).
[CrossRef] [PubMed]

W.-C. Kuo, N.-K. Chou, C. Chou, C.-M. Lai, H.-J. Huang, S.-S. Wang, and J.-J. Shyu, “Polarization-sensitive optical coherence tomography for imaging human atherosclerosis,” Appl. Opt.46(13), 2520–2527 (2007).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I. K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med.12(12), 1429–1433 (2007).
[CrossRef] [PubMed]

2006

2004

2003

2002

2001

2000

C. E. Saxer, J. F. de Boer, B. H. Park, Y. H. Zhao, Z. P. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett.25(18), 1355–1357 (2000).
[CrossRef] [PubMed]

A. Dal Forno, A. Paradisi, R. Passy, and J. Von der Weid, “Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers,” IEEE Photon. Technol. Lett.12(3), 296–298 (2000).
[CrossRef]

J. P. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A.97(9), 4541–4550 (2000).
[CrossRef] [PubMed]

1992

Ahlers, C.

Akkin, T.

Al-Qaisi, M. K.

Bagnaninchi, P.

Y. Yang, A. Rupani, P. Bagnaninchi, I. Wimpenny, and A. Weightman, “Study of optical properties and proteoglycan content of tendons by polarization sensitive optical coherence tomography,” J. Biomed. Opt.17(8), 081417 (2012).
[CrossRef] [PubMed]

Baumann, B.

Bouma, B.

Bouma, B. E.

E. Z. Zhang, W.-Y. Oh, M. L. Villiger, L. Chen, B. E. Bouma, and B. J. Vakoc, “Numerical compensation of system polarization mode dispersion in polarization-sensitive optical coherence tomography,” Opt. Express21(1), 1163–1180 (2013).
[CrossRef] [PubMed]

M. Villiger, E. Z. Zhang, S. Nadkarni, W.-Y. Oh, B. E. Bouma, and B. J. Vakoc, “Artifacts in polarization-sensitive optical coherence tomography caused by polarization mode dispersion,” Opt. Lett.38(6), 923–925 (2013).
[CrossRef] [PubMed]

G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, and A. F. W. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt.17(7), 076018 (2012).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express16(2), 1096–1103 (2008).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I. K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med.12(12), 1429–1433 (2007).
[CrossRef] [PubMed]

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of Collagen and Smooth Muscle Cell Content in Atherosclerotic Plaques Using Polarization-Sensitive Optical Coherence Tomography,” J. Am. Coll. Cardiol.49(13), 1474–1481 (2007).
[CrossRef] [PubMed]

Bressner, J. E.

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of Collagen and Smooth Muscle Cell Content in Atherosclerotic Plaques Using Polarization-Sensitive Optical Coherence Tomography,” J. Am. Coll. Cardiol.49(13), 1474–1481 (2007).
[CrossRef] [PubMed]

Cense, B.

Chan, R. C.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I. K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med.12(12), 1429–1433 (2007).
[CrossRef] [PubMed]

Chen, L.

Chen, T. C.

Chen, Z. P.

Chou, C.

Chou, N.-K.

Dal Forno, A.

A. Dal Forno, A. Paradisi, R. Passy, and J. Von der Weid, “Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers,” IEEE Photon. Technol. Lett.12(3), 296–298 (2000).
[CrossRef]

de Boer, J.

de Boer, J. F.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express16(2), 1096–1103 (2008).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I. K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med.12(12), 1429–1433 (2007).
[CrossRef] [PubMed]

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of Collagen and Smooth Muscle Cell Content in Atherosclerotic Plaques Using Polarization-Sensitive Optical Coherence Tomography,” J. Am. Coll. Cardiol.49(13), 1474–1481 (2007).
[CrossRef] [PubMed]

J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt.7(3), 359–371 (2002).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett.27(18), 1610–1612 (2002).
[CrossRef] [PubMed]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. H. Zhao, Z. P. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett.25(18), 1355–1357 (2000).
[CrossRef] [PubMed]

Desjardins, A. E.

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express16(2), 1096–1103 (2008).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I. K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med.12(12), 1429–1433 (2007).
[CrossRef] [PubMed]

Drexler, W.

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res.27(1), 45–88 (2008).
[CrossRef] [PubMed]

Evans, J. A.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I. K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med.12(12), 1429–1433 (2007).
[CrossRef] [PubMed]

Fercher, A. F.

Fujimoto, J. G.

Geissbuehler, M.

Geitzenauer, W.

Goetzinger, E.

Gordon, J. P.

J. P. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A.97(9), 4541–4550 (2000).
[CrossRef] [PubMed]

Götzinger, E.

Halpern, E.

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of Collagen and Smooth Muscle Cell Content in Atherosclerotic Plaques Using Polarization-Sensitive Optical Coherence Tomography,” J. Am. Coll. Cardiol.49(13), 1474–1481 (2007).
[CrossRef] [PubMed]

Hee, M. R.

Hitzenberger, C. K.

Houser, S. L.

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of Collagen and Smooth Muscle Cell Content in Atherosclerotic Plaques Using Polarization-Sensitive Optical Coherence Tomography,” J. Am. Coll. Cardiol.49(13), 1474–1481 (2007).
[CrossRef] [PubMed]

Huang, D.

Huang, H.-J.

Ibragimov, E.

Iftimia, N.

Jacobs, J.

Jang, I. K.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I. K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med.12(12), 1429–1433 (2007).
[CrossRef] [PubMed]

Kasaragod, D. K.

Kemp, N. J.

Kim, K. H.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

Kogelnik, H.

J. P. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A.97(9), 4541–4550 (2000).
[CrossRef] [PubMed]

Kuo, W.-C.

Lai, C.-M.

Lasser, T.

Lu, Z.

Lydon, M.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

Maguluri, G.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

Makita, S.

Matcher, S. J.

Michels, S.

Milner, T. E.

J. Park, N. J. Kemp, H. N. Zaatari, H. G. Rylander, and T. E. Milner, “Differential geometry of normalized Stokes vector trajectories in anisotropic media,” J. Opt. Soc. Am. A23(3), 679–690 (2006).
[CrossRef] [PubMed]

J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt.7(3), 359–371 (2002).
[CrossRef] [PubMed]

Nadkarni, S.

Nadkarni, S. K.

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of Collagen and Smooth Muscle Cell Content in Atherosclerotic Plaques Using Polarization-Sensitive Optical Coherence Tomography,” J. Am. Coll. Cardiol.49(13), 1474–1481 (2007).
[CrossRef] [PubMed]

Nelson, J. S.

Nishioka, N. S.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I. K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med.12(12), 1429–1433 (2007).
[CrossRef] [PubMed]

Oh, W. Y.

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express16(2), 1096–1103 (2008).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I. K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med.12(12), 1429–1433 (2007).
[CrossRef] [PubMed]

Oh, W.-Y.

Paradisi, A.

A. Dal Forno, A. Paradisi, R. Passy, and J. Von der Weid, “Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers,” IEEE Photon. Technol. Lett.12(3), 296–298 (2000).
[CrossRef]

Park, B.

Park, B. H.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express16(2), 1096–1103 (2008).
[CrossRef] [PubMed]

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of Collagen and Smooth Muscle Cell Content in Atherosclerotic Plaques Using Polarization-Sensitive Optical Coherence Tomography,” J. Am. Coll. Cardiol.49(13), 1474–1481 (2007).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett.27(18), 1610–1612 (2002).
[CrossRef] [PubMed]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. H. Zhao, Z. P. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett.25(18), 1355–1357 (2000).
[CrossRef] [PubMed]

Park, J.

Passy, R.

A. Dal Forno, A. Paradisi, R. Passy, and J. Von der Weid, “Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers,” IEEE Photon. Technol. Lett.12(3), 296–298 (2000).
[CrossRef]

Pierce, M.

Pierce, M. C.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of Collagen and Smooth Muscle Cell Content in Atherosclerotic Plaques Using Polarization-Sensitive Optical Coherence Tomography,” J. Am. Coll. Cardiol.49(13), 1474–1481 (2007).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett.27(18), 1610–1612 (2002).
[CrossRef] [PubMed]

Pircher, M.

Regar, E.

G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, and A. F. W. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt.17(7), 076018 (2012).
[CrossRef] [PubMed]

Rubin, M. B.

I. Sharf, A. Wolf, and M. B. Rubin, “Arithmetic and geometric solutions for average rigid-body rotation,” Mechanism Mach. Theory45(9), 1239–1251 (2010).
[CrossRef]

Rupani, A.

Y. Yang, A. Rupani, P. Bagnaninchi, I. Wimpenny, and A. Weightman, “Study of optical properties and proteoglycan content of tendons by polarization sensitive optical coherence tomography,” J. Biomed. Opt.17(8), 081417 (2012).
[CrossRef] [PubMed]

Rylander, H. G.

Saxer, C. E.

Schmidt-Erfurth, U.

Sharf, I.

I. Sharf, A. Wolf, and M. B. Rubin, “Arithmetic and geometric solutions for average rigid-body rotation,” Mechanism Mach. Theory45(9), 1239–1251 (2010).
[CrossRef]

Sheridan, R.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

Shishkov, M.

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express16(2), 1096–1103 (2008).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I. K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med.12(12), 1429–1433 (2007).
[CrossRef] [PubMed]

Shtengel, G.

Shyu, J.-J.

Sticker, M.

Suh, S.

Suter, M. J.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I. K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med.12(12), 1429–1433 (2007).
[CrossRef] [PubMed]

Swanson, E. A.

Tearney, G.

Tearney, G. J.

G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, and A. F. W. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt.17(7), 076018 (2012).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express16(2), 1096–1103 (2008).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I. K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med.12(12), 1429–1433 (2007).
[CrossRef] [PubMed]

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of Collagen and Smooth Muscle Cell Content in Atherosclerotic Plaques Using Polarization-Sensitive Optical Coherence Tomography,” J. Am. Coll. Cardiol.49(13), 1474–1481 (2007).
[CrossRef] [PubMed]

Vakoc, B. J.

van der Steen, A. F. W.

G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, and A. F. W. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt.17(7), 076018 (2012).
[CrossRef] [PubMed]

van Soest, G.

G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, and A. F. W. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt.17(7), 076018 (2012).
[CrossRef] [PubMed]

Villiger, M.

M. Villiger, E. Z. Zhang, S. Nadkarni, W.-Y. Oh, B. E. Bouma, and B. J. Vakoc, “Artifacts in polarization-sensitive optical coherence tomography caused by polarization mode dispersion,” Opt. Lett.38(6), 923–925 (2013).
[CrossRef] [PubMed]

G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, and A. F. W. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt.17(7), 076018 (2012).
[CrossRef] [PubMed]

Villiger, M. L.

Von der Weid, J.

A. Dal Forno, A. Paradisi, R. Passy, and J. Von der Weid, “Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers,” IEEE Photon. Technol. Lett.12(3), 296–298 (2000).
[CrossRef]

Wang, S.-S.

Weightman, A.

Y. Yang, A. Rupani, P. Bagnaninchi, I. Wimpenny, and A. Weightman, “Study of optical properties and proteoglycan content of tendons by polarization sensitive optical coherence tomography,” J. Biomed. Opt.17(8), 081417 (2012).
[CrossRef] [PubMed]

Whittaker, P.

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of Collagen and Smooth Muscle Cell Content in Atherosclerotic Plaques Using Polarization-Sensitive Optical Coherence Tomography,” J. Am. Coll. Cardiol.49(13), 1474–1481 (2007).
[CrossRef] [PubMed]

Wimpenny, I.

Y. Yang, A. Rupani, P. Bagnaninchi, I. Wimpenny, and A. Weightman, “Study of optical properties and proteoglycan content of tendons by polarization sensitive optical coherence tomography,” J. Biomed. Opt.17(8), 081417 (2012).
[CrossRef] [PubMed]

Wolf, A.

I. Sharf, A. Wolf, and M. B. Rubin, “Arithmetic and geometric solutions for average rigid-body rotation,” Mechanism Mach. Theory45(9), 1239–1251 (2010).
[CrossRef]

Yamanari, M.

Yang, Y.

Y. Yang, A. Rupani, P. Bagnaninchi, I. Wimpenny, and A. Weightman, “Study of optical properties and proteoglycan content of tendons by polarization sensitive optical coherence tomography,” J. Biomed. Opt.17(8), 081417 (2012).
[CrossRef] [PubMed]

Yasuno, Y.

Yoon, S. J.

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

Yun, S.

Yun, S. H.

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express16(2), 1096–1103 (2008).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I. K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med.12(12), 1429–1433 (2007).
[CrossRef] [PubMed]

Zaatari, H. N.

Zhang, E. Z.

Zhao, Y. H.

Appl. Opt.

Biomed. Opt. Express

IEEE Photon. Technol. Lett.

A. Dal Forno, A. Paradisi, R. Passy, and J. Von der Weid, “Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers,” IEEE Photon. Technol. Lett.12(3), 296–298 (2000).
[CrossRef]

J. Am. Coll. Cardiol.

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern, S. L. Houser, and G. J. Tearney, “Measurement of Collagen and Smooth Muscle Cell Content in Atherosclerotic Plaques Using Polarization-Sensitive Optical Coherence Tomography,” J. Am. Coll. Cardiol.49(13), 1474–1481 (2007).
[CrossRef] [PubMed]

J. Biomed. Opt.

G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, and A. F. W. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt.17(7), 076018 (2012).
[CrossRef] [PubMed]

J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt.7(3), 359–371 (2002).
[CrossRef] [PubMed]

Y. Yang, A. Rupani, P. Bagnaninchi, I. Wimpenny, and A. Weightman, “Study of optical properties and proteoglycan content of tendons by polarization sensitive optical coherence tomography,” J. Biomed. Opt.17(8), 081417 (2012).
[CrossRef] [PubMed]

K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, “In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography,” J. Biomed. Opt.17(6), 066012 (2012).
[CrossRef] [PubMed]

J. Lightwave Technol.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Mechanism Mach. Theory

I. Sharf, A. Wolf, and M. B. Rubin, “Arithmetic and geometric solutions for average rigid-body rotation,” Mechanism Mach. Theory45(9), 1239–1251 (2010).
[CrossRef]

Nat. Med.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I. K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med.12(12), 1429–1433 (2007).
[CrossRef] [PubMed]

Opt. Express

C. K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express9(13), 780–790 (2001).
[CrossRef] [PubMed]

B. Park, M. Pierce, B. Cense, and J. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express11(7), 782–793 (2003).
[CrossRef] [PubMed]

S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003).
[CrossRef] [PubMed]

S. Yun, G. Tearney, J. de Boer, and B. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express12(20), 4822–4828 (2004).
[CrossRef] [PubMed]

M. Geissbuehler and T. Lasser, “How to Display Data by Color Schemes Compatible with Red-Green Color Perception Deficiencies,” Opt. Express21(8), 9862–9874 (2013).
[CrossRef]

E. Z. Zhang, W.-Y. Oh, M. L. Villiger, L. Chen, B. E. Bouma, and B. J. Vakoc, “Numerical compensation of system polarization mode dispersion in polarization-sensitive optical coherence tomography,” Opt. Express21(1), 1163–1180 (2013).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express16(2), 1096–1103 (2008).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express16(8), 5892–5906 (2008).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express16(21), 16410–16422 (2008).
[CrossRef] [PubMed]

E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express17(25), 22704–22717 (2009).
[CrossRef] [PubMed]

M. K. Al-Qaisi and T. Akkin, “Swept-source polarization-sensitive optical coherence tomography based on polarization-maintaining fiber,” Opt. Express18(4), 3392–3403 (2010).
[CrossRef] [PubMed]

E. Z. Zhang and B. J. Vakoc, “Polarimetry noise in fiber-based optical coherence tomography instrumentation,” Opt. Express19(18), 16830–16842 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Proc. Natl. Acad. Sci. U.S.A.

J. P. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A.97(9), 4541–4550 (2000).
[CrossRef] [PubMed]

Prog. Retin. Eye Res.

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res.27(1), 45–88 (2008).
[CrossRef] [PubMed]

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res.30(6), 431–451 (2011).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic layout of PS-OFDI system. PC: polarization controller. LP: linear polarizer. EOM: electro optic modulator. RJ: rotary junction. AOM: acousto-optic modulator. BR: balanced receiver. A/D: analog-to-digital converter.

Fig. 2
Fig. 2

Estimation of (a) rotation angle, and (b) orientation of the rotation axis for the original (following [25], displayed as blue circles) and the least squares (red squares) estimation. Error-bars indicate standard deviations. (c) Frequency of correct sign estimation, i.e. the sign of the scalar product of the estimated and ground truth rotation axis.

Fig. 3
Fig. 3

Performance assessment of spectral binning with numerical simulation in the absence of sample birefringence. Median and 10% and 90% quantiles – indicated by error bars – of the estimated probability density functions of the mean and the standard deviation of the local retardation as function of binning N or the equivalent filtering for the conventional algorithm for different nominal amounts of system PMD. (a) Mean of the local retardation for spectral binning. (b) Mean of the local retardation for conventional processing. (c) Benefit of increased N for spectral binning (full lines) and conventional processing (dashed lines). The black thick line indicates 1/N2. (d)-(f) Same information for the standard deviation of the local retardation.

Fig. 4
Fig. 4

Performance assessment of spectral binning with numerical simulation for different amounts of sample birefringence. Median and 10% and 90% quantiles – indicated by error bars – of the estimated probability density functions of the mean ((a) and (b)) and the standard deviation ((c) and (d)) of local retardation, for spectral binning ((a) and (c)) and the conventional processing ((b) and (d)) and N = 5. The points at zero sample birefringence correspond to the rightmost values in panels (a),(b),(d),(e) of Fig. 3.

Fig. 5
Fig. 5

Measurement of rubber phantom with stress induced birefringence. (a) Log-scaled intensity images, averaged out of plane over 11 B-scans, for 0%, 22.2%, 44.4%, 66.6%, and 88.8% of strain. (b) Corresponding local retardation retrieved with conventional processing, with the white arrows indicating the banding artifact, and (c) spectral binning, likewise averaged over 11 B-scans out of plane. The scale bars show 500μm along depth and 1mm in the lateral direction. (d)-(f) Analysis of mean and standard deviation, indicated by the error-bars, computed over three regions of interest (over the entire displayed sections and the 11 B-scans out of plane) at increasing depths visualized in (a)-(c) by the black rectangles: (d) depth 1, (e) depth 2, and (f) depth 3. The conventional processing results in noisy measurements with oscillations that mask the linear relation between stress and local retardation found with spectral binning.

Fig. 6
Fig. 6

PS imaging of cadaveric human coronary artery. (a) Intensity image, indicating a region of intimal hyperplasia (white arc of a circle) and a fibrous plaque (red arc of a circle). (b) Conventional reconstruction of the local retardation and (c) the corresponding DOPU. (d) Overlay of the intensity signal as luminance and the local retardation obtained with spectral binning in isoluminescent colormap. (e) Local retardation reconstructed with spectral binning, identifying the layered architecture as intima (i), media (m) and adventitia (a). The white arrow points to the region of increased birefringence within the fibrous plaque. (f) The DOPU obtained with spectral binning. Scale bars: 1mm.

Tables (2)

Tables Icon

Table 1 Spectral multiplexing algorithm for mitigation of PMD

Tables Icon

Table 2 Conventional reference algorithm for extraction of local retardation

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

f q ( k,x )=α( k ) J B ( k ) J S ( k,x ) J A ( k ) e in q =α( k ) J tot ( k,x ) e in q .
J S ( k )=P( m [ exp( iβ ) 0 0 exp( iβ ) ] ) P T ,β=k z m Δn= kα z m 2 k c
R=[ ω p q ][ 1 0 0 0 cosφ sinφ 0 sinφ cosφ ] [ ω p q ] T .
Ω=ωφ,
S ˜ ^ ( z+ dz /2 )=R( z ) S ˜ ^ ( z dz /2 ), [ v 1 v 2 ]=R( z )[ u 1 u 2 ]
u 1,2 '= 1 2 ( u 1 ± u 2 ). v 1,2 '= 1 2 ( v 1 ± v 2 )
S ˜ ^ ( z+ dz /2 ,m )=R( z,m ) S ˜ ^ ( z dz / 2,m ). R( z,m )=P( m )R'( z ) P T ( m )
min P corr ( x,m ) z sel , x sel Ω( z,x,N ) P corr ( x,m )Ω( z,x,m ) 2 .
h( x,z )= h X ( x ) h Z ( z ), h Z ( z )= FT{ W( k,N ) } 2 ,
η= f( PMD,N )f( PMD=0,N ) f( PMD,N=1 )f( PMD=0,N=1 ) ,

Metrics