Abstract

In spiral phase contrast (SPC) microscopy the edge-enhancement is typically independent of the helicity of the phase vortex filter. Here we show that for layered specimens containing screw-dislocations, as are e.g. present in mica or some crystallized organic substances, the intensity distribution in the filtered image acquires a dependence on the rotational direction of the filter. This allows one to map the distribution of phase singularities in the topography of the sample, by taking the intensity difference between two images recorded with opposite handedness. For the demonstration of this feature in a microscopy set-up, we encode the vortex filter as a binary off-axis hologram displayed on a spatial light modulator (SLM) placed in a Fourier plane. Using a binary grating, the diffraction efficiencies for the plus and minus first diffraction orders are equal, giving rise to two image waves which travel in different directions and are Fourier filtered with opposite helicity. The corresponding two images can be recorded simultaneously in two separate regions of the camera chip. This enables mapping of dislocations in the sample in a single camera exposure, as was demonstrated for various transparent samples.

© 2013 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Versatile generation of optical vortices based on paraxial mode expansion

Yutaka Yoshikawa and Hiroyuki Sasada
J. Opt. Soc. Am. A 19(10) 2127-2133 (2002)

Longitudinal field characterization of converging terahertz vortices with linear and circular polarizations

Xinke Wang, Jing Shi, Wenfeng Sun, Shengfei Feng, Peng Han, Jiasheng Ye, and Yan Zhang
Opt. Express 24(7) 7178-7190 (2016)

Spiral phase filtering and orientation-selective edge detection/enhancement

Guohai Situ, Giancarlo Pedrini, and Wolfgang Osten
J. Opt. Soc. Am. A 26(8) 1788-1797 (2009)

References

  • View by:
  • |
  • |
  • |

  1. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express 13(3), 689–694 (2005).
    [Crossref] [PubMed]
  2. M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E-1–74420E-12 (2009).
    [Crossref]
  3. J. A. Davis, D. E. McNamara, D. M. Cottrell, and J. Campos, “Image processing with the radial Hilbert transform: theory and experiments,” Opt. Lett. 25(2), 99–101 (2000).
    [Crossref] [PubMed]
  4. K. Crabtree, J. A. Davis, and I. Moreno, “Optical processing with vortex-producing lenses,” Appl. Opt. 43(6), 1360–1367 (2004).
    [Crossref] [PubMed]
  5. S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14(9), 3792–3805 (2006).
    [Crossref] [PubMed]
  6. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29(21), 2503–2505 (2004).
    [Crossref] [PubMed]
  7. G. A. Swartzlander., “Peering into darkness with a vortex spatial filter,” Opt. Lett. 26(8), 497–499 (2001).
    [Crossref] [PubMed]
  8. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
    [Crossref] [PubMed]
  9. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner,” Opt. Lett. 22(1), 52–54 (1997).
    [Crossref] [PubMed]
  10. I. Moreno, J. A. Davis, B. M. L. Pascoguin, M. J. Mitry, and D. M. Cottrell, “Vortex sensing diffraction gratings,” Opt. Lett. 34(19), 2927–2929 (2009).
    [Crossref] [PubMed]
  11. Q. Wang, X. W. Sun, and P. Shum, “Generating Doughnut-Shaped Beams with Large Charge Numbers by Use of Liquid-Crystal Spiral Phase Plates,” Appl. Opt. 43(11), 2292–2297 (2004).
    [Crossref] [PubMed]
  12. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Series in Pure and Applied Optics, 1991).
  13. J. E. Curtis and D. G. Grier, “Structure of Optical Vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
    [Crossref] [PubMed]
  14. I. Sunagawa, Crystals: Growth, Morphology, and Perfection (Cambridge University, 2005).
  15. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci. 336(1605), 165–190 (1974).
    [Crossref]
  16. E. C. H. Silke and R. S. Barnes, “The observation of dislocations in mica,” Acta Metall. 9(6), 558–562 (1961).
    [Crossref]
  17. K. Onuma, T. Kameyama, and K. Tsukamoto, “In situ study of surface phenomena by real time phase shift interferometry,” J. Cryst. Growth 137(3-4), 610–622 (1994).
    [Crossref]
  18. J. J. De Yoreo, C. A. Orme, and T. A. Land, “Using atomic force microscopy to investigate solution crystal growth,” in Advances in Crystal Growth Research, Eds: K. Sato, K. Nakajima, and Y. Furukawa361–380, (Elsevier Science 2001), pp. 361–380.
  19. I. Lelidis, C. Blanc, and M. Kléman, “Optical and confocal microscopy observations of screw dislocations in smectic-A liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 051710 (2006).
    [Crossref] [PubMed]
  20. Y. Rumala and A. Leanhardt, “Multiple-beam interference in a spiral phase plate,” J. Opt. Soc. Am. B 30(3), 615–621 (2013).
    [Crossref]
  21. M. Uchida and A. Tonomura, “Generation of electron beams carrying orbital angular momentum,” Nature 464(7289), 737–739 (2010).
    [Crossref] [PubMed]

2013 (1)

2010 (1)

M. Uchida and A. Tonomura, “Generation of electron beams carrying orbital angular momentum,” Nature 464(7289), 737–739 (2010).
[Crossref] [PubMed]

2009 (2)

I. Moreno, J. A. Davis, B. M. L. Pascoguin, M. J. Mitry, and D. M. Cottrell, “Vortex sensing diffraction gratings,” Opt. Lett. 34(19), 2927–2929 (2009).
[Crossref] [PubMed]

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E-1–74420E-12 (2009).
[Crossref]

2006 (2)

S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14(9), 3792–3805 (2006).
[Crossref] [PubMed]

I. Lelidis, C. Blanc, and M. Kléman, “Optical and confocal microscopy observations of screw dislocations in smectic-A liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 051710 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (3)

2003 (1)

J. E. Curtis and D. G. Grier, “Structure of Optical Vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[Crossref] [PubMed]

2001 (2)

G. A. Swartzlander., “Peering into darkness with a vortex spatial filter,” Opt. Lett. 26(8), 497–499 (2001).
[Crossref] [PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

2000 (1)

1997 (1)

1994 (1)

K. Onuma, T. Kameyama, and K. Tsukamoto, “In situ study of surface phenomena by real time phase shift interferometry,” J. Cryst. Growth 137(3-4), 610–622 (1994).
[Crossref]

1974 (1)

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci. 336(1605), 165–190 (1974).
[Crossref]

1961 (1)

E. C. H. Silke and R. S. Barnes, “The observation of dislocations in mica,” Acta Metall. 9(6), 558–562 (1961).
[Crossref]

Allen, L.

Badizadegan, K.

Barnes, R. S.

E. C. H. Silke and R. S. Barnes, “The observation of dislocations in mica,” Acta Metall. 9(6), 558–562 (1961).
[Crossref]

Bernet, S.

Berry, M. V.

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci. 336(1605), 165–190 (1974).
[Crossref]

Blanc, C.

I. Lelidis, C. Blanc, and M. Kléman, “Optical and confocal microscopy observations of screw dislocations in smectic-A liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 051710 (2006).
[Crossref] [PubMed]

Campos, J.

Cottrell, D. M.

Crabtree, K.

Curtis, J. E.

J. E. Curtis and D. G. Grier, “Structure of Optical Vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[Crossref] [PubMed]

Dasari, R. R.

Davis, J. A.

Deflores, L. P.

Dholakia, K.

Feld, M. S.

Fürhapter, S.

Grier, D. G.

J. E. Curtis and D. G. Grier, “Structure of Optical Vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[Crossref] [PubMed]

Haist, T.

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E-1–74420E-12 (2009).
[Crossref]

Hasler, M.

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E-1–74420E-12 (2009).
[Crossref]

Iwai, H.

Jesacher, A.

Kameyama, T.

K. Onuma, T. Kameyama, and K. Tsukamoto, “In situ study of surface phenomena by real time phase shift interferometry,” J. Cryst. Growth 137(3-4), 610–622 (1994).
[Crossref]

Kléman, M.

I. Lelidis, C. Blanc, and M. Kléman, “Optical and confocal microscopy observations of screw dislocations in smectic-A liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 051710 (2006).
[Crossref] [PubMed]

Leanhardt, A.

Lelidis, I.

I. Lelidis, C. Blanc, and M. Kléman, “Optical and confocal microscopy observations of screw dislocations in smectic-A liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 051710 (2006).
[Crossref] [PubMed]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Maurer, C.

McNamara, D. E.

Mitry, M. J.

Moreno, I.

Nye, J. F.

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci. 336(1605), 165–190 (1974).
[Crossref]

Onuma, K.

K. Onuma, T. Kameyama, and K. Tsukamoto, “In situ study of surface phenomena by real time phase shift interferometry,” J. Cryst. Growth 137(3-4), 610–622 (1994).
[Crossref]

Osten, W.

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E-1–74420E-12 (2009).
[Crossref]

Padgett, M. J.

Pascoguin, B. M. L.

Popescu, G.

Ritsch-Marte, M.

Rumala, Y.

Shum, P.

Silke, E. C. H.

E. C. H. Silke and R. S. Barnes, “The observation of dislocations in mica,” Acta Metall. 9(6), 558–562 (1961).
[Crossref]

Simpson, N. B.

Sun, X. W.

Swartzlander, G. A.

Tonomura, A.

M. Uchida and A. Tonomura, “Generation of electron beams carrying orbital angular momentum,” Nature 464(7289), 737–739 (2010).
[Crossref] [PubMed]

Tsukamoto, K.

K. Onuma, T. Kameyama, and K. Tsukamoto, “In situ study of surface phenomena by real time phase shift interferometry,” J. Cryst. Growth 137(3-4), 610–622 (1994).
[Crossref]

Uchida, M.

M. Uchida and A. Tonomura, “Generation of electron beams carrying orbital angular momentum,” Nature 464(7289), 737–739 (2010).
[Crossref] [PubMed]

Vaughan, J. C.

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Wang, Q.

Warber, M.

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E-1–74420E-12 (2009).
[Crossref]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Zwick, S.

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E-1–74420E-12 (2009).
[Crossref]

Acta Metall. (1)

E. C. H. Silke and R. S. Barnes, “The observation of dislocations in mica,” Acta Metall. 9(6), 558–562 (1961).
[Crossref]

Appl. Opt. (2)

J. Cryst. Growth (1)

K. Onuma, T. Kameyama, and K. Tsukamoto, “In situ study of surface phenomena by real time phase shift interferometry,” J. Cryst. Growth 137(3-4), 610–622 (1994).
[Crossref]

J. Opt. Soc. Am. B (1)

Nature (2)

M. Uchida and A. Tonomura, “Generation of electron beams carrying orbital angular momentum,” Nature 464(7289), 737–739 (2010).
[Crossref] [PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

I. Lelidis, C. Blanc, and M. Kléman, “Optical and confocal microscopy observations of screw dislocations in smectic-A liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 051710 (2006).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

J. E. Curtis and D. G. Grier, “Structure of Optical Vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[Crossref] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci. 336(1605), 165–190 (1974).
[Crossref]

Proc. SPIE (1)

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E-1–74420E-12 (2009).
[Crossref]

Other (3)

J. J. De Yoreo, C. A. Orme, and T. A. Land, “Using atomic force microscopy to investigate solution crystal growth,” in Advances in Crystal Growth Research, Eds: K. Sato, K. Nakajima, and Y. Furukawa361–380, (Elsevier Science 2001), pp. 361–380.

I. Sunagawa, Crystals: Growth, Morphology, and Perfection (Cambridge University, 2005).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Series in Pure and Applied Optics, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Imaging of a spiral phase plate (SPP) used as a test sample. The SPP converts an incoming Gaussian illumination beam into a LG0 + 1 mode. After diffraction by a binary spiral phase hologram the beam is back-transformed into a Gaussian beam in one of the diffraction orders (focused spot), and transformed into a LG0 + 2 beam (focused doughnut ring) in the other order.

Fig. 2
Fig. 2

Schematic sketch of the setup (not to scale).

Fig. 3
Fig. 3

Analyzing the handedness of a spiral phase plate used as a sample object. The first row shows the results of a numerical simulation; (a): simulated spiral phase sample: gray levels correspond to phase values; (b): left-handed spiral phase filtered image; (c): right-handed spiral phase filtered image; (d) calculated difference between (c) and (b). The images in the second row (e-h) show the corresponding results of the experimentally recorded bright field image of the spiral phase plate bounded by the field-of-view limiting aperture visible in (e). For reasons of greater clarity pictures 3(f-g) are false color images. Intensities are given in arbitrary units, and pictures (b, d) and (f, h) are normalized to the maximum intensity of pictures (c) and (d), respectively.

Fig. 4
Fig. 4

Mapping of the singularity distributions in various types of samples: (1-3) Muscovite, (4) crystallized acetylsalicylic acid. All images are recorded in a single exposure. The three sections in each frame correspond to a left-handed (a), a zero-order (b), and a right-handed spiral phase filtered image of the sample, respectively. The insets (d) shows the numerically calculated difference images of (a) and (c) for the regions marked in the images. Blue and red colored areas correspond to negative and positive values in the difference image, respectively, and thus indicate the orientation of the chiral phase singularities.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d min = 1,22λ NA

Metrics