Abstract

Imaging three-dimensional structures represents a major challenge for conventional microscopies. Here we describe a Spatial Light Modulator (SLM) microscope that can simultaneously address and image multiple targets in three dimensions. A wavefront coding element and computational image processing enables extended depth-of-field imaging. High-resolution, multi-site three-dimensional targeting and sensing is demonstrated in both transparent and scattering media over a depth range of 300-1,000 microns.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The Brain Activity Map Project and the challenge of Functional Connectomics,” Neuron74(6), 970–974 (2012).
    [CrossRef] [PubMed]
  2. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt.34(11), 1859–1866 (1995).
    [CrossRef] [PubMed]
  3. V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless two-photon imaging and photostimulation using spatial light modulators,” Front Neural Circuits2, 5 (2008).
    [CrossRef] [PubMed]
  4. A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc.170(3), 229–236 (1993).
    [CrossRef] [PubMed]
  5. D. Huber, M. Keller, and D. Robert, “3D light scanning macrography,” J. Microsc.203(2), 208–213 (2001).
    [CrossRef] [PubMed]
  6. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
    [CrossRef] [PubMed]
  7. T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron57(5), 661–672 (2008).
    [CrossRef] [PubMed]
  8. W. Göbel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods4(1), 73–79 (2007).
    [CrossRef] [PubMed]
  9. B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen, “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods7(5), 399–405 (2010).
    [CrossRef] [PubMed]
  10. A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods8(2), 139–142 (2011).
    [CrossRef] [PubMed]
  11. G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods9(2), 201–208 (2012).
    [CrossRef] [PubMed]
  12. J. W. Y. Lit and R. Tremblay, “Focal depth of a transmitting axicon,” J. Opt. Soc. Am.63(4), 445–449 (1973).
    [CrossRef]
  13. G. Indebetouw and H. Bai, “Imaging with Fresnel zone pupil masks: extended depth of field,” Appl. Opt.23(23), 4299–4302 (1984).
    [CrossRef] [PubMed]
  14. H. P. Kao and A. S. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position,” Biophys. J.67(3), 1291–1300 (1994).
    [CrossRef] [PubMed]
  15. W. Chi and N. George, “Electronic imaging using a logarithmic asphere,” Opt. Lett.26(12), 875–877 (2001).
    [CrossRef] [PubMed]
  16. A. Greengard, Y. Y. Schechner, and R. Piestun, “Depth from diffracted rotation,” Opt. Lett.31(2), 181–183 (2006).
    [CrossRef] [PubMed]
  17. S. Bagheri, P. E. X. Silveira, R. Narayanswamy, and D. P. de Farias, “Analytical optical solution of the extension of the depth of field using cubic-phase wavefront coding. Part II. Design and optimization of the cubic phase,” J. Opt. Soc. Am. A25(5), 1064–1074 (2008).
    [CrossRef] [PubMed]
  18. P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science324(5924), 229–232 (2009).
    [CrossRef] [PubMed]
  19. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010).
    [CrossRef] [PubMed]
  20. I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett.101(12), 120601 (2008).
    [CrossRef] [PubMed]
  21. V. Nikolenko, K. E. Poskanzer, and R. Yuste, “Two-photon photostimulation and imaging of neural circuits,” Nat. Methods4(11), 943–950 (2007).
    [CrossRef] [PubMed]
  22. A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods9(12), 1202–1205 (2012).
    [CrossRef] [PubMed]
  23. F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Natl. Acad. Sci. U.S.A.108(49), 19504–19509 (2011).
    [CrossRef] [PubMed]
  24. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  25. E. J. Botcherby, R. Juškaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun.281(4), 880–887 (2008).
    [CrossRef]
  26. W. J. Smith, Modern Optical Engineering, 3rd Ed. (McGraw-Hill, 2000).
  27. G. J. Swanson, “Binary Optics Technology: The theory and design of multi-level diffractive optical elements,” MIT/Lincoln Laboratories Technical Report 854 (1989).
  28. Z. Zhang, G. Lu, and F. Yu, “Simple method for measuring phase modulation in liquid crystal television,” Opt. Eng.33(9), 3018–3022 (1994).
    [CrossRef]
  29. M. Demenikov and A. R. Harvey, “A technique to remove image artefacts in optical systems with wavefront coding,” Proc. SPIE7429, 74290N (2009).
    [CrossRef]
  30. M. Persson, D. Engström, and M. Goksör, “An algorithm for improved control of trap intensities in holographic optical tweezers,” Proc. SPIE8458, 84582W, 84582W-7 (2012), doi:.
    [CrossRef]
  31. S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended focus, aberration corrected imaging systems,” Proc. SPIE5559, 335–345 (2004).
    [CrossRef]
  32. R. Piestun, Y. Y. Schechner, and J. Shamir, “Propagation-invariant wave fields with finite energy,” J. Opt. Soc. Am. A17(2), 294–303 (2000).
    [CrossRef] [PubMed]

2012 (4)

A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The Brain Activity Map Project and the challenge of Functional Connectomics,” Neuron74(6), 970–974 (2012).
[CrossRef] [PubMed]

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods9(2), 201–208 (2012).
[CrossRef] [PubMed]

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods9(12), 1202–1205 (2012).
[CrossRef] [PubMed]

M. Persson, D. Engström, and M. Goksör, “An algorithm for improved control of trap intensities in holographic optical tweezers,” Proc. SPIE8458, 84582W, 84582W-7 (2012), doi:.
[CrossRef]

2011 (2)

F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Natl. Acad. Sci. U.S.A.108(49), 19504–19509 (2011).
[CrossRef] [PubMed]

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods8(2), 139–142 (2011).
[CrossRef] [PubMed]

2010 (2)

B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen, “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods7(5), 399–405 (2010).
[CrossRef] [PubMed]

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010).
[CrossRef] [PubMed]

2009 (2)

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science324(5924), 229–232 (2009).
[CrossRef] [PubMed]

M. Demenikov and A. R. Harvey, “A technique to remove image artefacts in optical systems with wavefront coding,” Proc. SPIE7429, 74290N (2009).
[CrossRef]

2008 (5)

S. Bagheri, P. E. X. Silveira, R. Narayanswamy, and D. P. de Farias, “Analytical optical solution of the extension of the depth of field using cubic-phase wavefront coding. Part II. Design and optimization of the cubic phase,” J. Opt. Soc. Am. A25(5), 1064–1074 (2008).
[CrossRef] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett.101(12), 120601 (2008).
[CrossRef] [PubMed]

E. J. Botcherby, R. Juškaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun.281(4), 880–887 (2008).
[CrossRef]

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless two-photon imaging and photostimulation using spatial light modulators,” Front Neural Circuits2, 5 (2008).
[CrossRef] [PubMed]

T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron57(5), 661–672 (2008).
[CrossRef] [PubMed]

2007 (2)

W. Göbel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods4(1), 73–79 (2007).
[CrossRef] [PubMed]

V. Nikolenko, K. E. Poskanzer, and R. Yuste, “Two-photon photostimulation and imaging of neural circuits,” Nat. Methods4(11), 943–950 (2007).
[CrossRef] [PubMed]

2006 (1)

2004 (2)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended focus, aberration corrected imaging systems,” Proc. SPIE5559, 335–345 (2004).
[CrossRef]

2001 (2)

D. Huber, M. Keller, and D. Robert, “3D light scanning macrography,” J. Microsc.203(2), 208–213 (2001).
[CrossRef] [PubMed]

W. Chi and N. George, “Electronic imaging using a logarithmic asphere,” Opt. Lett.26(12), 875–877 (2001).
[CrossRef] [PubMed]

2000 (1)

1995 (1)

1994 (2)

H. P. Kao and A. S. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position,” Biophys. J.67(3), 1291–1300 (1994).
[CrossRef] [PubMed]

Z. Zhang, G. Lu, and F. Yu, “Simple method for measuring phase modulation in liquid crystal television,” Opt. Eng.33(9), 3018–3022 (1994).
[CrossRef]

1993 (1)

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc.170(3), 229–236 (1993).
[CrossRef] [PubMed]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1984 (1)

1973 (1)

Alivisatos, A. P.

A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The Brain Activity Map Project and the challenge of Functional Connectomics,” Neuron74(6), 970–974 (2012).
[CrossRef] [PubMed]

Anselmi, F.

F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Natl. Acad. Sci. U.S.A.108(49), 19504–19509 (2011).
[CrossRef] [PubMed]

Araya, R.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless two-photon imaging and photostimulation using spatial light modulators,” Front Neural Circuits2, 5 (2008).
[CrossRef] [PubMed]

Arisaka, K.

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods8(2), 139–142 (2011).
[CrossRef] [PubMed]

Bagheri, S.

Bai, H.

Bègue, A.

F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Natl. Acad. Sci. U.S.A.108(49), 19504–19509 (2011).
[CrossRef] [PubMed]

Betzig, E.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010).
[CrossRef] [PubMed]

Booth, M. J.

E. J. Botcherby, R. Juškaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun.281(4), 880–887 (2008).
[CrossRef]

Botcherby, E. J.

E. J. Botcherby, R. Juškaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun.281(4), 880–887 (2008).
[CrossRef]

Burns, D. H.

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc.170(3), 229–236 (1993).
[CrossRef] [PubMed]

Cathey, W. T.

Cheng, A.

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods8(2), 139–142 (2011).
[CrossRef] [PubMed]

Chi, W.

Chiovini, B.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods9(2), 201–208 (2012).
[CrossRef] [PubMed]

Christodoulides, D. N.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science324(5924), 229–232 (2009).
[CrossRef] [PubMed]

Chun, M.

A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The Brain Activity Map Project and the challenge of Functional Connectomics,” Neuron74(6), 970–974 (2012).
[CrossRef] [PubMed]

Church, G. M.

A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The Brain Activity Map Project and the challenge of Functional Connectomics,” Neuron74(6), 970–974 (2012).
[CrossRef] [PubMed]

de Farias, D. P.

Deisseroth, K.

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods9(12), 1202–1205 (2012).
[CrossRef] [PubMed]

Del Bene, F.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Demenikov, M.

M. Demenikov and A. R. Harvey, “A technique to remove image artefacts in optical systems with wavefront coding,” Proc. SPIE7429, 74290N (2009).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Dowski, E. R.

Emiliani, V.

F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Natl. Acad. Sci. U.S.A.108(49), 19504–19509 (2011).
[CrossRef] [PubMed]

Engström, D.

M. Persson, D. Engström, and M. Goksör, “An algorithm for improved control of trap intensities in holographic optical tweezers,” Proc. SPIE8458, 84582W, 84582W-7 (2012), doi:.
[CrossRef]

George, N.

Göbel, W.

W. Göbel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods4(1), 73–79 (2007).
[CrossRef] [PubMed]

Goksör, M.

M. Persson, D. Engström, and M. Goksör, “An algorithm for improved control of trap intensities in holographic optical tweezers,” Proc. SPIE8458, 84582W, 84582W-7 (2012), doi:.
[CrossRef]

Golshani, P.

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods8(2), 139–142 (2011).
[CrossRef] [PubMed]

Gonçalves, J. T.

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods8(2), 139–142 (2011).
[CrossRef] [PubMed]

Greengard, A.

Greenspan, R. J.

A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The Brain Activity Map Project and the challenge of Functional Connectomics,” Neuron74(6), 970–974 (2012).
[CrossRef] [PubMed]

Grewe, B. F.

B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen, “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods7(5), 399–405 (2010).
[CrossRef] [PubMed]

Harvey, A. R.

M. Demenikov and A. R. Harvey, “A technique to remove image artefacts in optical systems with wavefront coding,” Proc. SPIE7429, 74290N (2009).
[CrossRef]

Helmchen, F.

B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen, “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods7(5), 399–405 (2010).
[CrossRef] [PubMed]

W. Göbel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods4(1), 73–79 (2007).
[CrossRef] [PubMed]

Hillier, D.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods9(2), 201–208 (2012).
[CrossRef] [PubMed]

Hirtz, J. J.

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods9(12), 1202–1205 (2012).
[CrossRef] [PubMed]

Holekamp, T. F.

T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron57(5), 661–672 (2008).
[CrossRef] [PubMed]

Holy, T. E.

T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron57(5), 661–672 (2008).
[CrossRef] [PubMed]

Huber, D.

D. Huber, M. Keller, and D. Robert, “3D light scanning macrography,” J. Microsc.203(2), 208–213 (2001).
[CrossRef] [PubMed]

Huisken, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Indebetouw, G.

Ji, N.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010).
[CrossRef] [PubMed]

Juškaitis, R.

E. J. Botcherby, R. Juškaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun.281(4), 880–887 (2008).
[CrossRef]

Kampa, B. M.

B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen, “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods7(5), 399–405 (2010).
[CrossRef] [PubMed]

W. Göbel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods4(1), 73–79 (2007).
[CrossRef] [PubMed]

Kao, H. P.

H. P. Kao and A. S. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position,” Biophys. J.67(3), 1291–1300 (1994).
[CrossRef] [PubMed]

Kasper, H.

B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen, “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods7(5), 399–405 (2010).
[CrossRef] [PubMed]

Kaszás, A.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods9(2), 201–208 (2012).
[CrossRef] [PubMed]

Katona, G.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods9(2), 201–208 (2012).
[CrossRef] [PubMed]

Keller, M.

D. Huber, M. Keller, and D. Robert, “3D light scanning macrography,” J. Microsc.203(2), 208–213 (2001).
[CrossRef] [PubMed]

Kolesik, M.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science324(5924), 229–232 (2009).
[CrossRef] [PubMed]

Langer, D.

B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen, “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods7(5), 399–405 (2010).
[CrossRef] [PubMed]

Lit, J. W. Y.

Lu, G.

Z. Zhang, G. Lu, and F. Yu, “Simple method for measuring phase modulation in liquid crystal television,” Opt. Eng.33(9), 3018–3022 (1994).
[CrossRef]

Maák, P.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods9(2), 201–208 (2012).
[CrossRef] [PubMed]

Milkie, D. E.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010).
[CrossRef] [PubMed]

Moloney, J. V.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science324(5924), 229–232 (2009).
[CrossRef] [PubMed]

Mosk, A. P.

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett.101(12), 120601 (2008).
[CrossRef] [PubMed]

Narayanswamy, R.

Nikolenko, V.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless two-photon imaging and photostimulation using spatial light modulators,” Front Neural Circuits2, 5 (2008).
[CrossRef] [PubMed]

V. Nikolenko, K. E. Poskanzer, and R. Yuste, “Two-photon photostimulation and imaging of neural circuits,” Nat. Methods4(11), 943–950 (2007).
[CrossRef] [PubMed]

Ogden, D.

F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Natl. Acad. Sci. U.S.A.108(49), 19504–19509 (2011).
[CrossRef] [PubMed]

Packer, A. M.

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods9(12), 1202–1205 (2012).
[CrossRef] [PubMed]

Pauca, V. P.

S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended focus, aberration corrected imaging systems,” Proc. SPIE5559, 335–345 (2004).
[CrossRef]

Persson, M.

M. Persson, D. Engström, and M. Goksör, “An algorithm for improved control of trap intensities in holographic optical tweezers,” Proc. SPIE8458, 84582W, 84582W-7 (2012), doi:.
[CrossRef]

Peterka, D. S.

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods9(12), 1202–1205 (2012).
[CrossRef] [PubMed]

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless two-photon imaging and photostimulation using spatial light modulators,” Front Neural Circuits2, 5 (2008).
[CrossRef] [PubMed]

Piestun, R.

Plemmons, R. J.

S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended focus, aberration corrected imaging systems,” Proc. SPIE5559, 335–345 (2004).
[CrossRef]

Polynkin, P.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science324(5924), 229–232 (2009).
[CrossRef] [PubMed]

Portera-Cailliau, C.

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods8(2), 139–142 (2011).
[CrossRef] [PubMed]

Poskanzer, K. E.

V. Nikolenko, K. E. Poskanzer, and R. Yuste, “Two-photon photostimulation and imaging of neural circuits,” Nat. Methods4(11), 943–950 (2007).
[CrossRef] [PubMed]

Prakash, R.

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods9(12), 1202–1205 (2012).
[CrossRef] [PubMed]

Prasad, S.

S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended focus, aberration corrected imaging systems,” Proc. SPIE5559, 335–345 (2004).
[CrossRef]

Robert, D.

D. Huber, M. Keller, and D. Robert, “3D light scanning macrography,” J. Microsc.203(2), 208–213 (2001).
[CrossRef] [PubMed]

Roska, B.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods9(2), 201–208 (2012).
[CrossRef] [PubMed]

Roukes, M. L.

A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The Brain Activity Map Project and the challenge of Functional Connectomics,” Neuron74(6), 970–974 (2012).
[CrossRef] [PubMed]

Rózsa, B.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods9(2), 201–208 (2012).
[CrossRef] [PubMed]

Schechner, Y. Y.

Shamir, J.

Silveira, P. E. X.

Siviloglou, G. A.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science324(5924), 229–232 (2009).
[CrossRef] [PubMed]

Spelman, F. A.

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc.170(3), 229–236 (1993).
[CrossRef] [PubMed]

Stelzer, E. H. K.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Swoger, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Szalay, G.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods9(2), 201–208 (2012).
[CrossRef] [PubMed]

Torgersen, T. C.

S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended focus, aberration corrected imaging systems,” Proc. SPIE5559, 335–345 (2004).
[CrossRef]

Tremblay, R.

Turaga, D.

T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron57(5), 661–672 (2008).
[CrossRef] [PubMed]

van der Gracht, J.

S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended focus, aberration corrected imaging systems,” Proc. SPIE5559, 335–345 (2004).
[CrossRef]

Vellekoop, I. M.

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett.101(12), 120601 (2008).
[CrossRef] [PubMed]

Ventalon, C.

F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Natl. Acad. Sci. U.S.A.108(49), 19504–19509 (2011).
[CrossRef] [PubMed]

Veress, M.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods9(2), 201–208 (2012).
[CrossRef] [PubMed]

Verkman, A. S.

H. P. Kao and A. S. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position,” Biophys. J.67(3), 1291–1300 (1994).
[CrossRef] [PubMed]

Vizi, E. S.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods9(2), 201–208 (2012).
[CrossRef] [PubMed]

Voie, A. H.

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc.170(3), 229–236 (1993).
[CrossRef] [PubMed]

Watson, B. O.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless two-photon imaging and photostimulation using spatial light modulators,” Front Neural Circuits2, 5 (2008).
[CrossRef] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Wilson, T.

E. J. Botcherby, R. Juškaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun.281(4), 880–887 (2008).
[CrossRef]

Wittbrodt, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Woodruff, A.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless two-photon imaging and photostimulation using spatial light modulators,” Front Neural Circuits2, 5 (2008).
[CrossRef] [PubMed]

Yu, F.

Z. Zhang, G. Lu, and F. Yu, “Simple method for measuring phase modulation in liquid crystal television,” Opt. Eng.33(9), 3018–3022 (1994).
[CrossRef]

Yuste, R.

A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The Brain Activity Map Project and the challenge of Functional Connectomics,” Neuron74(6), 970–974 (2012).
[CrossRef] [PubMed]

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods9(12), 1202–1205 (2012).
[CrossRef] [PubMed]

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless two-photon imaging and photostimulation using spatial light modulators,” Front Neural Circuits2, 5 (2008).
[CrossRef] [PubMed]

V. Nikolenko, K. E. Poskanzer, and R. Yuste, “Two-photon photostimulation and imaging of neural circuits,” Nat. Methods4(11), 943–950 (2007).
[CrossRef] [PubMed]

Zhang, Z.

Z. Zhang, G. Lu, and F. Yu, “Simple method for measuring phase modulation in liquid crystal television,” Opt. Eng.33(9), 3018–3022 (1994).
[CrossRef]

Appl. Opt. (2)

Biophys. J. (1)

H. P. Kao and A. S. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position,” Biophys. J.67(3), 1291–1300 (1994).
[CrossRef] [PubMed]

Front Neural Circuits (1)

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless two-photon imaging and photostimulation using spatial light modulators,” Front Neural Circuits2, 5 (2008).
[CrossRef] [PubMed]

J. Microsc. (2)

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc.170(3), 229–236 (1993).
[CrossRef] [PubMed]

D. Huber, M. Keller, and D. Robert, “3D light scanning macrography,” J. Microsc.203(2), 208–213 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Nat. Methods (7)

W. Göbel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods4(1), 73–79 (2007).
[CrossRef] [PubMed]

B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen, “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods7(5), 399–405 (2010).
[CrossRef] [PubMed]

A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods8(2), 139–142 (2011).
[CrossRef] [PubMed]

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods9(2), 201–208 (2012).
[CrossRef] [PubMed]

V. Nikolenko, K. E. Poskanzer, and R. Yuste, “Two-photon photostimulation and imaging of neural circuits,” Nat. Methods4(11), 943–950 (2007).
[CrossRef] [PubMed]

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods9(12), 1202–1205 (2012).
[CrossRef] [PubMed]

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010).
[CrossRef] [PubMed]

Neuron (2)

A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The Brain Activity Map Project and the challenge of Functional Connectomics,” Neuron74(6), 970–974 (2012).
[CrossRef] [PubMed]

T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron57(5), 661–672 (2008).
[CrossRef] [PubMed]

Opt. Commun. (1)

E. J. Botcherby, R. Juškaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun.281(4), 880–887 (2008).
[CrossRef]

Opt. Eng. (1)

Z. Zhang, G. Lu, and F. Yu, “Simple method for measuring phase modulation in liquid crystal television,” Opt. Eng.33(9), 3018–3022 (1994).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett.101(12), 120601 (2008).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Natl. Acad. Sci. U.S.A.108(49), 19504–19509 (2011).
[CrossRef] [PubMed]

Proc. SPIE (3)

M. Demenikov and A. R. Harvey, “A technique to remove image artefacts in optical systems with wavefront coding,” Proc. SPIE7429, 74290N (2009).
[CrossRef]

M. Persson, D. Engström, and M. Goksör, “An algorithm for improved control of trap intensities in holographic optical tweezers,” Proc. SPIE8458, 84582W, 84582W-7 (2012), doi:.
[CrossRef]

S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended focus, aberration corrected imaging systems,” Proc. SPIE5559, 335–345 (2004).
[CrossRef]

Science (3)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science324(5924), 229–232 (2009).
[CrossRef] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Other (2)

W. J. Smith, Modern Optical Engineering, 3rd Ed. (McGraw-Hill, 2000).

G. J. Swanson, “Binary Optics Technology: The theory and design of multi-level diffractive optical elements,” MIT/Lincoln Laboratories Technical Report 854 (1989).

Supplementary Material (3)

» Media 1: AVI (3590 KB)     
» Media 2: AVI (13604 KB)     
» Media 3: AVI (6718 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Simulated pupil phase as a function of defocus for the conventional imaging microscope is shown in panels A (in focus), and E (out of focus) with the associated PSF in panels B (in focus) and F (out of focus), respectively. The pupil functions are color coded to represent the phase delay present at the pupil. The PSFs are color coded and scaled to be normalized to the in-focus conventional PSF. The representative pupil phase as a function of defocus for the extended DOF microscope is given in panels C (in focus) and G (out of focus) with the associated PSF in panels D and H, respectively. The cubic phase coefficient, α, is set to 5. The range of defocus shown in Media 1 highlights the range of defocus values (|Ψ| < 10) where a dominant peak is qualitatively observed in the cubic phase PSF even though the side-lobe structure begins to break down, as seen in panel H at |Ψ| = 5 (Media 1).

Fig. 2
Fig. 2

Simulated performance trade-offs of the Cubic-phase extended Depth of Field (EDOF) imaging system relative to the conventional microscope (abbreviated here as conv.). The relative intensity of the dominant peak in the PSF is mapped out as a function of both defocus (Ψ) and cubic-phase modulation (α) in Panel A showing that the cubic phase mask decreases attenuation with defocus. The relative width of the dominant lobe in the Cubic-phase PSF is shown in Panel B when compared with the in-focus conventional PSF, where σ is the width of a Gaussian fit to the PSF. The width of the dominant peak is shown to increase with a greater cubic-modulation coefficient. The relative intensity of the dominant lobe of the cubic-phase PSF compared with the conventional PSF with the same defocus is shown in Panel C. This shows that the uniformity of the cubic-phase PSF dominant lobe intensity indicated in Panel A will rapidly provide better out-of-focus signal localization when compared with the conventional imaging system.

Fig. 3
Fig. 3

Design of extended depth of field (EDOF) microscope. Panel A: Experimental configuration of the joint SLM and extended-DOF imaging microscope for 3D targeting and monitoring. The detailed description of each component is described in the section 4.1. The phase aberration shown in panel B is the ideal diffractive optical element for the cubic-phase modulation and placed in an accessible region between L9 and L10 without affecting the illumination pupil. The experimental PSF of the imaging system is presented for the conventional microscope in panel C and the extended DOF microscope in panel D. The three-dimensional volume in panels C and D represent the 50% intensity cutoff of each axial plane and the axis units are in μm

Fig. 4
Fig. 4

Panels A-C: Comparison of the focal plane images from (panel A) a conventional microscope, (panel B) the raw extended DOF image and (panel C) the restored extended DOF image. Note the contrast of these three images has been enhanced to have 0.1% of the pixels saturated to aid in visualization. Outlined in red in panel A is a region containing two points from the frown in the bottom right feature. A close up of this feature is given in the upper right region of each panel to provide a detailed examination of the imaging quality. Outlined in blue in panel A is a region containing 14 points. The maximum intensity projection of this region is shown below each panel showing that the digital restoration yields contrast similar to the conventional image.

Fig. 5
Fig. 5

Experimental results for the three-dimensional SLM illumination in transparent media with both the conventional and extended depth of field microscope. The three-dimensional illumination pattern is shown in panel A. The relative intensity of the fluorescence as a function of depth is given to the right of panel A. The results from imaging the three-dimensional pattern in bulk fluorescent material are given for the conventional microscope (panel B) and the extended DOF microscope (panel C). Contrast was enhanced to saturate 0.1% of the pixel values in panels B and C (Media 2).

Fig. 6
Fig. 6

Experimental results for the three-dimensional SLM illumination in scattering media with both the conventional and extended depth of field microscope. The three-dimensional illumination pattern is shown in panel A. The focal plane is located 220µm below the surface of the scattering media. The relative intensity of the fluorescence as a function of depth is given to the right of panel A. The results from imaging the three-dimensional pattern in bulk fluorescent material are given for the conventional microscope (panel B) and the extended DOF microscope (panel C). Contrast was enhanced to saturate 0.02% of the pixel values in panels B and C (Media 3).

Fig. 7
Fig. 7

The defocus calibration method requires that the back-reflection from the sample/slide interface is in focus on the imaging path. When zero defocus phase is applied at the SLM (pupil plane), the in-focus image is at the focal plane (by definition). A defocus phase was applied at the SLM to translate the target illumination in 100µm intervals. For each defocus phase on the SLM, the sample stage is translated axially until the back-reflection is focused using the imaging path. The sample translation is recorded as the experimental z position for each expected z position. Comparison between the expected axial position versus the experimental position are shown in the plot above. The theoretical curve predicts distances which are on average 3.2% larger than the experimentally determined axial position.

Fig. 8
Fig. 8

The axial dependence of the 3x3 affine transformation matrix as experimentally determined from imaging in a bulk slab of fluorescent material.

Fig. 9
Fig. 9

The normalized fluorescence collected from an individual target as the sample is translated axially so that the sample depth is increased. At large depths a slight decrease in the collected signal is observed for the transparent sample while the scattering sample experiences near extinction of the signal by 500µm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

DOF 2nλ N A 2
p( u 2 , v 2 )= e i2πα( u 2 3 + v 2 3 )
Ψ( u 2 , v 2 ;dz) 1 2λ ( u 2 2 + v 2 2 )N A 2 dz n
H j ( u 1 , v 1 ; p ^ j )= e iπ[ x j u 1 + y j v 1 ] e i2π[ c 2 0 ( z j ) Z 2 0 ( u 1 , v 1 )+ c 4 0 ( z j ) Z 4 0 ( u 1 , v 1 )+ c 6 0 ( z j ) Z 6 0 ( u 1 , v 1 ) ]
Θ SLM ( u 1 , v 1 )= j=1 N H j ( u 1 , v 1 ; p ^ j ) .
i(x,y)= | F{ Θ SLM } | 2
H( u 1 , v 1 ;0,0,z)= e i2π( c 2 0 ( z ) Z 2 0 + c 4 0 ( z ) Z 4 0 + c 6 0 ( z ) Z 6 0 )
[ m 11 ( z ) m 12 ( z ) m 13 ( z ) m 21 ( z ) m 22 ( z ) m 23 ( z ) m 31 ( z ) m 32 ( z ) m 33 ( z ) ][ x y 1 ]=[ x y 1 ]

Metrics