Abstract

This paper addresses optical super-resolution in the far field. We will describe the use of a novel optical component, which we call the proximity projection grating (PPG), that can provide different intensity patterns for sample illumination. These different illumination patterns allow the optical system to perform various modes of imaging, all are capable of resolution beyond the Abbe diffraction limit. Results will be shown to demonstrate the operations of some of these imaging modes. The potential of the PPG unit will also be discussed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson, Theory and Practice of Scanning Optical Microscopy (Academic Press, 1984).
  2. M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “I5M: 3D widefield light microscopy with better than 100nm axial resolution,” J. Micro.195(1), 10–16 (1999).
    [CrossRef]
  3. S. W. Hell, E. H. K. Stelzer, S. Lindek, and C. Cremer, “Confocal microscopy with an increased detection aperture: type-B 4Pi confocal microscopy,” Opt. Lett.19(3), 222–224 (1994).
    [CrossRef] [PubMed]
  4. R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating,” Proc. SPIE3568, 185–196 (1999).
    [CrossRef]
  5. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
    [CrossRef] [PubMed]
  6. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19(11), 780–782 (1994).
    [CrossRef] [PubMed]
  7. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
    [CrossRef] [PubMed]
  8. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006).
    [CrossRef] [PubMed]
  9. S. W. Hell, “Far-Field Optical Nanoscopy,” Science316(5828), 1153–1158 (2007).
    [CrossRef] [PubMed]
  10. C. W. See,C. W. See, C. J. Chuang, S. Liu, and M. G. Somekh, “Proximity projection grating structured light illumination microscopy,” Appl. Opt.49(34), 6570–6576 (2010).
    [CrossRef] [PubMed]
  11. R. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
    [CrossRef]
  12. We have used a program based on vector diffraction to generate the intensity patterns, and results similar to those in Fig. 4 have been obtained. This, together with the close matching between the simulated and experimental results, validate the use of the scalar diffraction model. The scalar diffraction program has the advantage that it takes a fraction of the time compared to the vector diffraction program.
  13. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  14. A. Y. M. Ng, C. W. See, and M. G. Somekh, “Quantitative optical microscope with enhanced resolution using a pixellated liquid crystal spatial light modulator,” J. Micro.214(3), 334–340 (2004).
    [CrossRef]
  15. T. Wilson and A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett.12(4), 227–229 (1987).
    [CrossRef] [PubMed]
  16. K. I. Willig, J. Keller, M. Bossi, and S. W. Hell, “STED microscopy resolves nanoparticle assemblies,” New J. Phys.8(6), 106 (2006).
    [CrossRef]

2010

2007

S. W. Hell, “Far-Field Optical Nanoscopy,” Science316(5828), 1153–1158 (2007).
[CrossRef] [PubMed]

2006

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

R. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
[CrossRef]

K. I. Willig, J. Keller, M. Bossi, and S. W. Hell, “STED microscopy resolves nanoparticle assemblies,” New J. Phys.8(6), 106 (2006).
[CrossRef]

2004

A. Y. M. Ng, C. W. See, and M. G. Somekh, “Quantitative optical microscope with enhanced resolution using a pixellated liquid crystal spatial light modulator,” J. Micro.214(3), 334–340 (2004).
[CrossRef]

2000

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
[CrossRef] [PubMed]

1999

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “I5M: 3D widefield light microscopy with better than 100nm axial resolution,” J. Micro.195(1), 10–16 (1999).
[CrossRef]

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating,” Proc. SPIE3568, 185–196 (1999).
[CrossRef]

1994

1987

Agard, D. A.

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “I5M: 3D widefield light microscopy with better than 100nm axial resolution,” J. Micro.195(1), 10–16 (1999).
[CrossRef]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

Bossi, M.

K. I. Willig, J. Keller, M. Bossi, and S. W. Hell, “STED microscopy resolves nanoparticle assemblies,” New J. Phys.8(6), 106 (2006).
[CrossRef]

Carlini, A. R.

Chuang, C. J.

Cremer, C.

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating,” Proc. SPIE3568, 185–196 (1999).
[CrossRef]

S. W. Hell, E. H. K. Stelzer, S. Lindek, and C. Cremer, “Confocal microscopy with an increased detection aperture: type-B 4Pi confocal microscopy,” Opt. Lett.19(3), 222–224 (1994).
[CrossRef] [PubMed]

Deubel, M.

R. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
[CrossRef]

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
[CrossRef] [PubMed]

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “I5M: 3D widefield light microscopy with better than 100nm axial resolution,” J. Micro.195(1), 10–16 (1999).
[CrossRef]

Heintzmann, R.

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating,” Proc. SPIE3568, 185–196 (1999).
[CrossRef]

Hell, S. W.

Hess, S. T.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

John, S.

R. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
[CrossRef]

Keller, J.

K. I. Willig, J. Keller, M. Bossi, and S. W. Hell, “STED microscopy resolves nanoparticle assemblies,” New J. Phys.8(6), 106 (2006).
[CrossRef]

Lindek, S.

Liu, S.

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

Ng, A. Y. M.

A. Y. M. Ng, C. W. See, and M. G. Somekh, “Quantitative optical microscope with enhanced resolution using a pixellated liquid crystal spatial light modulator,” J. Micro.214(3), 334–340 (2004).
[CrossRef]

Ozin, G. A.

R. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
[CrossRef]

Pérez-Willard, F.

R. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
[CrossRef]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

Sedat, J. W.

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “I5M: 3D widefield light microscopy with better than 100nm axial resolution,” J. Micro.195(1), 10–16 (1999).
[CrossRef]

See, C. W.

C. W. See,C. W. See, C. J. Chuang, S. Liu, and M. G. Somekh, “Proximity projection grating structured light illumination microscopy,” Appl. Opt.49(34), 6570–6576 (2010).
[CrossRef] [PubMed]

A. Y. M. Ng, C. W. See, and M. G. Somekh, “Quantitative optical microscope with enhanced resolution using a pixellated liquid crystal spatial light modulator,” J. Micro.214(3), 334–340 (2004).
[CrossRef]

Somekh, M. G.

C. W. See,C. W. See, C. J. Chuang, S. Liu, and M. G. Somekh, “Proximity projection grating structured light illumination microscopy,” Appl. Opt.49(34), 6570–6576 (2010).
[CrossRef] [PubMed]

A. Y. M. Ng, C. W. See, and M. G. Somekh, “Quantitative optical microscope with enhanced resolution using a pixellated liquid crystal spatial light modulator,” J. Micro.214(3), 334–340 (2004).
[CrossRef]

Stelzer, E. H. K.

von?Freymann, G.

R. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
[CrossRef]

Wegener, M.

R. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
[CrossRef]

Wichmann, J.

Willig, K. I.

K. I. Willig, J. Keller, M. Bossi, and S. W. Hell, “STED microscopy resolves nanoparticle assemblies,” New J. Phys.8(6), 106 (2006).
[CrossRef]

Wilson, T.

Wong, R. S.

R. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
[CrossRef]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

Adv. Mater.

R. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater.18(3), 265–269 (2006).
[CrossRef]

Appl. Opt.

Biophys. J.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006).
[CrossRef] [PubMed]

J. Micro.

M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “I5M: 3D widefield light microscopy with better than 100nm axial resolution,” J. Micro.195(1), 10–16 (1999).
[CrossRef]

A. Y. M. Ng, C. W. See, and M. G. Somekh, “Quantitative optical microscope with enhanced resolution using a pixellated liquid crystal spatial light modulator,” J. Micro.214(3), 334–340 (2004).
[CrossRef]

J. Microsc.

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
[CrossRef] [PubMed]

Nat. Methods

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

New J. Phys.

K. I. Willig, J. Keller, M. Bossi, and S. W. Hell, “STED microscopy resolves nanoparticle assemblies,” New J. Phys.8(6), 106 (2006).
[CrossRef]

Opt. Lett.

Proc. SPIE

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating,” Proc. SPIE3568, 185–196 (1999).
[CrossRef]

Science

S. W. Hell, “Far-Field Optical Nanoscopy,” Science316(5828), 1153–1158 (2007).
[CrossRef] [PubMed]

Other

T. Wilson, Theory and Practice of Scanning Optical Microscopy (Academic Press, 1984).

We have used a program based on vector diffraction to generate the intensity patterns, and results similar to those in Fig. 4 have been obtained. This, together with the close matching between the simulated and experimental results, validate the use of the scalar diffraction model. The scalar diffraction program has the advantage that it takes a fraction of the time compared to the vector diffraction program.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic of the grating unit, comprising a substrate, grating structure and a thin film.

Fig. 2
Fig. 2

System configuration.

Fig. 3
Fig. 3

A triangular grating.

Fig. 4
Fig. 4

Illumination patterns at the sample surface for different oil film thickness. Left column: simulated results; mid column: experimental results and right column: normalised spectra of simulated patterns. Note that for clarity the vertical scales of the spectra have been truncated to 0.4. Oil film thickness: (a) Td; (b) Td + 3µm; (c) Td + 23µm; (d) Td + 27µm and (e) Td + 51µm. The widths of the patterns shown are 15.5μm.

Fig. 5
Fig. 5

Illumination pattern showing (a) an array of light spots; (b) 2D distribution of one light spot; (c) profile of the light spot in (b) and (d) spectrum of the illumination pattern.

Fig. 6
Fig. 6

(a) scan locations with Ls representing the light spots and the scan locations are at the intersections of the crosshair, represented by Sp. (b) & (c) are two images obtained at two different scan positions, showing different particles lighting up and fading.

Fig. 7
Fig. 7

SOM image obtained by summing the entire 15 x 13 scanned images.

Fig. 8
Fig. 8

Parallel confocal operation

Fig. 9
Fig. 9

Parallel confocal image obtained using the data set as with the SOM.

Fig. 10
Fig. 10

FWHM of the confocal psf vs. detector pinhole size.

Fig. 11
Fig. 11

Main illumination orders provided using hexagonal grating.

Fig. 12
Fig. 12

Image formed with the PPG-SIM. (a) using only the zero, ± 1 and ± 2 orders, (b) using orders up to and including ± 5.

Fig. 13
Fig. 13

Line profiles of reconstructed images, (a) i. SOM, ii – iv. PPGSIM2 reconstructed with up to ± 2, ± 4, and ± 6 orders; (b) i. SOM, ii. Confocal formed with 9 x 9 pixels as detector pinhole.

Fig. 14
Fig. 14

Example of the spectrum of a reconstructed image with the PPGSIM method. Kn represents the locations of the illumination orders and Bw the bandwidth of the intensity imaging system.

Fig. 15
Fig. 15

simulated results showing the STED operation. Grating structure: triangle; period: 0.96μm; thin film: BK7, 5.67μm thick. (a) intensity pattern obtained using λ = 495nm; (b): intensity pattern obtained using λ = 600nm; (c) STED focal distribution; and (d) line profiles of (a), (b) and (c), showing the narrowing of the light spot. Widths of simulated patterns = 4.2μm.

Tables (1)

Tables Icon

Table 1 FWHM of particles obtained with the various techniques, and the corresponding system NA. P: particles; SOM: scanning optical microscope; SIMn: PPGSIM with up to ± n reconstruction orders; CONm: confocal with m × m number of detector pixels.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I(x,y)= | p=M M q=N N b pq expj(p k gx x+q k gy y)expj ϕ pq (z) | 2
H= H ill × H img
H ^ = H ^ ill H ^ img

Metrics