Abstract

The new optical design allows single- or multi-wavelength excitation of laser-stimulated emission (LSE), provides optimized LSE optical collection for spectral and temporal analyses, and incorporates swappable modules for flow-through and small-volume sample measurements. The basic instrument configuration uses 510 nm laser excitation for assessments of chlorophyll-a, phycobiliprotein pigments, variable fluorescence (Fv/Fm) and chromophoric dissolved organic matter (CDOM) in CDOM-rich waters. The three-laser instrument configuration (375, 405, and 510 nm excitation) provides additional Fv/Fm measurements with 405 nm excitation, CDOM assessments in a broad concentration range, and potential for spectral discrimination between oil and CDOM fluorescence. The new measurement protocols, analytical algorithms and examples of laboratory and field measurements are discussed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Chekalyuk and M. Hafez, “Photo-physiological variability in phytoplankton chlorophyll fluorescence and assessment of chlorophyll concentration,” Opt. Express19(23), 22643–22658 (2011).
    [CrossRef] [PubMed]
  2. A. M. Chekalyuk, M. Landry, R. Goericke, A. G. Taylor, and M. Hafez, “Laser fluorescence analysis of phytoplankton across a frontal zone in the California Current ecosystem,” J. Plankton Res.34(9), 761–777 (2012).
    [CrossRef]
  3. Y. Dandonneau and J. Neveux, “Diel variations of in vivo fluorescence in the eastern equatorial Pacific: an unvarying pattern,” Deep Sea Res. Part II Top. Stud. Oceanogr.44(9-10), 1869–1880 (1997).
    [CrossRef]
  4. P. Falkowski and D. A. Kiefer, “Chlorophyll-a fluorescence in phytoplankton - relationship to photosynthesis and biomass,” J. Plankton Res.7(5), 715–731 (1985).
    [CrossRef]
  5. C. W. Proctor and C. S. Roesler, “New insights on obtaining phytoplankton concentration and composition from in situ multispectral chlorophyll fluorescence,” Limnol. Oceanogr. Methods8, 695–708 (2010).
    [CrossRef]
  6. C. D. Wirick, “Exchange of phytoplankton across the continental shelf-slope boundary of the Middle Atlantic Bight during spring 1988,” Deep Sea Res. Part II Top. Stud. Oceanogr.41(2-3), 391–410 (1994).
    [CrossRef]
  7. Y. Z. Yacobi, “From Tswett to identified flying objects: A concise history of chlorophyll a use for quantification of phytoplankton,” Isr. J. Plant Sci.60(1), 243–251 (2012).
    [CrossRef]
  8. M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U. P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res.72(1), 39–53 (2002).
    [CrossRef] [PubMed]
  9. A. M. Chekalyuk and M. Hafez, “Advanced laser fluorometry of natural aquatic environments,” Limnol. Oceanogr. Methods6, 591–609 (2008).
    [CrossRef]
  10. T. J. Cowles, R. A. Desiderio, and S. Neuer, “In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra,” Mar. Biol.115(2), 217–222 (1993).
    [CrossRef]
  11. H. L. MacIntyre, E. Lawrenz, and T. L. Richardson, “Taxonomic discrimination of phytoplankton by spectral fluorescence,” in Chlorophyll: A Fluorescence in Aquatic Sciences: Methods and Applications, D. J. Suggett, O. Prasil, and M. A. Borowitzka, eds. (Springer, 2010).
  12. P. B. Oldham and I. M. Warner, “Analysis of natural phytoplankton populations by pattern recognition of two dimensional fluorescence spectra,” Spectrosc. Lett.20(5), 391–413 (1987).
    [CrossRef]
  13. G. Parésys, C. Rigart, B. Rousseau, A. W. M. Wong, F. Fan, J. P. Barbier, and J. Lavaud, “Quantitative and qualitative evaluation of phytoplankton communities by trichromatic chlorophyll fluorescence excitation with special focus on cyanobacteria,” Water Res.39(5), 911–921 (2005).
    [CrossRef] [PubMed]
  14. T. L. Richardson, E. Lawrenz, J. L. Pinckney, R. C. Guajardo, E. A. Walker, H. W. Paerl, and H. L. MacIntyre, “Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser,” Water Res.44(8), 2461–2472 (2010).
    [CrossRef] [PubMed]
  15. J. Seppälä and M. Balode, “The use of spectral fluorescence methods to detect changes in the phytoplankton community,” Hydrobiologia363(1/3), 207–217 (1997).
    [CrossRef]
  16. C. S. Yentsch and C. M. Yentsch, “Fluorescence spectral signatures characterization of phytoplankton populations by the use of excitation and emission spectra,” J. Mar. Res.37, 471–483 (1979).
  17. T. S. Bibby, M. Y. Gorbunov, K. W. Wyman, and P. G. Falkowski, “Photosynthetic community responses to upwelling in mesoscale eddies in the subtropical North Atlantic and Pacific Oceans,” Deep Sea Res. Part II Top. Stud. Oceanogr.55(10-13), 1310–1320 (2008).
    [CrossRef]
  18. A. M. Chekalyuk, F. E. Hoge, C. W. Wright, and R. N. Swift, “Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics,” Photosynth. Res.66(1/2), 33–44 (2000).
    [CrossRef] [PubMed]
  19. P. G. Falkowski and Z. Kolber, “Variations in chlorophyll fluorescence yields in phytoplankton in the world oceans,” Aust. J. Plant Physiol.22(2), 341–355 (1995).
    [CrossRef]
  20. Z. Kolber and P. G. Falkowski, “Use of active fluorescence to estimate phytoplankton photosynthesis in situ,” Limnol. Oceanogr.38(8), 1646–1665 (1993).
    [CrossRef]
  21. Z. S. Kolber, O. Prasil, and P. G. Falkowski, “Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols,” Biochim. Biophys. Acta1367(1-3), 88–106 (1998).
    [CrossRef] [PubMed]
  22. R. J. Olson, A. M. Chekalyuk, and H. M. Sosik, “Phytoplankton photosynthetic characteristics from fluorescence induction assays of individual cells,” Limnol. Oceanogr.41(6), 1253–1263 (1996).
    [CrossRef]
  23. R. J. Olson, H. M. Sosik, and A. M. Chekalyuk, “Photosynthetic characteristics of marine phytoplankton from pump-during-probe fluorometry of individual cells at sea,” Cytometry37(1), 1–13 (1999).
    [CrossRef] [PubMed]
  24. U. Schreiber, C. Neubauer, and U. Schliwa, “PAM fluorometer based on medium-frequency pulsed Xe-flash measuring light: a highly sensitive new tool in basic and applied photosynthesis research,” Photosynth. Res.36(1), 65–72 (1993).
    [CrossRef]
  25. U. Schreiber, C. Klughammer, and J. Kolbowski, “Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer,” Photosynth. Res.113(1-3), 127–144 (2012).
    [CrossRef] [PubMed]
  26. C. E. Del Castillo, P. G. Coble, R. N. Conmy, F. E. Muller-Karger, L. Vanderbloemen, and G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River plume in the West Florida Shelf,” Limnol. Oceanogr.46(7), 1836–1843 (2001).
    [CrossRef]
  27. N. Hudson, A. Baker, and D. Reynolds, “Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters – a review,” River Res. Appl.23(6), 631–649 (2007).
    [CrossRef]
  28. C. E. Brown and M. F. Fingas, “Review of the development of laser fluorosensors for oil spill application,” Mar. Pollut. Bull.47(9-12), 477–484 (2003).
    [CrossRef] [PubMed]
  29. Q. Q. Liu, C. Y. Wang, X. F. Shi, W. D. Li, X. N. Luan, S. L. Hou, J. L. Zhang, and R. E. Zheng, “Identification of spill oil species based on low concentration synchronous fluorescence spectra and RBF neural network,” Spectrosc. Spect. Anal. 32(4), 1012–1015 (2012).
    [PubMed]
  30. A. G. Ryder, T. J. Glynn, M. Feely, and A. J. G. Barwise, “Characterization of crude oils using fluorescence lifetime data,” Spectrochim. Acta A Mol. Biomol. Spectrosc.58(5), 1025–1037 (2002).
    [CrossRef] [PubMed]
  31. R. J. Exton, W. M. Houghton, W. E. Esaias, R. C. Harriss, F. H. Farmer, and H. H. White, “Laboratory analysis of techniques for remote sensing of estuarine parameters using laser excitation,” Appl. Opt.22(1), 54–64 (1983).
    [CrossRef] [PubMed]
  32. R. J. Exton, W. M. Houghton, W. Esaias, R. C. Haas, and D. Hayward, “Spectral differences and temporal stability of phycoerythrin fluorescence in estuarine and coastal waters due to the domination of labile cryptophytes and stabile cyanibacteria,” Limnol. Oceanogr.28(6), 1225–1231 (1983).
    [CrossRef]
  33. L. Poryvkina, S. Babichenko, S. Kaitala, H. Kuosa, and A. Shalapjonok, “Spectral fluorescence signatures in the characterization of phytoplankton community composition,” J. Plankton Res.16(10), 1315–1327 (1994).
    [CrossRef]
  34. S. Babichenko, L. Poryvkina, V. Arikese, S. Kaitala, and H. Kuosa, “Remote sensing of phytoplankton using laser induced fluorescence,” Remote Sens. Environ.45(1), 43–50 (1993).
    [CrossRef]
  35. A. M. Chekalyuk, A. A. Demidov, V. V. Fadeev, and M. Y. Gorbunov, “Lidar monitoring of phytoplankton and organic matter in the inner seas of Europe-EARSeL,” Adv. Remote Sens.3, 131–139 (1995).
  36. F. E. Hoge and R. N. Swift, “Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments,” Appl. Opt.20(18), 3197–3205 (1981).
    [CrossRef] [PubMed]
  37. D. N. Klyshko and V. V. Fadeev, “Remote determination of concentration of impurities in water by the laser spectroscopy method with calibration by Raman scattering,” Sov. Phys. Dokl.23, 55–59 (1978).
  38. A. Andrade-Eiroa, M. Canle, and V. Cerda, “Environmental applications of excitation emission spectrofluorimetry: an in depth review I,” Appl. Spectrosc. Rev.48(1), 1–49 (2013).
    [CrossRef]
  39. A. Andrade-Eiroa, M. Canle, and V. Cerda, “Environmental applications of excitation emission spectrofluorimetry: an in depth review II,” Appl. Spectrosc. Rev.48(2), 77–141 (2013).
    [CrossRef]
  40. A. Nebbioso and A. Piccolo, “Molecular characterization of dissolved organic matter (DOM): a critical review,” Anal. Bioanal. Chem.405(1), 109–124 (2013).
    [CrossRef] [PubMed]
  41. Z. Z. Zhou and L. D. Guo, “Evolution of the optical properties of seawater influenced by the Deepwater Horizon oil spill in the Gulf of Mexico,” Environ. Res. Lett.7(2), 025301 (2012), doi:.
    [CrossRef]
  42. Z. Z. Zhou, L. D. Guo, A. M. Shiller, S. E. Lohrenz, V. L. Asper, and C. L. Osburn, “Characterization of oil components from the Deepwater Horizon oil spill in the Gulf of Mexico using fluorescence EEM and PARAFAC techniques,” Mar. Chem.148, 10–21 (2013).
    [CrossRef]
  43. Z. Z. Zhou, Z. F. Liu, and L. D. Guo, “Chemical evolution of Macondo crude oil during laboratory degradation as characterized by fluorescence EEMs and hydrocarbon composition,” Mar. Pollut. Bull.66(1-2), 164–175 (2013).
    [CrossRef] [PubMed]
  44. M. L. Nahorniak and K. S. Booksh, “Excitation-emission matrix fluorescence spectroscopy in conjunction with multiway analysis for PAH detection in complex matrices,” Analyst (Lond.)131(12), 1308–1315 (2006).
    [CrossRef] [PubMed]
  45. R. E. Davis, M. D. Ohman, D. L. Rudnick, J. T. Sherman, and B. Hodges, “Glider surveillance of physics and biology in the southern California Current System,” Limnol. Oceanogr.53(5_part_2), 2151–2168 (2008).
    [CrossRef]
  46. M. J. Perry, B. S. Sackmann, C. C. Eriksen, and C. M. Lee, “Seaglider observations of blooms and subsurface chlorophyll maxima off the Washington coast,” Limnol. Oceanogr.53(5_part_2), 2169–2179 (2008).
    [CrossRef]
  47. X. G. Xing, H. Claustre, S. Blain, F. D'Ortenzio, D. Antoine, J. Ras, and C. Guinet, “Quenching correction for in vivo chlorophyll fluorescence acquired by autonomous platforms: a case study with instrumented elephant seals in the Kerguelen region (Southern Ocean),” Limnol. Oceanogr. Methods10, 483–495 (2012).
  48. X. Yu, T. Dickey, J. Bellingham, D. Manov, and K. Streitlien, “The application of autonomous underwater vehicles for interdisciplinary measurements in Massachusetts and Cape Cod Bays,” Cont. Shelf Res.22(15), 2225–2245 (2002).
    [CrossRef]
  49. R. Alexander, P. Gikuma-Njuru, and J. Imberger, “Identifying spatial structure in phytoplankton communities using multi-wavelength fluorescence spectral data and principal component analysis,” Limnol. Oceanogr. Methods10, 402–415 (2012).
    [CrossRef]
  50. R. Alexander and J. Imberger, “Phytoplankton patchiness in Winam Gulf, Lake Victoria: a study using principal component analysis of in situ fluorescent excitation spectra,” Freshw. Biol.58(2), 275–291 (2013).
    [CrossRef]
  51. A. Catherine, N. Escoffier, A. Belhocine, A. B. Nasri, S. Hamlaoui, C. Yéprémian, C. Bernard, and M. Troussellier, “On the use of the FluoroProbe®, a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs,” Water Res.46(6), 1771–1784 (2012).
    [CrossRef] [PubMed]
  52. M. J. Doubell, L. Seuront, J. R. Seymour, N. L. Patten, and J. G. Mitchell, “High resolution fluorometer for mapping microscale phytoplankton distributions,” Appl. Environ. Microbiol.72(6), 4475–4478 (2006).
    [CrossRef] [PubMed]
  53. M. J. Doubell, H. Yamazaki, H. Li, and Y. Kokubu, “An advanced laser-based fluorescence microstructure profiler (TurboMAP-L) for measuring bio-physical coupling in aquatic systems,” J. Plankton Res.31(12), 1441–1452 (2009).
    [CrossRef]
  54. S. G. H. Simis, Y. Huot, M. Babin, J. Seppälä, and L. Metsamaa, “Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria,” Photosynth. Res.112(1), 13–30 (2012).
    [CrossRef] [PubMed]
  55. R. Röttgers and B. P. Koch, “Spectroscopic detection of a ubiquitous dissolved pigment degradation product in subsurface waters of the global ocean,” Biogeosciences9(7), 2585–2596 (2012).
    [CrossRef]
  56. J. J. Cullen and R. F. Davis, “The blank can make a big difference in oceanographic measurements,” Limnol. Oceanogr. Bull.12, 29–35 (2003).
  57. E. Fuchs, R. C. Zimmerman, and J. S. Jaffe, “The effect of elevated levels of phaeophytin in natural waters on variable fluorescence measured from phytoplankton,” J. Plankton Res.24(11), 1221–1229 (2002).
    [CrossRef]
  58. S. R. Laney and R. M. Letelier, “Artifacts in measurements of chlorophyll fluorescence transients, with specific application to fast repetition rate fluorometry,” Limnol. Oceanogr. Methods6, 40–50 (2008).
    [CrossRef]
  59. R. M. Cory, M. P. Miller, D. M. McKnight, J. J. Guerard, and P. L. Miller, “Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra,” Limnol. Oceanogr. Methods8, 67–78 (2010).
    [CrossRef]
  60. G. H. Krause and E. Weis, “Chlorophyll fluorescence and photosynthesis - the basics,” Annu. Rev. Plant Physiol.42(1), 313–349 (1991).
    [CrossRef]
  61. M. Raateoja, J. Seppala, and P. Ylostalo, “Fast repetition rate fluorometry is not applicable to studies of filamentous cyanobacteria from the Baltic Sea,” Limnol. Oceanogr.49(4), 1006–1012 (2004).
    [CrossRef]

2013 (6)

A. Andrade-Eiroa, M. Canle, and V. Cerda, “Environmental applications of excitation emission spectrofluorimetry: an in depth review I,” Appl. Spectrosc. Rev.48(1), 1–49 (2013).
[CrossRef]

A. Andrade-Eiroa, M. Canle, and V. Cerda, “Environmental applications of excitation emission spectrofluorimetry: an in depth review II,” Appl. Spectrosc. Rev.48(2), 77–141 (2013).
[CrossRef]

A. Nebbioso and A. Piccolo, “Molecular characterization of dissolved organic matter (DOM): a critical review,” Anal. Bioanal. Chem.405(1), 109–124 (2013).
[CrossRef] [PubMed]

Z. Z. Zhou, L. D. Guo, A. M. Shiller, S. E. Lohrenz, V. L. Asper, and C. L. Osburn, “Characterization of oil components from the Deepwater Horizon oil spill in the Gulf of Mexico using fluorescence EEM and PARAFAC techniques,” Mar. Chem.148, 10–21 (2013).
[CrossRef]

Z. Z. Zhou, Z. F. Liu, and L. D. Guo, “Chemical evolution of Macondo crude oil during laboratory degradation as characterized by fluorescence EEMs and hydrocarbon composition,” Mar. Pollut. Bull.66(1-2), 164–175 (2013).
[CrossRef] [PubMed]

R. Alexander and J. Imberger, “Phytoplankton patchiness in Winam Gulf, Lake Victoria: a study using principal component analysis of in situ fluorescent excitation spectra,” Freshw. Biol.58(2), 275–291 (2013).
[CrossRef]

2012 (10)

A. Catherine, N. Escoffier, A. Belhocine, A. B. Nasri, S. Hamlaoui, C. Yéprémian, C. Bernard, and M. Troussellier, “On the use of the FluoroProbe®, a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs,” Water Res.46(6), 1771–1784 (2012).
[CrossRef] [PubMed]

X. G. Xing, H. Claustre, S. Blain, F. D'Ortenzio, D. Antoine, J. Ras, and C. Guinet, “Quenching correction for in vivo chlorophyll fluorescence acquired by autonomous platforms: a case study with instrumented elephant seals in the Kerguelen region (Southern Ocean),” Limnol. Oceanogr. Methods10, 483–495 (2012).

R. Alexander, P. Gikuma-Njuru, and J. Imberger, “Identifying spatial structure in phytoplankton communities using multi-wavelength fluorescence spectral data and principal component analysis,” Limnol. Oceanogr. Methods10, 402–415 (2012).
[CrossRef]

S. G. H. Simis, Y. Huot, M. Babin, J. Seppälä, and L. Metsamaa, “Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria,” Photosynth. Res.112(1), 13–30 (2012).
[CrossRef] [PubMed]

R. Röttgers and B. P. Koch, “Spectroscopic detection of a ubiquitous dissolved pigment degradation product in subsurface waters of the global ocean,” Biogeosciences9(7), 2585–2596 (2012).
[CrossRef]

Z. Z. Zhou and L. D. Guo, “Evolution of the optical properties of seawater influenced by the Deepwater Horizon oil spill in the Gulf of Mexico,” Environ. Res. Lett.7(2), 025301 (2012), doi:.
[CrossRef]

U. Schreiber, C. Klughammer, and J. Kolbowski, “Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer,” Photosynth. Res.113(1-3), 127–144 (2012).
[CrossRef] [PubMed]

Q. Q. Liu, C. Y. Wang, X. F. Shi, W. D. Li, X. N. Luan, S. L. Hou, J. L. Zhang, and R. E. Zheng, “Identification of spill oil species based on low concentration synchronous fluorescence spectra and RBF neural network,” Spectrosc. Spect. Anal. 32(4), 1012–1015 (2012).
[PubMed]

A. M. Chekalyuk, M. Landry, R. Goericke, A. G. Taylor, and M. Hafez, “Laser fluorescence analysis of phytoplankton across a frontal zone in the California Current ecosystem,” J. Plankton Res.34(9), 761–777 (2012).
[CrossRef]

Y. Z. Yacobi, “From Tswett to identified flying objects: A concise history of chlorophyll a use for quantification of phytoplankton,” Isr. J. Plant Sci.60(1), 243–251 (2012).
[CrossRef]

2011 (1)

2010 (3)

R. M. Cory, M. P. Miller, D. M. McKnight, J. J. Guerard, and P. L. Miller, “Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra,” Limnol. Oceanogr. Methods8, 67–78 (2010).
[CrossRef]

C. W. Proctor and C. S. Roesler, “New insights on obtaining phytoplankton concentration and composition from in situ multispectral chlorophyll fluorescence,” Limnol. Oceanogr. Methods8, 695–708 (2010).
[CrossRef]

T. L. Richardson, E. Lawrenz, J. L. Pinckney, R. C. Guajardo, E. A. Walker, H. W. Paerl, and H. L. MacIntyre, “Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser,” Water Res.44(8), 2461–2472 (2010).
[CrossRef] [PubMed]

2009 (1)

M. J. Doubell, H. Yamazaki, H. Li, and Y. Kokubu, “An advanced laser-based fluorescence microstructure profiler (TurboMAP-L) for measuring bio-physical coupling in aquatic systems,” J. Plankton Res.31(12), 1441–1452 (2009).
[CrossRef]

2008 (5)

S. R. Laney and R. M. Letelier, “Artifacts in measurements of chlorophyll fluorescence transients, with specific application to fast repetition rate fluorometry,” Limnol. Oceanogr. Methods6, 40–50 (2008).
[CrossRef]

T. S. Bibby, M. Y. Gorbunov, K. W. Wyman, and P. G. Falkowski, “Photosynthetic community responses to upwelling in mesoscale eddies in the subtropical North Atlantic and Pacific Oceans,” Deep Sea Res. Part II Top. Stud. Oceanogr.55(10-13), 1310–1320 (2008).
[CrossRef]

A. M. Chekalyuk and M. Hafez, “Advanced laser fluorometry of natural aquatic environments,” Limnol. Oceanogr. Methods6, 591–609 (2008).
[CrossRef]

R. E. Davis, M. D. Ohman, D. L. Rudnick, J. T. Sherman, and B. Hodges, “Glider surveillance of physics and biology in the southern California Current System,” Limnol. Oceanogr.53(5_part_2), 2151–2168 (2008).
[CrossRef]

M. J. Perry, B. S. Sackmann, C. C. Eriksen, and C. M. Lee, “Seaglider observations of blooms and subsurface chlorophyll maxima off the Washington coast,” Limnol. Oceanogr.53(5_part_2), 2169–2179 (2008).
[CrossRef]

2007 (1)

N. Hudson, A. Baker, and D. Reynolds, “Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters – a review,” River Res. Appl.23(6), 631–649 (2007).
[CrossRef]

2006 (2)

M. L. Nahorniak and K. S. Booksh, “Excitation-emission matrix fluorescence spectroscopy in conjunction with multiway analysis for PAH detection in complex matrices,” Analyst (Lond.)131(12), 1308–1315 (2006).
[CrossRef] [PubMed]

M. J. Doubell, L. Seuront, J. R. Seymour, N. L. Patten, and J. G. Mitchell, “High resolution fluorometer for mapping microscale phytoplankton distributions,” Appl. Environ. Microbiol.72(6), 4475–4478 (2006).
[CrossRef] [PubMed]

2005 (1)

G. Parésys, C. Rigart, B. Rousseau, A. W. M. Wong, F. Fan, J. P. Barbier, and J. Lavaud, “Quantitative and qualitative evaluation of phytoplankton communities by trichromatic chlorophyll fluorescence excitation with special focus on cyanobacteria,” Water Res.39(5), 911–921 (2005).
[CrossRef] [PubMed]

2004 (1)

M. Raateoja, J. Seppala, and P. Ylostalo, “Fast repetition rate fluorometry is not applicable to studies of filamentous cyanobacteria from the Baltic Sea,” Limnol. Oceanogr.49(4), 1006–1012 (2004).
[CrossRef]

2003 (2)

J. J. Cullen and R. F. Davis, “The blank can make a big difference in oceanographic measurements,” Limnol. Oceanogr. Bull.12, 29–35 (2003).

C. E. Brown and M. F. Fingas, “Review of the development of laser fluorosensors for oil spill application,” Mar. Pollut. Bull.47(9-12), 477–484 (2003).
[CrossRef] [PubMed]

2002 (4)

A. G. Ryder, T. J. Glynn, M. Feely, and A. J. G. Barwise, “Characterization of crude oils using fluorescence lifetime data,” Spectrochim. Acta A Mol. Biomol. Spectrosc.58(5), 1025–1037 (2002).
[CrossRef] [PubMed]

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U. P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res.72(1), 39–53 (2002).
[CrossRef] [PubMed]

E. Fuchs, R. C. Zimmerman, and J. S. Jaffe, “The effect of elevated levels of phaeophytin in natural waters on variable fluorescence measured from phytoplankton,” J. Plankton Res.24(11), 1221–1229 (2002).
[CrossRef]

X. Yu, T. Dickey, J. Bellingham, D. Manov, and K. Streitlien, “The application of autonomous underwater vehicles for interdisciplinary measurements in Massachusetts and Cape Cod Bays,” Cont. Shelf Res.22(15), 2225–2245 (2002).
[CrossRef]

2001 (1)

C. E. Del Castillo, P. G. Coble, R. N. Conmy, F. E. Muller-Karger, L. Vanderbloemen, and G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River plume in the West Florida Shelf,” Limnol. Oceanogr.46(7), 1836–1843 (2001).
[CrossRef]

2000 (1)

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, and R. N. Swift, “Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics,” Photosynth. Res.66(1/2), 33–44 (2000).
[CrossRef] [PubMed]

1999 (1)

R. J. Olson, H. M. Sosik, and A. M. Chekalyuk, “Photosynthetic characteristics of marine phytoplankton from pump-during-probe fluorometry of individual cells at sea,” Cytometry37(1), 1–13 (1999).
[CrossRef] [PubMed]

1998 (1)

Z. S. Kolber, O. Prasil, and P. G. Falkowski, “Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols,” Biochim. Biophys. Acta1367(1-3), 88–106 (1998).
[CrossRef] [PubMed]

1997 (2)

J. Seppälä and M. Balode, “The use of spectral fluorescence methods to detect changes in the phytoplankton community,” Hydrobiologia363(1/3), 207–217 (1997).
[CrossRef]

Y. Dandonneau and J. Neveux, “Diel variations of in vivo fluorescence in the eastern equatorial Pacific: an unvarying pattern,” Deep Sea Res. Part II Top. Stud. Oceanogr.44(9-10), 1869–1880 (1997).
[CrossRef]

1996 (1)

R. J. Olson, A. M. Chekalyuk, and H. M. Sosik, “Phytoplankton photosynthetic characteristics from fluorescence induction assays of individual cells,” Limnol. Oceanogr.41(6), 1253–1263 (1996).
[CrossRef]

1995 (2)

P. G. Falkowski and Z. Kolber, “Variations in chlorophyll fluorescence yields in phytoplankton in the world oceans,” Aust. J. Plant Physiol.22(2), 341–355 (1995).
[CrossRef]

A. M. Chekalyuk, A. A. Demidov, V. V. Fadeev, and M. Y. Gorbunov, “Lidar monitoring of phytoplankton and organic matter in the inner seas of Europe-EARSeL,” Adv. Remote Sens.3, 131–139 (1995).

1994 (2)

L. Poryvkina, S. Babichenko, S. Kaitala, H. Kuosa, and A. Shalapjonok, “Spectral fluorescence signatures in the characterization of phytoplankton community composition,” J. Plankton Res.16(10), 1315–1327 (1994).
[CrossRef]

C. D. Wirick, “Exchange of phytoplankton across the continental shelf-slope boundary of the Middle Atlantic Bight during spring 1988,” Deep Sea Res. Part II Top. Stud. Oceanogr.41(2-3), 391–410 (1994).
[CrossRef]

1993 (4)

T. J. Cowles, R. A. Desiderio, and S. Neuer, “In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra,” Mar. Biol.115(2), 217–222 (1993).
[CrossRef]

Z. Kolber and P. G. Falkowski, “Use of active fluorescence to estimate phytoplankton photosynthesis in situ,” Limnol. Oceanogr.38(8), 1646–1665 (1993).
[CrossRef]

U. Schreiber, C. Neubauer, and U. Schliwa, “PAM fluorometer based on medium-frequency pulsed Xe-flash measuring light: a highly sensitive new tool in basic and applied photosynthesis research,” Photosynth. Res.36(1), 65–72 (1993).
[CrossRef]

S. Babichenko, L. Poryvkina, V. Arikese, S. Kaitala, and H. Kuosa, “Remote sensing of phytoplankton using laser induced fluorescence,” Remote Sens. Environ.45(1), 43–50 (1993).
[CrossRef]

1991 (1)

G. H. Krause and E. Weis, “Chlorophyll fluorescence and photosynthesis - the basics,” Annu. Rev. Plant Physiol.42(1), 313–349 (1991).
[CrossRef]

1987 (1)

P. B. Oldham and I. M. Warner, “Analysis of natural phytoplankton populations by pattern recognition of two dimensional fluorescence spectra,” Spectrosc. Lett.20(5), 391–413 (1987).
[CrossRef]

1985 (1)

P. Falkowski and D. A. Kiefer, “Chlorophyll-a fluorescence in phytoplankton - relationship to photosynthesis and biomass,” J. Plankton Res.7(5), 715–731 (1985).
[CrossRef]

1983 (2)

R. J. Exton, W. M. Houghton, W. Esaias, R. C. Haas, and D. Hayward, “Spectral differences and temporal stability of phycoerythrin fluorescence in estuarine and coastal waters due to the domination of labile cryptophytes and stabile cyanibacteria,” Limnol. Oceanogr.28(6), 1225–1231 (1983).
[CrossRef]

R. J. Exton, W. M. Houghton, W. E. Esaias, R. C. Harriss, F. H. Farmer, and H. H. White, “Laboratory analysis of techniques for remote sensing of estuarine parameters using laser excitation,” Appl. Opt.22(1), 54–64 (1983).
[CrossRef] [PubMed]

1981 (1)

1979 (1)

C. S. Yentsch and C. M. Yentsch, “Fluorescence spectral signatures characterization of phytoplankton populations by the use of excitation and emission spectra,” J. Mar. Res.37, 471–483 (1979).

1978 (1)

D. N. Klyshko and V. V. Fadeev, “Remote determination of concentration of impurities in water by the laser spectroscopy method with calibration by Raman scattering,” Sov. Phys. Dokl.23, 55–59 (1978).

Alexander, R.

R. Alexander and J. Imberger, “Phytoplankton patchiness in Winam Gulf, Lake Victoria: a study using principal component analysis of in situ fluorescent excitation spectra,” Freshw. Biol.58(2), 275–291 (2013).
[CrossRef]

R. Alexander, P. Gikuma-Njuru, and J. Imberger, “Identifying spatial structure in phytoplankton communities using multi-wavelength fluorescence spectral data and principal component analysis,” Limnol. Oceanogr. Methods10, 402–415 (2012).
[CrossRef]

Andrade-Eiroa, A.

A. Andrade-Eiroa, M. Canle, and V. Cerda, “Environmental applications of excitation emission spectrofluorimetry: an in depth review I,” Appl. Spectrosc. Rev.48(1), 1–49 (2013).
[CrossRef]

A. Andrade-Eiroa, M. Canle, and V. Cerda, “Environmental applications of excitation emission spectrofluorimetry: an in depth review II,” Appl. Spectrosc. Rev.48(2), 77–141 (2013).
[CrossRef]

Antoine, D.

X. G. Xing, H. Claustre, S. Blain, F. D'Ortenzio, D. Antoine, J. Ras, and C. Guinet, “Quenching correction for in vivo chlorophyll fluorescence acquired by autonomous platforms: a case study with instrumented elephant seals in the Kerguelen region (Southern Ocean),” Limnol. Oceanogr. Methods10, 483–495 (2012).

Arikese, V.

S. Babichenko, L. Poryvkina, V. Arikese, S. Kaitala, and H. Kuosa, “Remote sensing of phytoplankton using laser induced fluorescence,” Remote Sens. Environ.45(1), 43–50 (1993).
[CrossRef]

Asper, V. L.

Z. Z. Zhou, L. D. Guo, A. M. Shiller, S. E. Lohrenz, V. L. Asper, and C. L. Osburn, “Characterization of oil components from the Deepwater Horizon oil spill in the Gulf of Mexico using fluorescence EEM and PARAFAC techniques,” Mar. Chem.148, 10–21 (2013).
[CrossRef]

Babichenko, S.

L. Poryvkina, S. Babichenko, S. Kaitala, H. Kuosa, and A. Shalapjonok, “Spectral fluorescence signatures in the characterization of phytoplankton community composition,” J. Plankton Res.16(10), 1315–1327 (1994).
[CrossRef]

S. Babichenko, L. Poryvkina, V. Arikese, S. Kaitala, and H. Kuosa, “Remote sensing of phytoplankton using laser induced fluorescence,” Remote Sens. Environ.45(1), 43–50 (1993).
[CrossRef]

Babin, M.

S. G. H. Simis, Y. Huot, M. Babin, J. Seppälä, and L. Metsamaa, “Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria,” Photosynth. Res.112(1), 13–30 (2012).
[CrossRef] [PubMed]

Baker, A.

N. Hudson, A. Baker, and D. Reynolds, “Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters – a review,” River Res. Appl.23(6), 631–649 (2007).
[CrossRef]

Balode, M.

J. Seppälä and M. Balode, “The use of spectral fluorescence methods to detect changes in the phytoplankton community,” Hydrobiologia363(1/3), 207–217 (1997).
[CrossRef]

Barbier, J. P.

G. Parésys, C. Rigart, B. Rousseau, A. W. M. Wong, F. Fan, J. P. Barbier, and J. Lavaud, “Quantitative and qualitative evaluation of phytoplankton communities by trichromatic chlorophyll fluorescence excitation with special focus on cyanobacteria,” Water Res.39(5), 911–921 (2005).
[CrossRef] [PubMed]

Barwise, A. J. G.

A. G. Ryder, T. J. Glynn, M. Feely, and A. J. G. Barwise, “Characterization of crude oils using fluorescence lifetime data,” Spectrochim. Acta A Mol. Biomol. Spectrosc.58(5), 1025–1037 (2002).
[CrossRef] [PubMed]

Belhocine, A.

A. Catherine, N. Escoffier, A. Belhocine, A. B. Nasri, S. Hamlaoui, C. Yéprémian, C. Bernard, and M. Troussellier, “On the use of the FluoroProbe®, a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs,” Water Res.46(6), 1771–1784 (2012).
[CrossRef] [PubMed]

Bellingham, J.

X. Yu, T. Dickey, J. Bellingham, D. Manov, and K. Streitlien, “The application of autonomous underwater vehicles for interdisciplinary measurements in Massachusetts and Cape Cod Bays,” Cont. Shelf Res.22(15), 2225–2245 (2002).
[CrossRef]

Bernard, C.

A. Catherine, N. Escoffier, A. Belhocine, A. B. Nasri, S. Hamlaoui, C. Yéprémian, C. Bernard, and M. Troussellier, “On the use of the FluoroProbe®, a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs,” Water Res.46(6), 1771–1784 (2012).
[CrossRef] [PubMed]

Beutler, M.

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U. P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res.72(1), 39–53 (2002).
[CrossRef] [PubMed]

Bibby, T. S.

T. S. Bibby, M. Y. Gorbunov, K. W. Wyman, and P. G. Falkowski, “Photosynthetic community responses to upwelling in mesoscale eddies in the subtropical North Atlantic and Pacific Oceans,” Deep Sea Res. Part II Top. Stud. Oceanogr.55(10-13), 1310–1320 (2008).
[CrossRef]

Blain, S.

X. G. Xing, H. Claustre, S. Blain, F. D'Ortenzio, D. Antoine, J. Ras, and C. Guinet, “Quenching correction for in vivo chlorophyll fluorescence acquired by autonomous platforms: a case study with instrumented elephant seals in the Kerguelen region (Southern Ocean),” Limnol. Oceanogr. Methods10, 483–495 (2012).

Booksh, K. S.

M. L. Nahorniak and K. S. Booksh, “Excitation-emission matrix fluorescence spectroscopy in conjunction with multiway analysis for PAH detection in complex matrices,” Analyst (Lond.)131(12), 1308–1315 (2006).
[CrossRef] [PubMed]

Brown, C. E.

C. E. Brown and M. F. Fingas, “Review of the development of laser fluorosensors for oil spill application,” Mar. Pollut. Bull.47(9-12), 477–484 (2003).
[CrossRef] [PubMed]

Canle, M.

A. Andrade-Eiroa, M. Canle, and V. Cerda, “Environmental applications of excitation emission spectrofluorimetry: an in depth review II,” Appl. Spectrosc. Rev.48(2), 77–141 (2013).
[CrossRef]

A. Andrade-Eiroa, M. Canle, and V. Cerda, “Environmental applications of excitation emission spectrofluorimetry: an in depth review I,” Appl. Spectrosc. Rev.48(1), 1–49 (2013).
[CrossRef]

Catherine, A.

A. Catherine, N. Escoffier, A. Belhocine, A. B. Nasri, S. Hamlaoui, C. Yéprémian, C. Bernard, and M. Troussellier, “On the use of the FluoroProbe®, a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs,” Water Res.46(6), 1771–1784 (2012).
[CrossRef] [PubMed]

Cerda, V.

A. Andrade-Eiroa, M. Canle, and V. Cerda, “Environmental applications of excitation emission spectrofluorimetry: an in depth review I,” Appl. Spectrosc. Rev.48(1), 1–49 (2013).
[CrossRef]

A. Andrade-Eiroa, M. Canle, and V. Cerda, “Environmental applications of excitation emission spectrofluorimetry: an in depth review II,” Appl. Spectrosc. Rev.48(2), 77–141 (2013).
[CrossRef]

Chekalyuk, A. M.

A. M. Chekalyuk, M. Landry, R. Goericke, A. G. Taylor, and M. Hafez, “Laser fluorescence analysis of phytoplankton across a frontal zone in the California Current ecosystem,” J. Plankton Res.34(9), 761–777 (2012).
[CrossRef]

A. M. Chekalyuk and M. Hafez, “Photo-physiological variability in phytoplankton chlorophyll fluorescence and assessment of chlorophyll concentration,” Opt. Express19(23), 22643–22658 (2011).
[CrossRef] [PubMed]

A. M. Chekalyuk and M. Hafez, “Advanced laser fluorometry of natural aquatic environments,” Limnol. Oceanogr. Methods6, 591–609 (2008).
[CrossRef]

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, and R. N. Swift, “Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics,” Photosynth. Res.66(1/2), 33–44 (2000).
[CrossRef] [PubMed]

R. J. Olson, H. M. Sosik, and A. M. Chekalyuk, “Photosynthetic characteristics of marine phytoplankton from pump-during-probe fluorometry of individual cells at sea,” Cytometry37(1), 1–13 (1999).
[CrossRef] [PubMed]

R. J. Olson, A. M. Chekalyuk, and H. M. Sosik, “Phytoplankton photosynthetic characteristics from fluorescence induction assays of individual cells,” Limnol. Oceanogr.41(6), 1253–1263 (1996).
[CrossRef]

A. M. Chekalyuk, A. A. Demidov, V. V. Fadeev, and M. Y. Gorbunov, “Lidar monitoring of phytoplankton and organic matter in the inner seas of Europe-EARSeL,” Adv. Remote Sens.3, 131–139 (1995).

Claustre, H.

X. G. Xing, H. Claustre, S. Blain, F. D'Ortenzio, D. Antoine, J. Ras, and C. Guinet, “Quenching correction for in vivo chlorophyll fluorescence acquired by autonomous platforms: a case study with instrumented elephant seals in the Kerguelen region (Southern Ocean),” Limnol. Oceanogr. Methods10, 483–495 (2012).

Coble, P. G.

C. E. Del Castillo, P. G. Coble, R. N. Conmy, F. E. Muller-Karger, L. Vanderbloemen, and G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River plume in the West Florida Shelf,” Limnol. Oceanogr.46(7), 1836–1843 (2001).
[CrossRef]

Conmy, R. N.

C. E. Del Castillo, P. G. Coble, R. N. Conmy, F. E. Muller-Karger, L. Vanderbloemen, and G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River plume in the West Florida Shelf,” Limnol. Oceanogr.46(7), 1836–1843 (2001).
[CrossRef]

Cory, R. M.

R. M. Cory, M. P. Miller, D. M. McKnight, J. J. Guerard, and P. L. Miller, “Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra,” Limnol. Oceanogr. Methods8, 67–78 (2010).
[CrossRef]

Cowles, T. J.

T. J. Cowles, R. A. Desiderio, and S. Neuer, “In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra,” Mar. Biol.115(2), 217–222 (1993).
[CrossRef]

Cullen, J. J.

J. J. Cullen and R. F. Davis, “The blank can make a big difference in oceanographic measurements,” Limnol. Oceanogr. Bull.12, 29–35 (2003).

Dandonneau, Y.

Y. Dandonneau and J. Neveux, “Diel variations of in vivo fluorescence in the eastern equatorial Pacific: an unvarying pattern,” Deep Sea Res. Part II Top. Stud. Oceanogr.44(9-10), 1869–1880 (1997).
[CrossRef]

Dau, H.

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U. P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res.72(1), 39–53 (2002).
[CrossRef] [PubMed]

Davis, R. E.

R. E. Davis, M. D. Ohman, D. L. Rudnick, J. T. Sherman, and B. Hodges, “Glider surveillance of physics and biology in the southern California Current System,” Limnol. Oceanogr.53(5_part_2), 2151–2168 (2008).
[CrossRef]

Davis, R. F.

J. J. Cullen and R. F. Davis, “The blank can make a big difference in oceanographic measurements,” Limnol. Oceanogr. Bull.12, 29–35 (2003).

Del Castillo, C. E.

C. E. Del Castillo, P. G. Coble, R. N. Conmy, F. E. Muller-Karger, L. Vanderbloemen, and G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River plume in the West Florida Shelf,” Limnol. Oceanogr.46(7), 1836–1843 (2001).
[CrossRef]

Demidov, A. A.

A. M. Chekalyuk, A. A. Demidov, V. V. Fadeev, and M. Y. Gorbunov, “Lidar monitoring of phytoplankton and organic matter in the inner seas of Europe-EARSeL,” Adv. Remote Sens.3, 131–139 (1995).

Desiderio, R. A.

T. J. Cowles, R. A. Desiderio, and S. Neuer, “In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra,” Mar. Biol.115(2), 217–222 (1993).
[CrossRef]

Dickey, T.

X. Yu, T. Dickey, J. Bellingham, D. Manov, and K. Streitlien, “The application of autonomous underwater vehicles for interdisciplinary measurements in Massachusetts and Cape Cod Bays,” Cont. Shelf Res.22(15), 2225–2245 (2002).
[CrossRef]

D'Ortenzio, F.

X. G. Xing, H. Claustre, S. Blain, F. D'Ortenzio, D. Antoine, J. Ras, and C. Guinet, “Quenching correction for in vivo chlorophyll fluorescence acquired by autonomous platforms: a case study with instrumented elephant seals in the Kerguelen region (Southern Ocean),” Limnol. Oceanogr. Methods10, 483–495 (2012).

Doubell, M. J.

M. J. Doubell, H. Yamazaki, H. Li, and Y. Kokubu, “An advanced laser-based fluorescence microstructure profiler (TurboMAP-L) for measuring bio-physical coupling in aquatic systems,” J. Plankton Res.31(12), 1441–1452 (2009).
[CrossRef]

M. J. Doubell, L. Seuront, J. R. Seymour, N. L. Patten, and J. G. Mitchell, “High resolution fluorometer for mapping microscale phytoplankton distributions,” Appl. Environ. Microbiol.72(6), 4475–4478 (2006).
[CrossRef] [PubMed]

Eriksen, C. C.

M. J. Perry, B. S. Sackmann, C. C. Eriksen, and C. M. Lee, “Seaglider observations of blooms and subsurface chlorophyll maxima off the Washington coast,” Limnol. Oceanogr.53(5_part_2), 2169–2179 (2008).
[CrossRef]

Esaias, W.

R. J. Exton, W. M. Houghton, W. Esaias, R. C. Haas, and D. Hayward, “Spectral differences and temporal stability of phycoerythrin fluorescence in estuarine and coastal waters due to the domination of labile cryptophytes and stabile cyanibacteria,” Limnol. Oceanogr.28(6), 1225–1231 (1983).
[CrossRef]

Esaias, W. E.

Escoffier, N.

A. Catherine, N. Escoffier, A. Belhocine, A. B. Nasri, S. Hamlaoui, C. Yéprémian, C. Bernard, and M. Troussellier, “On the use of the FluoroProbe®, a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs,” Water Res.46(6), 1771–1784 (2012).
[CrossRef] [PubMed]

Exton, R. J.

R. J. Exton, W. M. Houghton, W. E. Esaias, R. C. Harriss, F. H. Farmer, and H. H. White, “Laboratory analysis of techniques for remote sensing of estuarine parameters using laser excitation,” Appl. Opt.22(1), 54–64 (1983).
[CrossRef] [PubMed]

R. J. Exton, W. M. Houghton, W. Esaias, R. C. Haas, and D. Hayward, “Spectral differences and temporal stability of phycoerythrin fluorescence in estuarine and coastal waters due to the domination of labile cryptophytes and stabile cyanibacteria,” Limnol. Oceanogr.28(6), 1225–1231 (1983).
[CrossRef]

Fadeev, V. V.

A. M. Chekalyuk, A. A. Demidov, V. V. Fadeev, and M. Y. Gorbunov, “Lidar monitoring of phytoplankton and organic matter in the inner seas of Europe-EARSeL,” Adv. Remote Sens.3, 131–139 (1995).

D. N. Klyshko and V. V. Fadeev, “Remote determination of concentration of impurities in water by the laser spectroscopy method with calibration by Raman scattering,” Sov. Phys. Dokl.23, 55–59 (1978).

Falkowski, P.

P. Falkowski and D. A. Kiefer, “Chlorophyll-a fluorescence in phytoplankton - relationship to photosynthesis and biomass,” J. Plankton Res.7(5), 715–731 (1985).
[CrossRef]

Falkowski, P. G.

T. S. Bibby, M. Y. Gorbunov, K. W. Wyman, and P. G. Falkowski, “Photosynthetic community responses to upwelling in mesoscale eddies in the subtropical North Atlantic and Pacific Oceans,” Deep Sea Res. Part II Top. Stud. Oceanogr.55(10-13), 1310–1320 (2008).
[CrossRef]

Z. S. Kolber, O. Prasil, and P. G. Falkowski, “Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols,” Biochim. Biophys. Acta1367(1-3), 88–106 (1998).
[CrossRef] [PubMed]

P. G. Falkowski and Z. Kolber, “Variations in chlorophyll fluorescence yields in phytoplankton in the world oceans,” Aust. J. Plant Physiol.22(2), 341–355 (1995).
[CrossRef]

Z. Kolber and P. G. Falkowski, “Use of active fluorescence to estimate phytoplankton photosynthesis in situ,” Limnol. Oceanogr.38(8), 1646–1665 (1993).
[CrossRef]

Fan, F.

G. Parésys, C. Rigart, B. Rousseau, A. W. M. Wong, F. Fan, J. P. Barbier, and J. Lavaud, “Quantitative and qualitative evaluation of phytoplankton communities by trichromatic chlorophyll fluorescence excitation with special focus on cyanobacteria,” Water Res.39(5), 911–921 (2005).
[CrossRef] [PubMed]

Farmer, F. H.

Feely, M.

A. G. Ryder, T. J. Glynn, M. Feely, and A. J. G. Barwise, “Characterization of crude oils using fluorescence lifetime data,” Spectrochim. Acta A Mol. Biomol. Spectrosc.58(5), 1025–1037 (2002).
[CrossRef] [PubMed]

Fingas, M. F.

C. E. Brown and M. F. Fingas, “Review of the development of laser fluorosensors for oil spill application,” Mar. Pollut. Bull.47(9-12), 477–484 (2003).
[CrossRef] [PubMed]

Fuchs, E.

E. Fuchs, R. C. Zimmerman, and J. S. Jaffe, “The effect of elevated levels of phaeophytin in natural waters on variable fluorescence measured from phytoplankton,” J. Plankton Res.24(11), 1221–1229 (2002).
[CrossRef]

Gikuma-Njuru, P.

R. Alexander, P. Gikuma-Njuru, and J. Imberger, “Identifying spatial structure in phytoplankton communities using multi-wavelength fluorescence spectral data and principal component analysis,” Limnol. Oceanogr. Methods10, 402–415 (2012).
[CrossRef]

Glynn, T. J.

A. G. Ryder, T. J. Glynn, M. Feely, and A. J. G. Barwise, “Characterization of crude oils using fluorescence lifetime data,” Spectrochim. Acta A Mol. Biomol. Spectrosc.58(5), 1025–1037 (2002).
[CrossRef] [PubMed]

Goericke, R.

A. M. Chekalyuk, M. Landry, R. Goericke, A. G. Taylor, and M. Hafez, “Laser fluorescence analysis of phytoplankton across a frontal zone in the California Current ecosystem,” J. Plankton Res.34(9), 761–777 (2012).
[CrossRef]

Gorbunov, M. Y.

T. S. Bibby, M. Y. Gorbunov, K. W. Wyman, and P. G. Falkowski, “Photosynthetic community responses to upwelling in mesoscale eddies in the subtropical North Atlantic and Pacific Oceans,” Deep Sea Res. Part II Top. Stud. Oceanogr.55(10-13), 1310–1320 (2008).
[CrossRef]

A. M. Chekalyuk, A. A. Demidov, V. V. Fadeev, and M. Y. Gorbunov, “Lidar monitoring of phytoplankton and organic matter in the inner seas of Europe-EARSeL,” Adv. Remote Sens.3, 131–139 (1995).

Guajardo, R. C.

T. L. Richardson, E. Lawrenz, J. L. Pinckney, R. C. Guajardo, E. A. Walker, H. W. Paerl, and H. L. MacIntyre, “Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser,” Water Res.44(8), 2461–2472 (2010).
[CrossRef] [PubMed]

Guerard, J. J.

R. M. Cory, M. P. Miller, D. M. McKnight, J. J. Guerard, and P. L. Miller, “Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra,” Limnol. Oceanogr. Methods8, 67–78 (2010).
[CrossRef]

Guinet, C.

X. G. Xing, H. Claustre, S. Blain, F. D'Ortenzio, D. Antoine, J. Ras, and C. Guinet, “Quenching correction for in vivo chlorophyll fluorescence acquired by autonomous platforms: a case study with instrumented elephant seals in the Kerguelen region (Southern Ocean),” Limnol. Oceanogr. Methods10, 483–495 (2012).

Guo, L. D.

Z. Z. Zhou, L. D. Guo, A. M. Shiller, S. E. Lohrenz, V. L. Asper, and C. L. Osburn, “Characterization of oil components from the Deepwater Horizon oil spill in the Gulf of Mexico using fluorescence EEM and PARAFAC techniques,” Mar. Chem.148, 10–21 (2013).
[CrossRef]

Z. Z. Zhou, Z. F. Liu, and L. D. Guo, “Chemical evolution of Macondo crude oil during laboratory degradation as characterized by fluorescence EEMs and hydrocarbon composition,” Mar. Pollut. Bull.66(1-2), 164–175 (2013).
[CrossRef] [PubMed]

Z. Z. Zhou and L. D. Guo, “Evolution of the optical properties of seawater influenced by the Deepwater Horizon oil spill in the Gulf of Mexico,” Environ. Res. Lett.7(2), 025301 (2012), doi:.
[CrossRef]

Haas, R. C.

R. J. Exton, W. M. Houghton, W. Esaias, R. C. Haas, and D. Hayward, “Spectral differences and temporal stability of phycoerythrin fluorescence in estuarine and coastal waters due to the domination of labile cryptophytes and stabile cyanibacteria,” Limnol. Oceanogr.28(6), 1225–1231 (1983).
[CrossRef]

Hafez, M.

A. M. Chekalyuk, M. Landry, R. Goericke, A. G. Taylor, and M. Hafez, “Laser fluorescence analysis of phytoplankton across a frontal zone in the California Current ecosystem,” J. Plankton Res.34(9), 761–777 (2012).
[CrossRef]

A. M. Chekalyuk and M. Hafez, “Photo-physiological variability in phytoplankton chlorophyll fluorescence and assessment of chlorophyll concentration,” Opt. Express19(23), 22643–22658 (2011).
[CrossRef] [PubMed]

A. M. Chekalyuk and M. Hafez, “Advanced laser fluorometry of natural aquatic environments,” Limnol. Oceanogr. Methods6, 591–609 (2008).
[CrossRef]

Hamlaoui, S.

A. Catherine, N. Escoffier, A. Belhocine, A. B. Nasri, S. Hamlaoui, C. Yéprémian, C. Bernard, and M. Troussellier, “On the use of the FluoroProbe®, a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs,” Water Res.46(6), 1771–1784 (2012).
[CrossRef] [PubMed]

Hansen, U. P.

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U. P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res.72(1), 39–53 (2002).
[CrossRef] [PubMed]

Harriss, R. C.

Hayward, D.

R. J. Exton, W. M. Houghton, W. Esaias, R. C. Haas, and D. Hayward, “Spectral differences and temporal stability of phycoerythrin fluorescence in estuarine and coastal waters due to the domination of labile cryptophytes and stabile cyanibacteria,” Limnol. Oceanogr.28(6), 1225–1231 (1983).
[CrossRef]

Hodges, B.

R. E. Davis, M. D. Ohman, D. L. Rudnick, J. T. Sherman, and B. Hodges, “Glider surveillance of physics and biology in the southern California Current System,” Limnol. Oceanogr.53(5_part_2), 2151–2168 (2008).
[CrossRef]

Hoge, F. E.

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, and R. N. Swift, “Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics,” Photosynth. Res.66(1/2), 33–44 (2000).
[CrossRef] [PubMed]

F. E. Hoge and R. N. Swift, “Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments,” Appl. Opt.20(18), 3197–3205 (1981).
[CrossRef] [PubMed]

Hou, S. L.

Q. Q. Liu, C. Y. Wang, X. F. Shi, W. D. Li, X. N. Luan, S. L. Hou, J. L. Zhang, and R. E. Zheng, “Identification of spill oil species based on low concentration synchronous fluorescence spectra and RBF neural network,” Spectrosc. Spect. Anal. 32(4), 1012–1015 (2012).
[PubMed]

Houghton, W. M.

R. J. Exton, W. M. Houghton, W. Esaias, R. C. Haas, and D. Hayward, “Spectral differences and temporal stability of phycoerythrin fluorescence in estuarine and coastal waters due to the domination of labile cryptophytes and stabile cyanibacteria,” Limnol. Oceanogr.28(6), 1225–1231 (1983).
[CrossRef]

R. J. Exton, W. M. Houghton, W. E. Esaias, R. C. Harriss, F. H. Farmer, and H. H. White, “Laboratory analysis of techniques for remote sensing of estuarine parameters using laser excitation,” Appl. Opt.22(1), 54–64 (1983).
[CrossRef] [PubMed]

Hudson, N.

N. Hudson, A. Baker, and D. Reynolds, “Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters – a review,” River Res. Appl.23(6), 631–649 (2007).
[CrossRef]

Huot, Y.

S. G. H. Simis, Y. Huot, M. Babin, J. Seppälä, and L. Metsamaa, “Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria,” Photosynth. Res.112(1), 13–30 (2012).
[CrossRef] [PubMed]

Imberger, J.

R. Alexander and J. Imberger, “Phytoplankton patchiness in Winam Gulf, Lake Victoria: a study using principal component analysis of in situ fluorescent excitation spectra,” Freshw. Biol.58(2), 275–291 (2013).
[CrossRef]

R. Alexander, P. Gikuma-Njuru, and J. Imberger, “Identifying spatial structure in phytoplankton communities using multi-wavelength fluorescence spectral data and principal component analysis,” Limnol. Oceanogr. Methods10, 402–415 (2012).
[CrossRef]

Jaffe, J. S.

E. Fuchs, R. C. Zimmerman, and J. S. Jaffe, “The effect of elevated levels of phaeophytin in natural waters on variable fluorescence measured from phytoplankton,” J. Plankton Res.24(11), 1221–1229 (2002).
[CrossRef]

Kaitala, S.

L. Poryvkina, S. Babichenko, S. Kaitala, H. Kuosa, and A. Shalapjonok, “Spectral fluorescence signatures in the characterization of phytoplankton community composition,” J. Plankton Res.16(10), 1315–1327 (1994).
[CrossRef]

S. Babichenko, L. Poryvkina, V. Arikese, S. Kaitala, and H. Kuosa, “Remote sensing of phytoplankton using laser induced fluorescence,” Remote Sens. Environ.45(1), 43–50 (1993).
[CrossRef]

Kiefer, D. A.

P. Falkowski and D. A. Kiefer, “Chlorophyll-a fluorescence in phytoplankton - relationship to photosynthesis and biomass,” J. Plankton Res.7(5), 715–731 (1985).
[CrossRef]

Klughammer, C.

U. Schreiber, C. Klughammer, and J. Kolbowski, “Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer,” Photosynth. Res.113(1-3), 127–144 (2012).
[CrossRef] [PubMed]

Klyshko, D. N.

D. N. Klyshko and V. V. Fadeev, “Remote determination of concentration of impurities in water by the laser spectroscopy method with calibration by Raman scattering,” Sov. Phys. Dokl.23, 55–59 (1978).

Koch, B. P.

R. Röttgers and B. P. Koch, “Spectroscopic detection of a ubiquitous dissolved pigment degradation product in subsurface waters of the global ocean,” Biogeosciences9(7), 2585–2596 (2012).
[CrossRef]

Kokubu, Y.

M. J. Doubell, H. Yamazaki, H. Li, and Y. Kokubu, “An advanced laser-based fluorescence microstructure profiler (TurboMAP-L) for measuring bio-physical coupling in aquatic systems,” J. Plankton Res.31(12), 1441–1452 (2009).
[CrossRef]

Kolber, Z.

P. G. Falkowski and Z. Kolber, “Variations in chlorophyll fluorescence yields in phytoplankton in the world oceans,” Aust. J. Plant Physiol.22(2), 341–355 (1995).
[CrossRef]

Z. Kolber and P. G. Falkowski, “Use of active fluorescence to estimate phytoplankton photosynthesis in situ,” Limnol. Oceanogr.38(8), 1646–1665 (1993).
[CrossRef]

Kolber, Z. S.

Z. S. Kolber, O. Prasil, and P. G. Falkowski, “Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols,” Biochim. Biophys. Acta1367(1-3), 88–106 (1998).
[CrossRef] [PubMed]

Kolbowski, J.

U. Schreiber, C. Klughammer, and J. Kolbowski, “Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer,” Photosynth. Res.113(1-3), 127–144 (2012).
[CrossRef] [PubMed]

Krause, G. H.

G. H. Krause and E. Weis, “Chlorophyll fluorescence and photosynthesis - the basics,” Annu. Rev. Plant Physiol.42(1), 313–349 (1991).
[CrossRef]

Kuosa, H.

L. Poryvkina, S. Babichenko, S. Kaitala, H. Kuosa, and A. Shalapjonok, “Spectral fluorescence signatures in the characterization of phytoplankton community composition,” J. Plankton Res.16(10), 1315–1327 (1994).
[CrossRef]

S. Babichenko, L. Poryvkina, V. Arikese, S. Kaitala, and H. Kuosa, “Remote sensing of phytoplankton using laser induced fluorescence,” Remote Sens. Environ.45(1), 43–50 (1993).
[CrossRef]

Landry, M.

A. M. Chekalyuk, M. Landry, R. Goericke, A. G. Taylor, and M. Hafez, “Laser fluorescence analysis of phytoplankton across a frontal zone in the California Current ecosystem,” J. Plankton Res.34(9), 761–777 (2012).
[CrossRef]

Laney, S. R.

S. R. Laney and R. M. Letelier, “Artifacts in measurements of chlorophyll fluorescence transients, with specific application to fast repetition rate fluorometry,” Limnol. Oceanogr. Methods6, 40–50 (2008).
[CrossRef]

Lavaud, J.

G. Parésys, C. Rigart, B. Rousseau, A. W. M. Wong, F. Fan, J. P. Barbier, and J. Lavaud, “Quantitative and qualitative evaluation of phytoplankton communities by trichromatic chlorophyll fluorescence excitation with special focus on cyanobacteria,” Water Res.39(5), 911–921 (2005).
[CrossRef] [PubMed]

Lawrenz, E.

T. L. Richardson, E. Lawrenz, J. L. Pinckney, R. C. Guajardo, E. A. Walker, H. W. Paerl, and H. L. MacIntyre, “Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser,” Water Res.44(8), 2461–2472 (2010).
[CrossRef] [PubMed]

Lee, C. M.

M. J. Perry, B. S. Sackmann, C. C. Eriksen, and C. M. Lee, “Seaglider observations of blooms and subsurface chlorophyll maxima off the Washington coast,” Limnol. Oceanogr.53(5_part_2), 2169–2179 (2008).
[CrossRef]

Letelier, R. M.

S. R. Laney and R. M. Letelier, “Artifacts in measurements of chlorophyll fluorescence transients, with specific application to fast repetition rate fluorometry,” Limnol. Oceanogr. Methods6, 40–50 (2008).
[CrossRef]

Li, H.

M. J. Doubell, H. Yamazaki, H. Li, and Y. Kokubu, “An advanced laser-based fluorescence microstructure profiler (TurboMAP-L) for measuring bio-physical coupling in aquatic systems,” J. Plankton Res.31(12), 1441–1452 (2009).
[CrossRef]

Li, W. D.

Q. Q. Liu, C. Y. Wang, X. F. Shi, W. D. Li, X. N. Luan, S. L. Hou, J. L. Zhang, and R. E. Zheng, “Identification of spill oil species based on low concentration synchronous fluorescence spectra and RBF neural network,” Spectrosc. Spect. Anal. 32(4), 1012–1015 (2012).
[PubMed]

Liu, Q. Q.

Q. Q. Liu, C. Y. Wang, X. F. Shi, W. D. Li, X. N. Luan, S. L. Hou, J. L. Zhang, and R. E. Zheng, “Identification of spill oil species based on low concentration synchronous fluorescence spectra and RBF neural network,” Spectrosc. Spect. Anal. 32(4), 1012–1015 (2012).
[PubMed]

Liu, Z. F.

Z. Z. Zhou, Z. F. Liu, and L. D. Guo, “Chemical evolution of Macondo crude oil during laboratory degradation as characterized by fluorescence EEMs and hydrocarbon composition,” Mar. Pollut. Bull.66(1-2), 164–175 (2013).
[CrossRef] [PubMed]

Lohrenz, S. E.

Z. Z. Zhou, L. D. Guo, A. M. Shiller, S. E. Lohrenz, V. L. Asper, and C. L. Osburn, “Characterization of oil components from the Deepwater Horizon oil spill in the Gulf of Mexico using fluorescence EEM and PARAFAC techniques,” Mar. Chem.148, 10–21 (2013).
[CrossRef]

Luan, X. N.

Q. Q. Liu, C. Y. Wang, X. F. Shi, W. D. Li, X. N. Luan, S. L. Hou, J. L. Zhang, and R. E. Zheng, “Identification of spill oil species based on low concentration synchronous fluorescence spectra and RBF neural network,” Spectrosc. Spect. Anal. 32(4), 1012–1015 (2012).
[PubMed]

Lüring, C.

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U. P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res.72(1), 39–53 (2002).
[CrossRef] [PubMed]

MacIntyre, H. L.

T. L. Richardson, E. Lawrenz, J. L. Pinckney, R. C. Guajardo, E. A. Walker, H. W. Paerl, and H. L. MacIntyre, “Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser,” Water Res.44(8), 2461–2472 (2010).
[CrossRef] [PubMed]

Manov, D.

X. Yu, T. Dickey, J. Bellingham, D. Manov, and K. Streitlien, “The application of autonomous underwater vehicles for interdisciplinary measurements in Massachusetts and Cape Cod Bays,” Cont. Shelf Res.22(15), 2225–2245 (2002).
[CrossRef]

McKnight, D. M.

R. M. Cory, M. P. Miller, D. M. McKnight, J. J. Guerard, and P. L. Miller, “Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra,” Limnol. Oceanogr. Methods8, 67–78 (2010).
[CrossRef]

Metsamaa, L.

S. G. H. Simis, Y. Huot, M. Babin, J. Seppälä, and L. Metsamaa, “Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria,” Photosynth. Res.112(1), 13–30 (2012).
[CrossRef] [PubMed]

Meyer, B.

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U. P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res.72(1), 39–53 (2002).
[CrossRef] [PubMed]

Meyerhöfer, M.

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U. P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res.72(1), 39–53 (2002).
[CrossRef] [PubMed]

Miller, M. P.

R. M. Cory, M. P. Miller, D. M. McKnight, J. J. Guerard, and P. L. Miller, “Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra,” Limnol. Oceanogr. Methods8, 67–78 (2010).
[CrossRef]

Miller, P. L.

R. M. Cory, M. P. Miller, D. M. McKnight, J. J. Guerard, and P. L. Miller, “Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra,” Limnol. Oceanogr. Methods8, 67–78 (2010).
[CrossRef]

Mitchell, J. G.

M. J. Doubell, L. Seuront, J. R. Seymour, N. L. Patten, and J. G. Mitchell, “High resolution fluorometer for mapping microscale phytoplankton distributions,” Appl. Environ. Microbiol.72(6), 4475–4478 (2006).
[CrossRef] [PubMed]

Moldaenke, C.

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U. P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res.72(1), 39–53 (2002).
[CrossRef] [PubMed]

Muller-Karger, F. E.

C. E. Del Castillo, P. G. Coble, R. N. Conmy, F. E. Muller-Karger, L. Vanderbloemen, and G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River plume in the West Florida Shelf,” Limnol. Oceanogr.46(7), 1836–1843 (2001).
[CrossRef]

Nahorniak, M. L.

M. L. Nahorniak and K. S. Booksh, “Excitation-emission matrix fluorescence spectroscopy in conjunction with multiway analysis for PAH detection in complex matrices,” Analyst (Lond.)131(12), 1308–1315 (2006).
[CrossRef] [PubMed]

Nasri, A. B.

A. Catherine, N. Escoffier, A. Belhocine, A. B. Nasri, S. Hamlaoui, C. Yéprémian, C. Bernard, and M. Troussellier, “On the use of the FluoroProbe®, a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs,” Water Res.46(6), 1771–1784 (2012).
[CrossRef] [PubMed]

Nebbioso, A.

A. Nebbioso and A. Piccolo, “Molecular characterization of dissolved organic matter (DOM): a critical review,” Anal. Bioanal. Chem.405(1), 109–124 (2013).
[CrossRef] [PubMed]

Neubauer, C.

U. Schreiber, C. Neubauer, and U. Schliwa, “PAM fluorometer based on medium-frequency pulsed Xe-flash measuring light: a highly sensitive new tool in basic and applied photosynthesis research,” Photosynth. Res.36(1), 65–72 (1993).
[CrossRef]

Neuer, S.

T. J. Cowles, R. A. Desiderio, and S. Neuer, “In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra,” Mar. Biol.115(2), 217–222 (1993).
[CrossRef]

Neveux, J.

Y. Dandonneau and J. Neveux, “Diel variations of in vivo fluorescence in the eastern equatorial Pacific: an unvarying pattern,” Deep Sea Res. Part II Top. Stud. Oceanogr.44(9-10), 1869–1880 (1997).
[CrossRef]

Ohman, M. D.

R. E. Davis, M. D. Ohman, D. L. Rudnick, J. T. Sherman, and B. Hodges, “Glider surveillance of physics and biology in the southern California Current System,” Limnol. Oceanogr.53(5_part_2), 2151–2168 (2008).
[CrossRef]

Oldham, P. B.

P. B. Oldham and I. M. Warner, “Analysis of natural phytoplankton populations by pattern recognition of two dimensional fluorescence spectra,” Spectrosc. Lett.20(5), 391–413 (1987).
[CrossRef]

Olson, R. J.

R. J. Olson, H. M. Sosik, and A. M. Chekalyuk, “Photosynthetic characteristics of marine phytoplankton from pump-during-probe fluorometry of individual cells at sea,” Cytometry37(1), 1–13 (1999).
[CrossRef] [PubMed]

R. J. Olson, A. M. Chekalyuk, and H. M. Sosik, “Phytoplankton photosynthetic characteristics from fluorescence induction assays of individual cells,” Limnol. Oceanogr.41(6), 1253–1263 (1996).
[CrossRef]

Osburn, C. L.

Z. Z. Zhou, L. D. Guo, A. M. Shiller, S. E. Lohrenz, V. L. Asper, and C. L. Osburn, “Characterization of oil components from the Deepwater Horizon oil spill in the Gulf of Mexico using fluorescence EEM and PARAFAC techniques,” Mar. Chem.148, 10–21 (2013).
[CrossRef]

Paerl, H. W.

T. L. Richardson, E. Lawrenz, J. L. Pinckney, R. C. Guajardo, E. A. Walker, H. W. Paerl, and H. L. MacIntyre, “Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser,” Water Res.44(8), 2461–2472 (2010).
[CrossRef] [PubMed]

Parésys, G.

G. Parésys, C. Rigart, B. Rousseau, A. W. M. Wong, F. Fan, J. P. Barbier, and J. Lavaud, “Quantitative and qualitative evaluation of phytoplankton communities by trichromatic chlorophyll fluorescence excitation with special focus on cyanobacteria,” Water Res.39(5), 911–921 (2005).
[CrossRef] [PubMed]

Patten, N. L.

M. J. Doubell, L. Seuront, J. R. Seymour, N. L. Patten, and J. G. Mitchell, “High resolution fluorometer for mapping microscale phytoplankton distributions,” Appl. Environ. Microbiol.72(6), 4475–4478 (2006).
[CrossRef] [PubMed]

Perry, M. J.

M. J. Perry, B. S. Sackmann, C. C. Eriksen, and C. M. Lee, “Seaglider observations of blooms and subsurface chlorophyll maxima off the Washington coast,” Limnol. Oceanogr.53(5_part_2), 2169–2179 (2008).
[CrossRef]

Piccolo, A.

A. Nebbioso and A. Piccolo, “Molecular characterization of dissolved organic matter (DOM): a critical review,” Anal. Bioanal. Chem.405(1), 109–124 (2013).
[CrossRef] [PubMed]

Pinckney, J. L.

T. L. Richardson, E. Lawrenz, J. L. Pinckney, R. C. Guajardo, E. A. Walker, H. W. Paerl, and H. L. MacIntyre, “Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser,” Water Res.44(8), 2461–2472 (2010).
[CrossRef] [PubMed]

Poryvkina, L.

L. Poryvkina, S. Babichenko, S. Kaitala, H. Kuosa, and A. Shalapjonok, “Spectral fluorescence signatures in the characterization of phytoplankton community composition,” J. Plankton Res.16(10), 1315–1327 (1994).
[CrossRef]

S. Babichenko, L. Poryvkina, V. Arikese, S. Kaitala, and H. Kuosa, “Remote sensing of phytoplankton using laser induced fluorescence,” Remote Sens. Environ.45(1), 43–50 (1993).
[CrossRef]

Prasil, O.

Z. S. Kolber, O. Prasil, and P. G. Falkowski, “Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols,” Biochim. Biophys. Acta1367(1-3), 88–106 (1998).
[CrossRef] [PubMed]

Proctor, C. W.

C. W. Proctor and C. S. Roesler, “New insights on obtaining phytoplankton concentration and composition from in situ multispectral chlorophyll fluorescence,” Limnol. Oceanogr. Methods8, 695–708 (2010).
[CrossRef]

Raateoja, M.

M. Raateoja, J. Seppala, and P. Ylostalo, “Fast repetition rate fluorometry is not applicable to studies of filamentous cyanobacteria from the Baltic Sea,” Limnol. Oceanogr.49(4), 1006–1012 (2004).
[CrossRef]

Ras, J.

X. G. Xing, H. Claustre, S. Blain, F. D'Ortenzio, D. Antoine, J. Ras, and C. Guinet, “Quenching correction for in vivo chlorophyll fluorescence acquired by autonomous platforms: a case study with instrumented elephant seals in the Kerguelen region (Southern Ocean),” Limnol. Oceanogr. Methods10, 483–495 (2012).

Reynolds, D.

N. Hudson, A. Baker, and D. Reynolds, “Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters – a review,” River Res. Appl.23(6), 631–649 (2007).
[CrossRef]

Richardson, T. L.

T. L. Richardson, E. Lawrenz, J. L. Pinckney, R. C. Guajardo, E. A. Walker, H. W. Paerl, and H. L. MacIntyre, “Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser,” Water Res.44(8), 2461–2472 (2010).
[CrossRef] [PubMed]

Rigart, C.

G. Parésys, C. Rigart, B. Rousseau, A. W. M. Wong, F. Fan, J. P. Barbier, and J. Lavaud, “Quantitative and qualitative evaluation of phytoplankton communities by trichromatic chlorophyll fluorescence excitation with special focus on cyanobacteria,” Water Res.39(5), 911–921 (2005).
[CrossRef] [PubMed]

Roesler, C. S.

C. W. Proctor and C. S. Roesler, “New insights on obtaining phytoplankton concentration and composition from in situ multispectral chlorophyll fluorescence,” Limnol. Oceanogr. Methods8, 695–708 (2010).
[CrossRef]

Röttgers, R.

R. Röttgers and B. P. Koch, “Spectroscopic detection of a ubiquitous dissolved pigment degradation product in subsurface waters of the global ocean,” Biogeosciences9(7), 2585–2596 (2012).
[CrossRef]

Rousseau, B.

G. Parésys, C. Rigart, B. Rousseau, A. W. M. Wong, F. Fan, J. P. Barbier, and J. Lavaud, “Quantitative and qualitative evaluation of phytoplankton communities by trichromatic chlorophyll fluorescence excitation with special focus on cyanobacteria,” Water Res.39(5), 911–921 (2005).
[CrossRef] [PubMed]

Rudnick, D. L.

R. E. Davis, M. D. Ohman, D. L. Rudnick, J. T. Sherman, and B. Hodges, “Glider surveillance of physics and biology in the southern California Current System,” Limnol. Oceanogr.53(5_part_2), 2151–2168 (2008).
[CrossRef]

Ryder, A. G.

A. G. Ryder, T. J. Glynn, M. Feely, and A. J. G. Barwise, “Characterization of crude oils using fluorescence lifetime data,” Spectrochim. Acta A Mol. Biomol. Spectrosc.58(5), 1025–1037 (2002).
[CrossRef] [PubMed]

Sackmann, B. S.

M. J. Perry, B. S. Sackmann, C. C. Eriksen, and C. M. Lee, “Seaglider observations of blooms and subsurface chlorophyll maxima off the Washington coast,” Limnol. Oceanogr.53(5_part_2), 2169–2179 (2008).
[CrossRef]

Schliwa, U.

U. Schreiber, C. Neubauer, and U. Schliwa, “PAM fluorometer based on medium-frequency pulsed Xe-flash measuring light: a highly sensitive new tool in basic and applied photosynthesis research,” Photosynth. Res.36(1), 65–72 (1993).
[CrossRef]

Schreiber, U.

U. Schreiber, C. Klughammer, and J. Kolbowski, “Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer,” Photosynth. Res.113(1-3), 127–144 (2012).
[CrossRef] [PubMed]

U. Schreiber, C. Neubauer, and U. Schliwa, “PAM fluorometer based on medium-frequency pulsed Xe-flash measuring light: a highly sensitive new tool in basic and applied photosynthesis research,” Photosynth. Res.36(1), 65–72 (1993).
[CrossRef]

Seppala, J.

M. Raateoja, J. Seppala, and P. Ylostalo, “Fast repetition rate fluorometry is not applicable to studies of filamentous cyanobacteria from the Baltic Sea,” Limnol. Oceanogr.49(4), 1006–1012 (2004).
[CrossRef]

Seppälä, J.

S. G. H. Simis, Y. Huot, M. Babin, J. Seppälä, and L. Metsamaa, “Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria,” Photosynth. Res.112(1), 13–30 (2012).
[CrossRef] [PubMed]

J. Seppälä and M. Balode, “The use of spectral fluorescence methods to detect changes in the phytoplankton community,” Hydrobiologia363(1/3), 207–217 (1997).
[CrossRef]

Seuront, L.

M. J. Doubell, L. Seuront, J. R. Seymour, N. L. Patten, and J. G. Mitchell, “High resolution fluorometer for mapping microscale phytoplankton distributions,” Appl. Environ. Microbiol.72(6), 4475–4478 (2006).
[CrossRef] [PubMed]

Seymour, J. R.

M. J. Doubell, L. Seuront, J. R. Seymour, N. L. Patten, and J. G. Mitchell, “High resolution fluorometer for mapping microscale phytoplankton distributions,” Appl. Environ. Microbiol.72(6), 4475–4478 (2006).
[CrossRef] [PubMed]

Shalapjonok, A.

L. Poryvkina, S. Babichenko, S. Kaitala, H. Kuosa, and A. Shalapjonok, “Spectral fluorescence signatures in the characterization of phytoplankton community composition,” J. Plankton Res.16(10), 1315–1327 (1994).
[CrossRef]

Sherman, J. T.

R. E. Davis, M. D. Ohman, D. L. Rudnick, J. T. Sherman, and B. Hodges, “Glider surveillance of physics and biology in the southern California Current System,” Limnol. Oceanogr.53(5_part_2), 2151–2168 (2008).
[CrossRef]

Shi, X. F.

Q. Q. Liu, C. Y. Wang, X. F. Shi, W. D. Li, X. N. Luan, S. L. Hou, J. L. Zhang, and R. E. Zheng, “Identification of spill oil species based on low concentration synchronous fluorescence spectra and RBF neural network,” Spectrosc. Spect. Anal. 32(4), 1012–1015 (2012).
[PubMed]

Shiller, A. M.

Z. Z. Zhou, L. D. Guo, A. M. Shiller, S. E. Lohrenz, V. L. Asper, and C. L. Osburn, “Characterization of oil components from the Deepwater Horizon oil spill in the Gulf of Mexico using fluorescence EEM and PARAFAC techniques,” Mar. Chem.148, 10–21 (2013).
[CrossRef]

Simis, S. G. H.

S. G. H. Simis, Y. Huot, M. Babin, J. Seppälä, and L. Metsamaa, “Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria,” Photosynth. Res.112(1), 13–30 (2012).
[CrossRef] [PubMed]

Sosik, H. M.

R. J. Olson, H. M. Sosik, and A. M. Chekalyuk, “Photosynthetic characteristics of marine phytoplankton from pump-during-probe fluorometry of individual cells at sea,” Cytometry37(1), 1–13 (1999).
[CrossRef] [PubMed]

R. J. Olson, A. M. Chekalyuk, and H. M. Sosik, “Phytoplankton photosynthetic characteristics from fluorescence induction assays of individual cells,” Limnol. Oceanogr.41(6), 1253–1263 (1996).
[CrossRef]

Streitlien, K.

X. Yu, T. Dickey, J. Bellingham, D. Manov, and K. Streitlien, “The application of autonomous underwater vehicles for interdisciplinary measurements in Massachusetts and Cape Cod Bays,” Cont. Shelf Res.22(15), 2225–2245 (2002).
[CrossRef]

Swift, R. N.

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, and R. N. Swift, “Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics,” Photosynth. Res.66(1/2), 33–44 (2000).
[CrossRef] [PubMed]

F. E. Hoge and R. N. Swift, “Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments,” Appl. Opt.20(18), 3197–3205 (1981).
[CrossRef] [PubMed]

Taylor, A. G.

A. M. Chekalyuk, M. Landry, R. Goericke, A. G. Taylor, and M. Hafez, “Laser fluorescence analysis of phytoplankton across a frontal zone in the California Current ecosystem,” J. Plankton Res.34(9), 761–777 (2012).
[CrossRef]

Troussellier, M.

A. Catherine, N. Escoffier, A. Belhocine, A. B. Nasri, S. Hamlaoui, C. Yéprémian, C. Bernard, and M. Troussellier, “On the use of the FluoroProbe®, a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs,” Water Res.46(6), 1771–1784 (2012).
[CrossRef] [PubMed]

Vanderbloemen, L.

C. E. Del Castillo, P. G. Coble, R. N. Conmy, F. E. Muller-Karger, L. Vanderbloemen, and G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River plume in the West Florida Shelf,” Limnol. Oceanogr.46(7), 1836–1843 (2001).
[CrossRef]

Vargo, G. A.

C. E. Del Castillo, P. G. Coble, R. N. Conmy, F. E. Muller-Karger, L. Vanderbloemen, and G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River plume in the West Florida Shelf,” Limnol. Oceanogr.46(7), 1836–1843 (2001).
[CrossRef]

Walker, E. A.

T. L. Richardson, E. Lawrenz, J. L. Pinckney, R. C. Guajardo, E. A. Walker, H. W. Paerl, and H. L. MacIntyre, “Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser,” Water Res.44(8), 2461–2472 (2010).
[CrossRef] [PubMed]

Wang, C. Y.

Q. Q. Liu, C. Y. Wang, X. F. Shi, W. D. Li, X. N. Luan, S. L. Hou, J. L. Zhang, and R. E. Zheng, “Identification of spill oil species based on low concentration synchronous fluorescence spectra and RBF neural network,” Spectrosc. Spect. Anal. 32(4), 1012–1015 (2012).
[PubMed]

Warner, I. M.

P. B. Oldham and I. M. Warner, “Analysis of natural phytoplankton populations by pattern recognition of two dimensional fluorescence spectra,” Spectrosc. Lett.20(5), 391–413 (1987).
[CrossRef]

Weis, E.

G. H. Krause and E. Weis, “Chlorophyll fluorescence and photosynthesis - the basics,” Annu. Rev. Plant Physiol.42(1), 313–349 (1991).
[CrossRef]

White, H. H.

Wiltshire, K. H.

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U. P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res.72(1), 39–53 (2002).
[CrossRef] [PubMed]

Wirick, C. D.

C. D. Wirick, “Exchange of phytoplankton across the continental shelf-slope boundary of the Middle Atlantic Bight during spring 1988,” Deep Sea Res. Part II Top. Stud. Oceanogr.41(2-3), 391–410 (1994).
[CrossRef]

Wong, A. W. M.

G. Parésys, C. Rigart, B. Rousseau, A. W. M. Wong, F. Fan, J. P. Barbier, and J. Lavaud, “Quantitative and qualitative evaluation of phytoplankton communities by trichromatic chlorophyll fluorescence excitation with special focus on cyanobacteria,” Water Res.39(5), 911–921 (2005).
[CrossRef] [PubMed]

Wright, C. W.

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, and R. N. Swift, “Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics,” Photosynth. Res.66(1/2), 33–44 (2000).
[CrossRef] [PubMed]

Wyman, K. W.

T. S. Bibby, M. Y. Gorbunov, K. W. Wyman, and P. G. Falkowski, “Photosynthetic community responses to upwelling in mesoscale eddies in the subtropical North Atlantic and Pacific Oceans,” Deep Sea Res. Part II Top. Stud. Oceanogr.55(10-13), 1310–1320 (2008).
[CrossRef]

Xing, X. G.

X. G. Xing, H. Claustre, S. Blain, F. D'Ortenzio, D. Antoine, J. Ras, and C. Guinet, “Quenching correction for in vivo chlorophyll fluorescence acquired by autonomous platforms: a case study with instrumented elephant seals in the Kerguelen region (Southern Ocean),” Limnol. Oceanogr. Methods10, 483–495 (2012).

Yacobi, Y. Z.

Y. Z. Yacobi, “From Tswett to identified flying objects: A concise history of chlorophyll a use for quantification of phytoplankton,” Isr. J. Plant Sci.60(1), 243–251 (2012).
[CrossRef]

Yamazaki, H.

M. J. Doubell, H. Yamazaki, H. Li, and Y. Kokubu, “An advanced laser-based fluorescence microstructure profiler (TurboMAP-L) for measuring bio-physical coupling in aquatic systems,” J. Plankton Res.31(12), 1441–1452 (2009).
[CrossRef]

Yentsch, C. M.

C. S. Yentsch and C. M. Yentsch, “Fluorescence spectral signatures characterization of phytoplankton populations by the use of excitation and emission spectra,” J. Mar. Res.37, 471–483 (1979).

Yentsch, C. S.

C. S. Yentsch and C. M. Yentsch, “Fluorescence spectral signatures characterization of phytoplankton populations by the use of excitation and emission spectra,” J. Mar. Res.37, 471–483 (1979).

Yéprémian, C.

A. Catherine, N. Escoffier, A. Belhocine, A. B. Nasri, S. Hamlaoui, C. Yéprémian, C. Bernard, and M. Troussellier, “On the use of the FluoroProbe®, a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs,” Water Res.46(6), 1771–1784 (2012).
[CrossRef] [PubMed]

Ylostalo, P.

M. Raateoja, J. Seppala, and P. Ylostalo, “Fast repetition rate fluorometry is not applicable to studies of filamentous cyanobacteria from the Baltic Sea,” Limnol. Oceanogr.49(4), 1006–1012 (2004).
[CrossRef]

Yu, X.

X. Yu, T. Dickey, J. Bellingham, D. Manov, and K. Streitlien, “The application of autonomous underwater vehicles for interdisciplinary measurements in Massachusetts and Cape Cod Bays,” Cont. Shelf Res.22(15), 2225–2245 (2002).
[CrossRef]

Zhang, J. L.

Q. Q. Liu, C. Y. Wang, X. F. Shi, W. D. Li, X. N. Luan, S. L. Hou, J. L. Zhang, and R. E. Zheng, “Identification of spill oil species based on low concentration synchronous fluorescence spectra and RBF neural network,” Spectrosc. Spect. Anal. 32(4), 1012–1015 (2012).
[PubMed]

Zheng, R. E.

Q. Q. Liu, C. Y. Wang, X. F. Shi, W. D. Li, X. N. Luan, S. L. Hou, J. L. Zhang, and R. E. Zheng, “Identification of spill oil species based on low concentration synchronous fluorescence spectra and RBF neural network,” Spectrosc. Spect. Anal. 32(4), 1012–1015 (2012).
[PubMed]

Zhou, Z. Z.

Z. Z. Zhou, Z. F. Liu, and L. D. Guo, “Chemical evolution of Macondo crude oil during laboratory degradation as characterized by fluorescence EEMs and hydrocarbon composition,” Mar. Pollut. Bull.66(1-2), 164–175 (2013).
[CrossRef] [PubMed]

Z. Z. Zhou, L. D. Guo, A. M. Shiller, S. E. Lohrenz, V. L. Asper, and C. L. Osburn, “Characterization of oil components from the Deepwater Horizon oil spill in the Gulf of Mexico using fluorescence EEM and PARAFAC techniques,” Mar. Chem.148, 10–21 (2013).
[CrossRef]

Z. Z. Zhou and L. D. Guo, “Evolution of the optical properties of seawater influenced by the Deepwater Horizon oil spill in the Gulf of Mexico,” Environ. Res. Lett.7(2), 025301 (2012), doi:.
[CrossRef]

Zimmerman, R. C.

E. Fuchs, R. C. Zimmerman, and J. S. Jaffe, “The effect of elevated levels of phaeophytin in natural waters on variable fluorescence measured from phytoplankton,” J. Plankton Res.24(11), 1221–1229 (2002).
[CrossRef]

Adv. Remote Sens. (1)

A. M. Chekalyuk, A. A. Demidov, V. V. Fadeev, and M. Y. Gorbunov, “Lidar monitoring of phytoplankton and organic matter in the inner seas of Europe-EARSeL,” Adv. Remote Sens.3, 131–139 (1995).

Anal. Bioanal. Chem. (1)

A. Nebbioso and A. Piccolo, “Molecular characterization of dissolved organic matter (DOM): a critical review,” Anal. Bioanal. Chem.405(1), 109–124 (2013).
[CrossRef] [PubMed]

Analyst (Lond.) (1)

M. L. Nahorniak and K. S. Booksh, “Excitation-emission matrix fluorescence spectroscopy in conjunction with multiway analysis for PAH detection in complex matrices,” Analyst (Lond.)131(12), 1308–1315 (2006).
[CrossRef] [PubMed]

Annu. Rev. Plant Physiol. (1)

G. H. Krause and E. Weis, “Chlorophyll fluorescence and photosynthesis - the basics,” Annu. Rev. Plant Physiol.42(1), 313–349 (1991).
[CrossRef]

Appl. Environ. Microbiol. (1)

M. J. Doubell, L. Seuront, J. R. Seymour, N. L. Patten, and J. G. Mitchell, “High resolution fluorometer for mapping microscale phytoplankton distributions,” Appl. Environ. Microbiol.72(6), 4475–4478 (2006).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Spectrosc. Rev. (2)

A. Andrade-Eiroa, M. Canle, and V. Cerda, “Environmental applications of excitation emission spectrofluorimetry: an in depth review I,” Appl. Spectrosc. Rev.48(1), 1–49 (2013).
[CrossRef]

A. Andrade-Eiroa, M. Canle, and V. Cerda, “Environmental applications of excitation emission spectrofluorimetry: an in depth review II,” Appl. Spectrosc. Rev.48(2), 77–141 (2013).
[CrossRef]

Aust. J. Plant Physiol. (1)

P. G. Falkowski and Z. Kolber, “Variations in chlorophyll fluorescence yields in phytoplankton in the world oceans,” Aust. J. Plant Physiol.22(2), 341–355 (1995).
[CrossRef]

Biochim. Biophys. Acta (1)

Z. S. Kolber, O. Prasil, and P. G. Falkowski, “Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols,” Biochim. Biophys. Acta1367(1-3), 88–106 (1998).
[CrossRef] [PubMed]

Biogeosciences (1)

R. Röttgers and B. P. Koch, “Spectroscopic detection of a ubiquitous dissolved pigment degradation product in subsurface waters of the global ocean,” Biogeosciences9(7), 2585–2596 (2012).
[CrossRef]

Cont. Shelf Res. (1)

X. Yu, T. Dickey, J. Bellingham, D. Manov, and K. Streitlien, “The application of autonomous underwater vehicles for interdisciplinary measurements in Massachusetts and Cape Cod Bays,” Cont. Shelf Res.22(15), 2225–2245 (2002).
[CrossRef]

Cytometry (1)

R. J. Olson, H. M. Sosik, and A. M. Chekalyuk, “Photosynthetic characteristics of marine phytoplankton from pump-during-probe fluorometry of individual cells at sea,” Cytometry37(1), 1–13 (1999).
[CrossRef] [PubMed]

Deep Sea Res. Part II Top. Stud. Oceanogr. (3)

T. S. Bibby, M. Y. Gorbunov, K. W. Wyman, and P. G. Falkowski, “Photosynthetic community responses to upwelling in mesoscale eddies in the subtropical North Atlantic and Pacific Oceans,” Deep Sea Res. Part II Top. Stud. Oceanogr.55(10-13), 1310–1320 (2008).
[CrossRef]

Y. Dandonneau and J. Neveux, “Diel variations of in vivo fluorescence in the eastern equatorial Pacific: an unvarying pattern,” Deep Sea Res. Part II Top. Stud. Oceanogr.44(9-10), 1869–1880 (1997).
[CrossRef]

C. D. Wirick, “Exchange of phytoplankton across the continental shelf-slope boundary of the Middle Atlantic Bight during spring 1988,” Deep Sea Res. Part II Top. Stud. Oceanogr.41(2-3), 391–410 (1994).
[CrossRef]

Environ. Res. Lett. (1)

Z. Z. Zhou and L. D. Guo, “Evolution of the optical properties of seawater influenced by the Deepwater Horizon oil spill in the Gulf of Mexico,” Environ. Res. Lett.7(2), 025301 (2012), doi:.
[CrossRef]

Freshw. Biol. (1)

R. Alexander and J. Imberger, “Phytoplankton patchiness in Winam Gulf, Lake Victoria: a study using principal component analysis of in situ fluorescent excitation spectra,” Freshw. Biol.58(2), 275–291 (2013).
[CrossRef]

Hydrobiologia (1)

J. Seppälä and M. Balode, “The use of spectral fluorescence methods to detect changes in the phytoplankton community,” Hydrobiologia363(1/3), 207–217 (1997).
[CrossRef]

Isr. J. Plant Sci. (1)

Y. Z. Yacobi, “From Tswett to identified flying objects: A concise history of chlorophyll a use for quantification of phytoplankton,” Isr. J. Plant Sci.60(1), 243–251 (2012).
[CrossRef]

J. Mar. Res. (1)

C. S. Yentsch and C. M. Yentsch, “Fluorescence spectral signatures characterization of phytoplankton populations by the use of excitation and emission spectra,” J. Mar. Res.37, 471–483 (1979).

J. Plankton Res. (5)

P. Falkowski and D. A. Kiefer, “Chlorophyll-a fluorescence in phytoplankton - relationship to photosynthesis and biomass,” J. Plankton Res.7(5), 715–731 (1985).
[CrossRef]

A. M. Chekalyuk, M. Landry, R. Goericke, A. G. Taylor, and M. Hafez, “Laser fluorescence analysis of phytoplankton across a frontal zone in the California Current ecosystem,” J. Plankton Res.34(9), 761–777 (2012).
[CrossRef]

L. Poryvkina, S. Babichenko, S. Kaitala, H. Kuosa, and A. Shalapjonok, “Spectral fluorescence signatures in the characterization of phytoplankton community composition,” J. Plankton Res.16(10), 1315–1327 (1994).
[CrossRef]

M. J. Doubell, H. Yamazaki, H. Li, and Y. Kokubu, “An advanced laser-based fluorescence microstructure profiler (TurboMAP-L) for measuring bio-physical coupling in aquatic systems,” J. Plankton Res.31(12), 1441–1452 (2009).
[CrossRef]

E. Fuchs, R. C. Zimmerman, and J. S. Jaffe, “The effect of elevated levels of phaeophytin in natural waters on variable fluorescence measured from phytoplankton,” J. Plankton Res.24(11), 1221–1229 (2002).
[CrossRef]

Limnol. Oceanogr. (7)

M. Raateoja, J. Seppala, and P. Ylostalo, “Fast repetition rate fluorometry is not applicable to studies of filamentous cyanobacteria from the Baltic Sea,” Limnol. Oceanogr.49(4), 1006–1012 (2004).
[CrossRef]

R. E. Davis, M. D. Ohman, D. L. Rudnick, J. T. Sherman, and B. Hodges, “Glider surveillance of physics and biology in the southern California Current System,” Limnol. Oceanogr.53(5_part_2), 2151–2168 (2008).
[CrossRef]

M. J. Perry, B. S. Sackmann, C. C. Eriksen, and C. M. Lee, “Seaglider observations of blooms and subsurface chlorophyll maxima off the Washington coast,” Limnol. Oceanogr.53(5_part_2), 2169–2179 (2008).
[CrossRef]

R. J. Exton, W. M. Houghton, W. Esaias, R. C. Haas, and D. Hayward, “Spectral differences and temporal stability of phycoerythrin fluorescence in estuarine and coastal waters due to the domination of labile cryptophytes and stabile cyanibacteria,” Limnol. Oceanogr.28(6), 1225–1231 (1983).
[CrossRef]

R. J. Olson, A. M. Chekalyuk, and H. M. Sosik, “Phytoplankton photosynthetic characteristics from fluorescence induction assays of individual cells,” Limnol. Oceanogr.41(6), 1253–1263 (1996).
[CrossRef]

C. E. Del Castillo, P. G. Coble, R. N. Conmy, F. E. Muller-Karger, L. Vanderbloemen, and G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River plume in the West Florida Shelf,” Limnol. Oceanogr.46(7), 1836–1843 (2001).
[CrossRef]

Z. Kolber and P. G. Falkowski, “Use of active fluorescence to estimate phytoplankton photosynthesis in situ,” Limnol. Oceanogr.38(8), 1646–1665 (1993).
[CrossRef]

Limnol. Oceanogr. Bull. (1)

J. J. Cullen and R. F. Davis, “The blank can make a big difference in oceanographic measurements,” Limnol. Oceanogr. Bull.12, 29–35 (2003).

Limnol. Oceanogr. Methods (6)

R. Alexander, P. Gikuma-Njuru, and J. Imberger, “Identifying spatial structure in phytoplankton communities using multi-wavelength fluorescence spectral data and principal component analysis,” Limnol. Oceanogr. Methods10, 402–415 (2012).
[CrossRef]

X. G. Xing, H. Claustre, S. Blain, F. D'Ortenzio, D. Antoine, J. Ras, and C. Guinet, “Quenching correction for in vivo chlorophyll fluorescence acquired by autonomous platforms: a case study with instrumented elephant seals in the Kerguelen region (Southern Ocean),” Limnol. Oceanogr. Methods10, 483–495 (2012).

S. R. Laney and R. M. Letelier, “Artifacts in measurements of chlorophyll fluorescence transients, with specific application to fast repetition rate fluorometry,” Limnol. Oceanogr. Methods6, 40–50 (2008).
[CrossRef]

R. M. Cory, M. P. Miller, D. M. McKnight, J. J. Guerard, and P. L. Miller, “Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra,” Limnol. Oceanogr. Methods8, 67–78 (2010).
[CrossRef]

C. W. Proctor and C. S. Roesler, “New insights on obtaining phytoplankton concentration and composition from in situ multispectral chlorophyll fluorescence,” Limnol. Oceanogr. Methods8, 695–708 (2010).
[CrossRef]

A. M. Chekalyuk and M. Hafez, “Advanced laser fluorometry of natural aquatic environments,” Limnol. Oceanogr. Methods6, 591–609 (2008).
[CrossRef]

Mar. Biol. (1)

T. J. Cowles, R. A. Desiderio, and S. Neuer, “In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra,” Mar. Biol.115(2), 217–222 (1993).
[CrossRef]

Mar. Chem. (1)

Z. Z. Zhou, L. D. Guo, A. M. Shiller, S. E. Lohrenz, V. L. Asper, and C. L. Osburn, “Characterization of oil components from the Deepwater Horizon oil spill in the Gulf of Mexico using fluorescence EEM and PARAFAC techniques,” Mar. Chem.148, 10–21 (2013).
[CrossRef]

Mar. Pollut. Bull. (2)

Z. Z. Zhou, Z. F. Liu, and L. D. Guo, “Chemical evolution of Macondo crude oil during laboratory degradation as characterized by fluorescence EEMs and hydrocarbon composition,” Mar. Pollut. Bull.66(1-2), 164–175 (2013).
[CrossRef] [PubMed]

C. E. Brown and M. F. Fingas, “Review of the development of laser fluorosensors for oil spill application,” Mar. Pollut. Bull.47(9-12), 477–484 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Photosynth. Res. (5)

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U. P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res.72(1), 39–53 (2002).
[CrossRef] [PubMed]

A. M. Chekalyuk, F. E. Hoge, C. W. Wright, and R. N. Swift, “Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics,” Photosynth. Res.66(1/2), 33–44 (2000).
[CrossRef] [PubMed]

U. Schreiber, C. Neubauer, and U. Schliwa, “PAM fluorometer based on medium-frequency pulsed Xe-flash measuring light: a highly sensitive new tool in basic and applied photosynthesis research,” Photosynth. Res.36(1), 65–72 (1993).
[CrossRef]

U. Schreiber, C. Klughammer, and J. Kolbowski, “Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer,” Photosynth. Res.113(1-3), 127–144 (2012).
[CrossRef] [PubMed]

S. G. H. Simis, Y. Huot, M. Babin, J. Seppälä, and L. Metsamaa, “Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria,” Photosynth. Res.112(1), 13–30 (2012).
[CrossRef] [PubMed]

Remote Sens. Environ. (1)

S. Babichenko, L. Poryvkina, V. Arikese, S. Kaitala, and H. Kuosa, “Remote sensing of phytoplankton using laser induced fluorescence,” Remote Sens. Environ.45(1), 43–50 (1993).
[CrossRef]

River Res. Appl. (1)

N. Hudson, A. Baker, and D. Reynolds, “Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters – a review,” River Res. Appl.23(6), 631–649 (2007).
[CrossRef]

Sov. Phys. Dokl. (1)

D. N. Klyshko and V. V. Fadeev, “Remote determination of concentration of impurities in water by the laser spectroscopy method with calibration by Raman scattering,” Sov. Phys. Dokl.23, 55–59 (1978).

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

A. G. Ryder, T. J. Glynn, M. Feely, and A. J. G. Barwise, “Characterization of crude oils using fluorescence lifetime data,” Spectrochim. Acta A Mol. Biomol. Spectrosc.58(5), 1025–1037 (2002).
[CrossRef] [PubMed]

Spectrosc. Lett. (1)

P. B. Oldham and I. M. Warner, “Analysis of natural phytoplankton populations by pattern recognition of two dimensional fluorescence spectra,” Spectrosc. Lett.20(5), 391–413 (1987).
[CrossRef]

Spectrosc. Spect. Anal (1)

Q. Q. Liu, C. Y. Wang, X. F. Shi, W. D. Li, X. N. Luan, S. L. Hou, J. L. Zhang, and R. E. Zheng, “Identification of spill oil species based on low concentration synchronous fluorescence spectra and RBF neural network,” Spectrosc. Spect. Anal. 32(4), 1012–1015 (2012).
[PubMed]

Water Res. (3)

G. Parésys, C. Rigart, B. Rousseau, A. W. M. Wong, F. Fan, J. P. Barbier, and J. Lavaud, “Quantitative and qualitative evaluation of phytoplankton communities by trichromatic chlorophyll fluorescence excitation with special focus on cyanobacteria,” Water Res.39(5), 911–921 (2005).
[CrossRef] [PubMed]

T. L. Richardson, E. Lawrenz, J. L. Pinckney, R. C. Guajardo, E. A. Walker, H. W. Paerl, and H. L. MacIntyre, “Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser,” Water Res.44(8), 2461–2472 (2010).
[CrossRef] [PubMed]

A. Catherine, N. Escoffier, A. Belhocine, A. B. Nasri, S. Hamlaoui, C. Yéprémian, C. Bernard, and M. Troussellier, “On the use of the FluoroProbe®, a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs,” Water Res.46(6), 1771–1784 (2012).
[CrossRef] [PubMed]

Other (1)

H. L. MacIntyre, E. Lawrenz, and T. L. Richardson, “Taxonomic discrimination of phytoplankton by spectral fluorescence,” in Chlorophyll: A Fluorescence in Aquatic Sciences: Methods and Applications, D. J. Suggett, O. Prasil, and M. A. Borowitzka, eds. (Springer, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Block diagram of the ALF-T instrument for spectrally and temporally resolved measurements of laser-stimulated emission in liquids. ECF1 and ECF2 are the emission collection-filtration units; (C) is a sample cell. The instrument design is described in detail in section 2.

Fig. 2
Fig. 2

Various configurations of the ALF-T instrument. A: The ALF-T-510 instrument configured for flow-through sample measurements. B: A close-up photo of the ALF-T-510 instrument configured for still sample measurements in the fluorometric cuvette. C: The ALF-T-375/405/510 instrument comprises three laser modules for LSE excitation at 375, 405, and 510 nm.

Fig. 3
Fig. 3

A: Comparison of LSE spectral measurement (S2) using the ALF-T-514 instrument configuration (Fig. 2), and the LSE spectrum (S1) from the same sample when the LSE beams 2' and 2” were blocked. The ratio S2/S1 is used to correct to LSE spectral measurements for the “red gap” (667-703 nm) in the LSE back reflection. B: An example of two-step correction of the ALF-T spectral measurements for the instrument spectral response: (1) Normalizing the measured LSE spectrum (black) to the BR correction function (dark red line in panel (A) eliminates the modulation by the BR “red gap” (red line in panel (B). (2) Normalizing the BR-corrected spectrum (red) to the spectrometer spectral response yields the LSE spectrum corrected for the instrument spectral response (green).

Fig. 4
Fig. 4

A set of spectral components used for spectral deconvolution (SDC) of the LSE signatures of natural waters measured with laser excitation at 510 nm. See Tables 3 and 4 for detailed specification.

Fig. 5
Fig. 5

Examples of ALF-T-510 spectral (upper) and temporal (lower) LSE measurements in samples of phytoplankton cultures Rhodomonas Sp. (cryptophytes) and Synechococcus spp. (cyanobacteria) diluted to naturally-occurring concentrations. A, C: The spectra (green dots) were corrected for the instrument spectral response. The SDC best fits with the scaled spectral components (dashed lines) are displayed with golden lines. B, D: The best fits to the measured LSE induction (red dots) with the biophysical model of Chl-a fluorescence induction [9] are displayed with white lines. Neglecting the non-chlorophyll spectral fluorescence background in the spectral area of Chl-a fluorescence (marked with red arrows in panel C; blue lines in panels (B) and (D) may result in significant underestimation of variable fluorescence, Fv/Fm.

Fig. 6
Fig. 6

An example of in vivo spectral (A, B, C) and temporal (D, E) LSE measurements in a seawater sample with the ALF-T-375/405/510 instrument (CCE LTER cruise, California Current, Aug. 2012). A, D: LSE excitation at 405 nm; B, E: LSE excitation at 510 nm; C: LSE excitation at 375 nm. Golden line in panels A, B, C displays the SDC best fit to the measured LSE spectra corrected to the instrument spectral response (blue, green and white dots in panels A, B, and (C), respectively; the SDC-scaled spectral components listed in Table 3 for each excitation wavelength are shown with dashed color lines). D, E: The best fit to the measured LSE induction (light blue and green dots in panels (D) and (E), respectively) with the biophysical model of Chl-a fluorescence induction [9] is displayed with white line. F: Correlation between Chl-a fluorescence normalized to water Raman scattering [9] measured in vivo in 81 seawater samples with ALF-T-375/405/510 instrument using 510 nm LSE excitation in diverse water types (CCE LTER cruise, California Current, Aug. 2012).

Tables (4)

Tables Icon

Table 1 Abbreviations used in text

Tables Icon

Table 2 Optical components (F1 and F1a,b are for ALF-T-510 and ALF-T-375/405/510 instruments, respectively).

Tables Icon

Table 3 SDC spectral components. For 405, 510, and 532 nm excitation, three bands of the water Raman scattering with the Raman shifts νmax = 1660, 2200 and 3440 cm−1, respectively, are integrated into one SDC component representing the Raman scattering in the LSE spectra. Spectral location of the individual Raman peak can be calculated as λmax = (λexc−1 - νmax)−1; here, λmax and λexc are the wavelengths of the Raman scattering peak and excitation, respectively. The grey-highlighted components do not contribute in the spectral range of ALF-T SDC analysis (>420 nm) and are not included in the SDC best fitting.

Tables Icon

Table 4 Parameters of Pearson’s IV function for analytical approximation of SDC components listed in Table 3.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

y= a 0 [ 1+ ( x a 2 a 4 2 a 3 a 1 ) 2 a 2 2 ] a 3 exp[ a 4 ( tan 1 ( x a 2 a 4 2 a 3 a 1 a 2 )+ tan 1 ( a 4 2 a 3 ) ) ] ( 1+ a 4 2 4 a 3 2 ) a 3
y= a 0 [ 1+4 ( x a 1 a 2 ) 2 ( 2 1 a 3 1 ) ] a 3

Metrics