Abstract

This work investigates a method for digital holographic imaging of microparticles. Traditional digital holographic techniques use a particle’s forward scattered light to form the hologram, whereas here we use the backscattered light. Images of a particle are then computationally reconstructed from the backscatter hologram, and several examples of such reconstructions are presented. A potential advantage of this technique is that the backscatter holograms may be more sensitive to particle-surface details.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D.  Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
    [CrossRef] [PubMed]
  2. M. J.  Berg G.  Videen, “Digital holographic imaging of aerosol particles in flight,” J. Quant. Spectrosc. Radiat. Transf. 112(11), 1776–1783 (2011).
    [CrossRef]
  3. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge, 2002).
  4. V. Mico, C. Ferreira, Z. Zalevsky, and J. Garcia, “Basic principles and application of digital holography microscopy,” (Formatex, 2010) http://www.formatex.info/microscopy4/1411-1418.pdf
  5. W.  Xu, M. H.  Jericho, I. A.  Meinertzhagen, H. J.  Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41(25), 5367–5375 (2002).
    [CrossRef] [PubMed]
  6. T. Kreis, Handbook of Holographic Interferometry (Wiley, 2005).
  7. M.  Lee, O.  Yaglidere, A.  Ozcan, “Field-portable reflection and transmission microscopy based on lensless holography,” Biomed. Opt. Express 2(9), 2721–2730 (2011).
    [CrossRef] [PubMed]
  8. V.R.  Singh G.  Hegle, Asundi A. “Particle field imaging using digital in-line holography,” Current Science 96(3), 391–397 (2009)
  9. S.  Murata N.  Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32(7-8), 567–574 (2000).
    [CrossRef]
  10. M. K.  Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1(1), 018005 (2010).
    [CrossRef]
  11. T.  Latychevskaia H. W.  Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98(23), 233901 (2007).
    [CrossRef] [PubMed]
  12. I.  Yamaguchi T.  Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
    [CrossRef] [PubMed]
  13. E.  Cuche, P.  Marquet, C.  Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
    [CrossRef] [PubMed]
  14. Z.  Göröcs A.  Ozcan, “On-chip biomedical imaging,” IEEE Rev Biomed Eng 6, 29–46 (2013).
    [CrossRef] [PubMed]

2013 (1)

Z.  Göröcs A.  Ozcan, “On-chip biomedical imaging,” IEEE Rev Biomed Eng 6, 29–46 (2013).
[CrossRef] [PubMed]

2011 (2)

M. J.  Berg G.  Videen, “Digital holographic imaging of aerosol particles in flight,” J. Quant. Spectrosc. Radiat. Transf. 112(11), 1776–1783 (2011).
[CrossRef]

M.  Lee, O.  Yaglidere, A.  Ozcan, “Field-portable reflection and transmission microscopy based on lensless holography,” Biomed. Opt. Express 2(9), 2721–2730 (2011).
[CrossRef] [PubMed]

2010 (1)

M. K.  Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1(1), 018005 (2010).
[CrossRef]

2009 (1)

V.R.  Singh G.  Hegle, Asundi A. “Particle field imaging using digital in-line holography,” Current Science 96(3), 391–397 (2009)

2007 (1)

T.  Latychevskaia H. W.  Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98(23), 233901 (2007).
[CrossRef] [PubMed]

2002 (1)

2000 (2)

1997 (1)

1948 (1)

D.  Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Berg, M. J.

M. J.  Berg G.  Videen, “Digital holographic imaging of aerosol particles in flight,” J. Quant. Spectrosc. Radiat. Transf. 112(11), 1776–1783 (2011).
[CrossRef]

Cuche, E.

Depeursinge, C.

Fink, H. W.

T.  Latychevskaia H. W.  Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98(23), 233901 (2007).
[CrossRef] [PubMed]

Gabor, D.

D.  Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Göröcs, Z.

Z.  Göröcs A.  Ozcan, “On-chip biomedical imaging,” IEEE Rev Biomed Eng 6, 29–46 (2013).
[CrossRef] [PubMed]

Hegle, G.

V.R.  Singh G.  Hegle, Asundi A. “Particle field imaging using digital in-line holography,” Current Science 96(3), 391–397 (2009)

Jericho, M. H.

Kim, M. K.

M. K.  Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1(1), 018005 (2010).
[CrossRef]

Kreuzer, H. J.

Latychevskaia, T.

T.  Latychevskaia H. W.  Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98(23), 233901 (2007).
[CrossRef] [PubMed]

Lee, M.

Marquet, P.

Meinertzhagen, I. A.

Murata, S.

S.  Murata N.  Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32(7-8), 567–574 (2000).
[CrossRef]

Ozcan, A.

Singh, V.R.

V.R.  Singh G.  Hegle, Asundi A. “Particle field imaging using digital in-line holography,” Current Science 96(3), 391–397 (2009)

Videen, G.

M. J.  Berg G.  Videen, “Digital holographic imaging of aerosol particles in flight,” J. Quant. Spectrosc. Radiat. Transf. 112(11), 1776–1783 (2011).
[CrossRef]

Xu, W.

Yaglidere, O.

Yamaguchi, I.

Yasuda, N.

S.  Murata N.  Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32(7-8), 567–574 (2000).
[CrossRef]

Zhang, T.

Appl. Opt. (2)

Biomed. Opt. Express (1)

Current Science (1)

V.R.  Singh G.  Hegle, Asundi A. “Particle field imaging using digital in-line holography,” Current Science 96(3), 391–397 (2009)

IEEE Rev Biomed Eng (1)

Z.  Göröcs A.  Ozcan, “On-chip biomedical imaging,” IEEE Rev Biomed Eng 6, 29–46 (2013).
[CrossRef] [PubMed]

J. Quant. Spectrosc. Radiat. Transf. (1)

M. J.  Berg G.  Videen, “Digital holographic imaging of aerosol particles in flight,” J. Quant. Spectrosc. Radiat. Transf. 112(11), 1776–1783 (2011).
[CrossRef]

Nature (1)

D.  Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Opt. Laser Technol. (1)

S.  Murata N.  Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32(7-8), 567–574 (2000).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

T.  Latychevskaia H. W.  Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98(23), 233901 (2007).
[CrossRef] [PubMed]

SPIE Rev. (1)

M. K.  Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1(1), 018005 (2010).
[CrossRef]

Other (3)

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge, 2002).

V. Mico, C. Ferreira, Z. Zalevsky, and J. Garcia, “Basic principles and application of digital holography microscopy,” (Formatex, 2010) http://www.formatex.info/microscopy4/1411-1418.pdf

T. Kreis, Handbook of Holographic Interferometry (Wiley, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Diagram of the experimental arrangement used to demonstrate BDH imaging of microparticles. Note that this arrangement shows the beam dump placed in front of M2 following the beam alignment step described below.

Fig. 2
Fig. 2

Comparison between a traditional microscope image (a) of an optical-fiber and the corresponding image (b) of the same fiber reconstructed from its backscattered hologram. The optical arrangement used is that shown in Fig. 1. Note that white lines have been drawn in (b) to delineate the (low contrast) edges of the fiber.

Fig. 3
Fig. 3

These images show the backscatter contrast hologram (left column) measured for various particles along with the reconstructed particle-images (right column). The particles include ragweed pollen spores (a, b), borosilicate glass microspheres (c, d), and Aspergillus flavus spores (e, f).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A ref ( r ) = exp ( i k r ) r A o ref ( r ^ ) , A sca ( r ) = exp ( i k r ) r A o sca ( r ^ ) ,
I ref ( r ) = c ε o r 2 | A o ref ( r ^ ) | 2
I holo ( r ) = c ε o r 2 | A o ref ( r ^ ) + A o sca ( r ^ ) | 2 .
I con ( r ) = c ε o r 2 [ { [ A o ref ( r ^ ) ] * A o sca ( r ^ ) + [ A o sca ( r ^ ) ] * A o ref ( r ^ ) } + | A o sca ( r ^ ) | 2 ] ,
I con ( r ) = c ε o r 2 [ { [ A o ref ( r ^ ) ] * A o sca ( r ^ ) + [ A o sca ( r ^ ) ] * A o ref ( r ^ ) } ] ,

Metrics