Abstract

In this paper we discuss the effects of multiple scattering to the optical forces on a particle by an evanescent field. We show that the iterative method to process the effects of the interaction between the particle and a plane surface is invalid when the radius of particle is large or when the structural resonance of the particle occurs. By using the generalized minimum residual method to solve the set of equations directly, the divergence appears in the iterative method can be removed completely. As an illustrative example, we discussed the effects of multiple scattering to optical forces on a particle in an evanescent field from an incident plane wave. The interpretations of numerical results are presented in detail.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  2. P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett.89(8), 081113 (2006).
    [CrossRef]
  3. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235(4795), 1517–1520 (1987).
    [CrossRef] [PubMed]
  4. L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient Optical Trapping and Visualization of Silver Nanoparticles,” Nano Lett.8(5), 1486–1491 (2008).
    [CrossRef] [PubMed]
  5. S. Kawata and T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett.17(11), 772–774 (1992).
    [CrossRef] [PubMed]
  6. E. Almaas and I. Brevik, “Radiation forces on a micrometer-sized sphere in an evanescent field,” J. Opt. Soc. Am. B12(12), 2429–2438 (1995).
    [CrossRef]
  7. S. Chang, J. H. Jo, and S. S. Lee, “Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused gaussian beam,” Opt. Commun.108(1-3), 133–143 (1994).
    [CrossRef]
  8. Y. Yang, W. P. Zang, Z. Y. Zhao, and J. G. Tian, “Optical forces on Mie particles in an Airy evanescent field,” Opt. Express20(23), 25681–25692 (2012).
    [CrossRef] [PubMed]
  9. J. Ng and C. T. Chan, “Size-selective optical forces for microspheres using evanescent wave excitation of whispering gallery modes,” Appl. Phys. Lett.92(25), 251109 (2008).
    [CrossRef]
  10. J. J. Xiao, J. Ng, Z. F. Lin, and C. T. Chan, “Whispering gallery mode enhanced optical force with resonant tunneling excitation in the Kretschmann geometry,” Appl. Phys. Lett.94(1), 011102 (2009).
  11. P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica (Utrecht)137A, 209–242 (1986).
  12. G. Videen, “Light scattering from a sphere on or near a surface: errata,” J. Opt. Soc. Am. A9, 844–845 (1992).
    [CrossRef]
  13. G. Videen, M. Aslan, and M. P. Mengüç, “Characterization of metallic nano-particles via surface wave scattering: A. Theoretical framework and formulation,” J. Quant. Spectrosc. Radiat. Transf.93(1-3), 195–206 (2005).
    [CrossRef]
  14. M. Aslan, M. P. Mengüç, and G. Videen, “Characterization of metallic nano-particles via surface wave scattering: B. Physical concept and numerical experiments,” J. Quant. Spectrosc. Radiat. Transf.93(1-3), 207–217 (2005).
    [CrossRef]
  15. E. Fucile, P. Denti, F. Borghese, R. Saija, and O. I. Sindoni, “Optical properties of a sphere in the vicinity of a plane surface,” J. Opt. Soc. Am. A14(7), 1505–1514 (1997).
    [CrossRef]
  16. T. Wriedt and A. Doicu, “Light scattering from a particle on or near a surface,” Opt. Commun.152(4-6), 376–384 (1998).
    [CrossRef]
  17. D. W. Mackowski, “A generalization of image theory to predict the interaction of multipole fields with plane surfaces,” J. Quant. Spectrosc. Radiat. Transf.111(5), 802–809 (2010).
    [CrossRef]
  18. D. W. Mackowski, “Exact solution for the scattering and absorption properties of sphere clusters on a plane surface,” J. Quant. Spectrosc. Radiat. Transf.109(5), 770–788 (2008).
    [CrossRef]
  19. S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering,” Opt. Commun.139(4-6), 252–261 (1997).
    [CrossRef]
  20. V. V. Varadan, A. Lakhtakia, and V. K. Varadan, “Field Representation and Introduction to Scattering,” North-Holland, 1991.
  21. W. Inami and Y. Kawata, “Photon force analysis for a spherical particle near a substrate illuminated by a tightly focused laser beam,” J. Appl. Phys.94(4), 2183–2187 (2003).
    [CrossRef]
  22. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys.64(4), 1632–1639 (1988).
    [CrossRef]
  23. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys.66(10), 4594–4602 (1989).
    [CrossRef]
  24. J. P. Barton, W. Ma, S. A. Schaub, and D. R. Alexander, “Electromagnetic field for a beam incident on two adjacent spherical particles,” Appl. Opt.30(33), 4706–4715 (1991).
    [CrossRef] [PubMed]
  25. P. C. Chaumet and M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B61(20), 14119–14127 (2000).
    [CrossRef]
  26. J. R. Arias-Gonzàlez and M. Nieto-Vesperinas, “Radiation pressure over dielectric and metallic nanocylinders on surfaces: polarization dependence and plasmon resonance conditions,” Opt. Lett.27(24), 2149–2151 (2002).
    [CrossRef] [PubMed]
  27. J. R. Arias-González and M. Nieto-Vesperinas, “Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions,” J. Opt. Soc. Am. A20(7), 1201–1209 (2003).
    [CrossRef] [PubMed]
  28. M. Nieto-Vesperinas and J. J. Saenz, “Optical forces from an evanescent wave on a magnetodielectric small particle,” Opt. Lett.35(23), 4078–4080 (2010).
    [CrossRef] [PubMed]
  29. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (Wiley, 1985).
  30. P. W. Barber and S. C. Hill, Light Scattering by Particle: Computational Methods (World Scientific, 1990).
  31. A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles: Null-Field Method with Discrete Sources: Theory and Programs (Springer, 2006).
  32. Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput.7(3), 856–869 (1986).
    [CrossRef]

2012 (1)

2010 (2)

M. Nieto-Vesperinas and J. J. Saenz, “Optical forces from an evanescent wave on a magnetodielectric small particle,” Opt. Lett.35(23), 4078–4080 (2010).
[CrossRef] [PubMed]

D. W. Mackowski, “A generalization of image theory to predict the interaction of multipole fields with plane surfaces,” J. Quant. Spectrosc. Radiat. Transf.111(5), 802–809 (2010).
[CrossRef]

2009 (1)

J. J. Xiao, J. Ng, Z. F. Lin, and C. T. Chan, “Whispering gallery mode enhanced optical force with resonant tunneling excitation in the Kretschmann geometry,” Appl. Phys. Lett.94(1), 011102 (2009).

2008 (3)

D. W. Mackowski, “Exact solution for the scattering and absorption properties of sphere clusters on a plane surface,” J. Quant. Spectrosc. Radiat. Transf.109(5), 770–788 (2008).
[CrossRef]

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient Optical Trapping and Visualization of Silver Nanoparticles,” Nano Lett.8(5), 1486–1491 (2008).
[CrossRef] [PubMed]

J. Ng and C. T. Chan, “Size-selective optical forces for microspheres using evanescent wave excitation of whispering gallery modes,” Appl. Phys. Lett.92(25), 251109 (2008).
[CrossRef]

2006 (1)

P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett.89(8), 081113 (2006).
[CrossRef]

2005 (2)

G. Videen, M. Aslan, and M. P. Mengüç, “Characterization of metallic nano-particles via surface wave scattering: A. Theoretical framework and formulation,” J. Quant. Spectrosc. Radiat. Transf.93(1-3), 195–206 (2005).
[CrossRef]

M. Aslan, M. P. Mengüç, and G. Videen, “Characterization of metallic nano-particles via surface wave scattering: B. Physical concept and numerical experiments,” J. Quant. Spectrosc. Radiat. Transf.93(1-3), 207–217 (2005).
[CrossRef]

2003 (2)

W. Inami and Y. Kawata, “Photon force analysis for a spherical particle near a substrate illuminated by a tightly focused laser beam,” J. Appl. Phys.94(4), 2183–2187 (2003).
[CrossRef]

J. R. Arias-González and M. Nieto-Vesperinas, “Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions,” J. Opt. Soc. Am. A20(7), 1201–1209 (2003).
[CrossRef] [PubMed]

2002 (1)

2000 (1)

P. C. Chaumet and M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B61(20), 14119–14127 (2000).
[CrossRef]

1998 (1)

T. Wriedt and A. Doicu, “Light scattering from a particle on or near a surface,” Opt. Commun.152(4-6), 376–384 (1998).
[CrossRef]

1997 (2)

S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering,” Opt. Commun.139(4-6), 252–261 (1997).
[CrossRef]

E. Fucile, P. Denti, F. Borghese, R. Saija, and O. I. Sindoni, “Optical properties of a sphere in the vicinity of a plane surface,” J. Opt. Soc. Am. A14(7), 1505–1514 (1997).
[CrossRef]

1995 (1)

1994 (1)

S. Chang, J. H. Jo, and S. S. Lee, “Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused gaussian beam,” Opt. Commun.108(1-3), 133–143 (1994).
[CrossRef]

1992 (2)

1991 (1)

1989 (1)

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys.66(10), 4594–4602 (1989).
[CrossRef]

1988 (1)

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys.64(4), 1632–1639 (1988).
[CrossRef]

1987 (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

1986 (3)

P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica (Utrecht)137A, 209–242 (1986).

Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput.7(3), 856–869 (1986).
[CrossRef]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986).
[CrossRef] [PubMed]

Aabo, T.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient Optical Trapping and Visualization of Silver Nanoparticles,” Nano Lett.8(5), 1486–1491 (2008).
[CrossRef] [PubMed]

Alexander, D. R.

J. P. Barton, W. Ma, S. A. Schaub, and D. R. Alexander, “Electromagnetic field for a beam incident on two adjacent spherical particles,” Appl. Opt.30(33), 4706–4715 (1991).
[CrossRef] [PubMed]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys.66(10), 4594–4602 (1989).
[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys.64(4), 1632–1639 (1988).
[CrossRef]

Almaas, E.

Arias-González, J. R.

Arias-Gonzàlez, J. R.

Ashkin, A.

Aslan, M.

M. Aslan, M. P. Mengüç, and G. Videen, “Characterization of metallic nano-particles via surface wave scattering: B. Physical concept and numerical experiments,” J. Quant. Spectrosc. Radiat. Transf.93(1-3), 207–217 (2005).
[CrossRef]

G. Videen, M. Aslan, and M. P. Mengüç, “Characterization of metallic nano-particles via surface wave scattering: A. Theoretical framework and formulation,” J. Quant. Spectrosc. Radiat. Transf.93(1-3), 195–206 (2005).
[CrossRef]

Barton, J. P.

J. P. Barton, W. Ma, S. A. Schaub, and D. R. Alexander, “Electromagnetic field for a beam incident on two adjacent spherical particles,” Appl. Opt.30(33), 4706–4715 (1991).
[CrossRef] [PubMed]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys.66(10), 4594–4602 (1989).
[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys.64(4), 1632–1639 (1988).
[CrossRef]

Bendix, P. M.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient Optical Trapping and Visualization of Silver Nanoparticles,” Nano Lett.8(5), 1486–1491 (2008).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Bobbert, P. A.

P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica (Utrecht)137A, 209–242 (1986).

Borghese, F.

Bosanac, L.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient Optical Trapping and Visualization of Silver Nanoparticles,” Nano Lett.8(5), 1486–1491 (2008).
[CrossRef] [PubMed]

Brevik, I.

Chan, C. T.

J. J. Xiao, J. Ng, Z. F. Lin, and C. T. Chan, “Whispering gallery mode enhanced optical force with resonant tunneling excitation in the Kretschmann geometry,” Appl. Phys. Lett.94(1), 011102 (2009).

J. Ng and C. T. Chan, “Size-selective optical forces for microspheres using evanescent wave excitation of whispering gallery modes,” Appl. Phys. Lett.92(25), 251109 (2008).
[CrossRef]

Chang, S.

S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering,” Opt. Commun.139(4-6), 252–261 (1997).
[CrossRef]

S. Chang, J. H. Jo, and S. S. Lee, “Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused gaussian beam,” Opt. Commun.108(1-3), 133–143 (1994).
[CrossRef]

Chaumet, P. C.

P. C. Chaumet and M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B61(20), 14119–14127 (2000).
[CrossRef]

Chu, S.

Denti, P.

Doicu, A.

T. Wriedt and A. Doicu, “Light scattering from a particle on or near a surface,” Opt. Commun.152(4-6), 376–384 (1998).
[CrossRef]

Dziedzic, J. M.

Fucile, E.

Inami, W.

W. Inami and Y. Kawata, “Photon force analysis for a spherical particle near a substrate illuminated by a tightly focused laser beam,” J. Appl. Phys.94(4), 2183–2187 (2003).
[CrossRef]

Jo, J. H.

S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering,” Opt. Commun.139(4-6), 252–261 (1997).
[CrossRef]

S. Chang, J. H. Jo, and S. S. Lee, “Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused gaussian beam,” Opt. Commun.108(1-3), 133–143 (1994).
[CrossRef]

Jones, P. H.

P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett.89(8), 081113 (2006).
[CrossRef]

Kawata, S.

Kawata, Y.

W. Inami and Y. Kawata, “Photon force analysis for a spherical particle near a substrate illuminated by a tightly focused laser beam,” J. Appl. Phys.94(4), 2183–2187 (2003).
[CrossRef]

Kim, J. T.

S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering,” Opt. Commun.139(4-6), 252–261 (1997).
[CrossRef]

Lee, S. S.

S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering,” Opt. Commun.139(4-6), 252–261 (1997).
[CrossRef]

S. Chang, J. H. Jo, and S. S. Lee, “Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused gaussian beam,” Opt. Commun.108(1-3), 133–143 (1994).
[CrossRef]

Lin, Z. F.

J. J. Xiao, J. Ng, Z. F. Lin, and C. T. Chan, “Whispering gallery mode enhanced optical force with resonant tunneling excitation in the Kretschmann geometry,” Appl. Phys. Lett.94(1), 011102 (2009).

Ma, W.

Mackowski, D. W.

D. W. Mackowski, “A generalization of image theory to predict the interaction of multipole fields with plane surfaces,” J. Quant. Spectrosc. Radiat. Transf.111(5), 802–809 (2010).
[CrossRef]

D. W. Mackowski, “Exact solution for the scattering and absorption properties of sphere clusters on a plane surface,” J. Quant. Spectrosc. Radiat. Transf.109(5), 770–788 (2008).
[CrossRef]

Mengüç, M. P.

G. Videen, M. Aslan, and M. P. Mengüç, “Characterization of metallic nano-particles via surface wave scattering: A. Theoretical framework and formulation,” J. Quant. Spectrosc. Radiat. Transf.93(1-3), 195–206 (2005).
[CrossRef]

M. Aslan, M. P. Mengüç, and G. Videen, “Characterization of metallic nano-particles via surface wave scattering: B. Physical concept and numerical experiments,” J. Quant. Spectrosc. Radiat. Transf.93(1-3), 207–217 (2005).
[CrossRef]

Ng, J.

J. J. Xiao, J. Ng, Z. F. Lin, and C. T. Chan, “Whispering gallery mode enhanced optical force with resonant tunneling excitation in the Kretschmann geometry,” Appl. Phys. Lett.94(1), 011102 (2009).

J. Ng and C. T. Chan, “Size-selective optical forces for microspheres using evanescent wave excitation of whispering gallery modes,” Appl. Phys. Lett.92(25), 251109 (2008).
[CrossRef]

Nieto-Vesperinas, M.

Oddershede, L. B.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient Optical Trapping and Visualization of Silver Nanoparticles,” Nano Lett.8(5), 1486–1491 (2008).
[CrossRef] [PubMed]

Saad, Y.

Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput.7(3), 856–869 (1986).
[CrossRef]

Saenz, J. J.

Saffari, N.

P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett.89(8), 081113 (2006).
[CrossRef]

Saija, R.

Schaub, S. A.

J. P. Barton, W. Ma, S. A. Schaub, and D. R. Alexander, “Electromagnetic field for a beam incident on two adjacent spherical particles,” Appl. Opt.30(33), 4706–4715 (1991).
[CrossRef] [PubMed]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys.66(10), 4594–4602 (1989).
[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys.64(4), 1632–1639 (1988).
[CrossRef]

Schultz, M. H.

Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput.7(3), 856–869 (1986).
[CrossRef]

Sindoni, O. I.

Stride, E.

P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett.89(8), 081113 (2006).
[CrossRef]

Sugiura, T.

Tian, J. G.

Videen, G.

M. Aslan, M. P. Mengüç, and G. Videen, “Characterization of metallic nano-particles via surface wave scattering: B. Physical concept and numerical experiments,” J. Quant. Spectrosc. Radiat. Transf.93(1-3), 207–217 (2005).
[CrossRef]

G. Videen, M. Aslan, and M. P. Mengüç, “Characterization of metallic nano-particles via surface wave scattering: A. Theoretical framework and formulation,” J. Quant. Spectrosc. Radiat. Transf.93(1-3), 195–206 (2005).
[CrossRef]

G. Videen, “Light scattering from a sphere on or near a surface: errata,” J. Opt. Soc. Am. A9, 844–845 (1992).
[CrossRef]

Vlieger, J.

P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica (Utrecht)137A, 209–242 (1986).

Wriedt, T.

T. Wriedt and A. Doicu, “Light scattering from a particle on or near a surface,” Opt. Commun.152(4-6), 376–384 (1998).
[CrossRef]

Xiao, J. J.

J. J. Xiao, J. Ng, Z. F. Lin, and C. T. Chan, “Whispering gallery mode enhanced optical force with resonant tunneling excitation in the Kretschmann geometry,” Appl. Phys. Lett.94(1), 011102 (2009).

Yang, Y.

Zang, W. P.

Zhao, Z. Y.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett.89(8), 081113 (2006).
[CrossRef]

J. Ng and C. T. Chan, “Size-selective optical forces for microspheres using evanescent wave excitation of whispering gallery modes,” Appl. Phys. Lett.92(25), 251109 (2008).
[CrossRef]

J. J. Xiao, J. Ng, Z. F. Lin, and C. T. Chan, “Whispering gallery mode enhanced optical force with resonant tunneling excitation in the Kretschmann geometry,” Appl. Phys. Lett.94(1), 011102 (2009).

J. Appl. Phys. (3)

W. Inami and Y. Kawata, “Photon force analysis for a spherical particle near a substrate illuminated by a tightly focused laser beam,” J. Appl. Phys.94(4), 2183–2187 (2003).
[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys.64(4), 1632–1639 (1988).
[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys.66(10), 4594–4602 (1989).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transf. (4)

G. Videen, M. Aslan, and M. P. Mengüç, “Characterization of metallic nano-particles via surface wave scattering: A. Theoretical framework and formulation,” J. Quant. Spectrosc. Radiat. Transf.93(1-3), 195–206 (2005).
[CrossRef]

M. Aslan, M. P. Mengüç, and G. Videen, “Characterization of metallic nano-particles via surface wave scattering: B. Physical concept and numerical experiments,” J. Quant. Spectrosc. Radiat. Transf.93(1-3), 207–217 (2005).
[CrossRef]

D. W. Mackowski, “A generalization of image theory to predict the interaction of multipole fields with plane surfaces,” J. Quant. Spectrosc. Radiat. Transf.111(5), 802–809 (2010).
[CrossRef]

D. W. Mackowski, “Exact solution for the scattering and absorption properties of sphere clusters on a plane surface,” J. Quant. Spectrosc. Radiat. Transf.109(5), 770–788 (2008).
[CrossRef]

Nano Lett. (1)

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient Optical Trapping and Visualization of Silver Nanoparticles,” Nano Lett.8(5), 1486–1491 (2008).
[CrossRef] [PubMed]

Opt. Commun. (3)

T. Wriedt and A. Doicu, “Light scattering from a particle on or near a surface,” Opt. Commun.152(4-6), 376–384 (1998).
[CrossRef]

S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering,” Opt. Commun.139(4-6), 252–261 (1997).
[CrossRef]

S. Chang, J. H. Jo, and S. S. Lee, “Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused gaussian beam,” Opt. Commun.108(1-3), 133–143 (1994).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. B (1)

P. C. Chaumet and M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B61(20), 14119–14127 (2000).
[CrossRef]

Physica (Utrecht) (1)

P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica (Utrecht)137A, 209–242 (1986).

Science (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

SIAM J. Sci. Stat. Comput. (1)

Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput.7(3), 856–869 (1986).
[CrossRef]

Other (4)

V. V. Varadan, A. Lakhtakia, and V. K. Varadan, “Field Representation and Introduction to Scattering,” North-Holland, 1991.

L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (Wiley, 1985).

P. W. Barber and S. C. Hill, Light Scattering by Particle: Computational Methods (World Scientific, 1990).

A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles: Null-Field Method with Discrete Sources: Theory and Programs (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Particle of radius a situated in the evanescent field region z>d. A plane wave traveling in the x-z plane is incident from below at an angle of incidence β> β crit in the substrate.

Fig. 2
Fig. 2

Plots of the optical force components Q x c as a function of size parameter α, when the incident plane wave is polarized (a) orthogonal (s) and (b) parallel (p) to the x-z plane, respectively.

Fig. 3
Fig. 3

Plots of the optical force components Q z c as a function of size parameter α, when the incident plane wave is polarized (a) orthogonal (s) and (b) parallel (p) to the x-z plane, respectively.

Fig. 4
Fig. 4

Plots of the optical force components Q x c as a function of larger size parameter α, when the incident plane wave is polarized (a) orthogonal (s) and (b) parallel (p) to the x-z plane, respectively.

Fig. 5
Fig. 5

Plots of the optical force components Q x c as a function of normalized distance between sphere and interface when the incident plane waves are polarized (a) orthogonal (s) and (b) parallel (p) to the x-z plane, respectively.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

E eva ( r )=τ· E inc ( r ).
E int ( r )=A· E sca ( r ).
E tot ( r )= E eva ( r )+ E int ( r )= E eva ( r )+A E sca ( r ).
E sca ( r )=T E tot ( r ).
( IT·A )· E sca ( r )=T· E eva ( r ).
E eva ( r )= n 1 =1 m= n 1 n 1 [ a m n 1 0 M m n 1 ( 1 ) ( k 2 r )+ b m n 1 0 N m n 1 ( 1 ) ( k 2 r ) ] , H eva ( r )= k iωμ n 1 =1 m= n 1 n 1 [ b m n 1 0 M m n 1 ( 1 ) ( k 2 r )+ a m n 1 0 N m n 1 ( 1 ) ( k 2 r ) ] .
E sca ( r )= n=1 m=n n [ e mn M mn ( 3 ) ( k 2 r )+ f mn N mn ( 3 ) ( k 2 r ) ] , H sca ( r )= k iωμ n=1 m=n n [ f mn M mn ( 3 ) ( k 2 r )+ e mn N mn ( 3 ) ( k 2 r ) ] .
E int ( r )= n 1 =1 m= n 1 n 1 [ e m n 1 R M m n 1 ( 1 ) + f m n 1 R N m n 1 ( 1 ) ] , H int ( r )= k iωμ n 1 =1 m= n 1 n 1 [ f m n 1 R M m n 1 ( 1 ) + e m n 1 R N m n 1 ( 1 ) ] ,
[ e m n 1 R f m n 1 R ]=[ A mn n 1 ][ e mn f mn ],
[ A mn n 1 ]=[ α mn n 1 γ mn n 1 β mn n 1 δ mn n 1 ].
[ e mn f mn ]=[ T mn n 1 ]( [ a m n 1 0 b m n 1 0 ]+[ e m n 1 R f m n 1 R ] ),
( I[ T mn n 1 ][ A mn n 1 ] )[ e mn f mn ]=[ T mn n 1 ][ a m n 1 0 b m n 1 0 ].
E tot ( r )= n 1 =1 m= n 1 n 1 a m n 1 M m n 1 ( 1 ) ( k 2 r )+ b m n 1 N m n 1 ( 1 ) ( k 2 r ), H tot ( r )= k iωμ n 1 =1 m= n 1 n 1 b m n 1 M m n 1 ( 1 ) ( k 2 r ) + a m n 1 N m n 1 ( 1 ) ( k 2 r ).
[ a mn b mn ]=[ a m n 1 0 b m n 1 0 ]+[ A mn n 1 ][ e mn f mn ].
[ e 0 mn f 0 mn ]=[ T mn n 1 ]( [ a m n 1 0 b m n 1 0 ]+[ e 0 m n 1 R f 0 m n 1 R ] ),
[ e 1 m n 1 R f 1 m n 1 R ]=[ A mn n 1 ][ e 0 mn f 0 mn ],
a m n 1 0 = i n τ s 2n+1 2n( n+1 ) ( nm )! ( n+m )! [ P n m+1 ( ξ )( n+m )( nm+1 ) P n m1 ( ξ ) ],
b m n 1 0 = i n τ s 2n+1 2n( n+1 ) ( nm )! ( n+m )! [ P n m+1 ( ξ )+( n+m )( nm+1 ) P n m1 ( ξ )+2m n 1 1 ξ 2 P n m ( ξ ) ]ξ,
a m n 1 0 = i n+1 τ p 2n+1 2n( n+1 ) ( nm )! ( n+m )! [ P n m+1 ( ξ )+( n+m )( nm+1 ) P n m1 ( ξ )+2m n 1 1 ξ 2 P n m ( ξ ) ]ξ,
b m n 1 0 = i n+1 τ p 2n+1 2n( n+1 ) ( nm )! ( n+m )! [ P n m+1 ( ξ )( n+m )( nm+1 ) P n m1 ( ξ ) ],
ξ= ( 1 ( n 1 n 2 ) 2 sin 2 β ) 1/2 ,
τ s = 2 n 1 cosβ n 2 cosβ+ n 1 ξ ,
τ p = 2 n 1 cosβ n 1 ξ+ n 2 cosβ .
F = S n ^ T dS ,
Q x c +i Q y c = π α 2 n,m 1 2n+1 ( nm )! ( n+m )! ×{ ( nm )( n+m+1 ) Γ 1 ( n,m )+ Γ 2 ( n,m )i n( n+2 ) 2n+3 ×[ ( n+m+1 )( n+m+2 ) Γ 3 ( n,m )+ Γ 4 ( n,m ) ] },
Q z c = 2π α 2 Re n,m 1 2n+1 ( nm )! ( n+m )! ×{ m Γ 5 ( n,m )+i n( n+1 ) 2n+3 ( n+m+1 ) Γ 6 ( n,m ) }.
Q x c +i Q y c = F x +i F y ε 0 E 0 2 a 2 , Q z c = F z ε 0 E 0 2 a 2 .
Γ 1 ( n,m )= e mn b m+1,n * +( a mn +2 e mn ) f m+1,n * , Γ 2 ( n,m )= e mn * b m1,n +( a mn * +2 e mn * ) f m1,n , Γ 3 ( n,m )= e mn a m+1,n+1 * + f mn b m+1,n+1 * +( a mn +2 f mn ) e m+1,n+1 * +( b mn +2 f mn ) f m+1,n+1 * , Γ 4 ( n,m )= e mn * a m1,n+1 + f mn * b m1,n+1 +( a mn * +2 e mn * ) e m1,n+1 +( b mn * +2 f mn * ) f m1,n+1 , Γ 5 ( n,m )= e mn b mn * +( a mn +2 e mn ) f mn * , Γ 6 ( n,m )= e mn a m,n+1 * + f mn b m,n+1 * +( a mn +2 e mn ) e m,n+1 * +( b mn +2 f mn ) f m,n+1 * .
Q x c = Q z , Q z c = Q x .

Metrics