B. Wu, E. Lebed, M. Sarunic, and M. Beg, “Quantitative evaluation of transform domains for compressive sampling-based recovery of sparsely sampled volumetric OCT images,” IEEE Trans. Bio. Eng.1–9 (2012).

[CrossRef]

C. Liu, A. Wong, K. Bizheva, P. Fieguth, and H. Bie, “Homotopic, non-local sparse reconstruction of optical coherence tomography imagery,” Opt. Express20, 10200–10211 (2012).

[CrossRef]
[PubMed]

S. Schwartz, A. Wong, and D. A. Clausi, “Compressive fluorescence microscopy using saliency-guided sparse reconstruction ensemble fusion,” Opt. Express20, 17281–17296 (2012).

[CrossRef]
[PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011).

[CrossRef]
[PubMed]

M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “The role of fixational eye movements in visual perception,” Biomed. Opt. Express2(9), 2690–2697 (2011).

[CrossRef]
[PubMed]

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeriz, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg Lasers Imaging42(4), 15–27 (2011).

[CrossRef]

ML Gabriele, G Wollstein, H Ishikawa, L Kagemann, J Xu, LS Folio, and JS Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest Ophthalmol Vis Sci52, 2425–2436 (2011).

[CrossRef]
[PubMed]

M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography,” Opt. Express2, 2690–2697 (2011)

[CrossRef]

G. Puy, P. Vandergheynst, and Y. Wiaux, “On variable density compressive sampling,” IEEE Sig. Proc. Lett18, 595–598 (2011).

[CrossRef]

X. Liu and J.U. Kang, “sparse OCT: optimizing compressed sensing in spectral domain optical coherence tomography,” Proc. SPIE7904, 79041C (2011).

[CrossRef]

M.F. Duarte and Y.C. Elda, “Structured compressed sensing from theory to applications,” IEEE Tran. Sig. Proc. Lett59, 4053–4085 (2011).

[CrossRef]

W. Geitzenauer, C. K. Hitzenberger, and U. M. Schmidt-Erfurth, “Retinal optical coherence tomography: past, present and future perspectives,” Br. J. Ophthalmol95(2), 171–177 (2010).

[CrossRef]
[PubMed]

N. Mohan, I. Stojanovic, W. C. Karl, B. E. A. Saleh, and M. C. Teich, “Compressed sensing in optical coherence tomography,” Proc. SPIE7570, 75700L–75700L-5 (2010).

[CrossRef]

A. Wong, A. Mishra, D. Clausi, and P. Fieguth, “Sparse reconstruction of breast MRI using homotopic L0 minimization in a regional sparsified domain,” Biomed. Eng. IEEE Trans, 1–10 (2010).

Z. Wang and G. Arce, “Variable density compressed image sampling,”IEEE Tran. on Image Proc.19, 264–270 (2010).

[CrossRef]

X. Liu and J. U. Kang, “Compressive SD-OCT: the application of compressed sensing in spectral domain optical coherence tomography,” Opt. Express18, 22010–22019 (2010).

[CrossRef]
[PubMed]

W. Guo and F. Huang, “Adaptive total variation based filtering for MRI images with spatially inhomogeneous noise and artifacts,” Int. Sym. Biomed Imag101–104 (2009).

D. Liang, H. Wang, and L. Ying, “SENSE reconstruction with nonlocal TV regularization,” Proc. IEEE Eng. Med. Biol. Soc.1032–1035 (2009).

J. Trzasko and A. Manduca, “Highly undersampled magnetic resonance image reconstruction via homotopic l0-minimization,” IEEE Trans. Med. Image28, 106–121 (2009).

[CrossRef]

D. Donoho and J. Tanner, “Counting faces of randomly-projected polytopes when the projection radically lowers dimension,” J. AMS22, 1–5 (2009).

M. Rudelson and R. Vershynin, “Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements,” 40th An. Conf. Inf. Sc. Sys.207–210 (2009).

R. Robucci, L.K. Chiu, J. Gray, J. Romberg, P. Hasler, and D. Anderson, “Compressive sensing on a CMOS separable transform image sensor,”IEEE Int. Conf. Ac. Speech Sig. Proc.5125–5128 (2008).

[CrossRef]

S. Mendelson, A. Pajor, and N. Tomczak-Jaegermann, “Uniform uncertainty principle for Bernoulli and subgaussian ensembles,” Constructive Approximation28, 277–289 (2008).

[CrossRef]

R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof of the restricted isometry property for random matrices,” Constructive Approximation28, 253–263 (2008).

[CrossRef]

E. J. Candes, “Restricted isometry property and its implications for compressed sensing,” Comptes rendus - Mathematique386, 589–592 (2008).

[CrossRef]

P. Puvanathasan, P. Forbes, Z. Ren, D. Malchow, S. Boyd, and K. Bizheva, “High-speed, high-resolution Fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region,” Opt. Lett33, 2479–2481 (2008).

[PubMed]

E. J. Candes and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl23, 969–985 (2007).

[CrossRef]

M. Lustig, D. Donoho, and J. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med.58, 1182–1195 (2007).

[CrossRef]
[PubMed]

E. Candës, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory52, 489–509 (2006).

[CrossRef]

D. Donoho, “Compressive sensing,” IEEE Trans. Inf. Theory52, 1289–1306 (2006).

[CrossRef]

J. A. Tropp, “Just relax: convex programming methods for identifying sparse signals in noise,” IEEE Trans. Inf. Theory51, 1030–1051 (2006).

[CrossRef]

E. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,”Communications on Pure and Applied Mathematics59, 1207–1221 (2006).

[CrossRef]

J. A. Tropp, “Greed is good: algorithmic results for sparse approximation,” IEEE Trans. Inf. Theory50, 2231–2242 (2004).

[CrossRef]

E.J. Candes and T. Tao, “Near-optimal signal recovery from random projections: universal encoding strategies,” IEEE Trans. Inf. Theory52, 5406–5425 (2004).

[CrossRef]

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci5(3), 229–240 (2004).

[CrossRef]
[PubMed]

R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolutionFourier domain optical coherence tomography,” Opt. Express12, 2156–2165 (2004).

[CrossRef]
[PubMed]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183 (2003).

[CrossRef]
[PubMed]

R. Gribonval and M. Nielsen, “Sparse representations in unions of bases,” IEEE Trans. Inf. Theory49, 3320–3325 (2003).

[CrossRef]

S.P. Monacos, R.K. Lam, A.A. Portillo, and G.G. Ortiz, “Design of an event-driven random-access-windowing CCD-based camera,” Proc. SPIE4975, 115 (2003).

[CrossRef]

M. Elad and A.M. Bruckstein, “A generalized uncertainty principle and sparse representation in pairs of bases,” IEEE Trans. Inf. Theory48, 2558–2567 (2002).

[CrossRef]

D.L. Donoho and X. Huo, “Uncertainty principles and ideal atom decomposition,” IEEE Trans. Inf. Theory47, 2845–2862 (2001).

[CrossRef]

S.M. Potter, A. Mart, and J. Pine, “High-speed CCD movie camera with random pixel selection for neurobiology research,” Proc. SPIE2869, 243253 (1997).

B. Dierickx, D. Scheffer, G. Meynants, W. Ogiers, and J. Vlummens, “Random addressable active pixel image sensors,” Proc. SPIE2950, 2–7 (1996).

[CrossRef]

B. K. Natarajan, “Sparse approximate solutions to linear systems,” SIAM J. Comput.24, 227–234 (1995).

[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).

[CrossRef]
[PubMed]

R. Robucci, L.K. Chiu, J. Gray, J. Romberg, P. Hasler, and D. Anderson, “Compressive sensing on a CMOS separable transform image sensor,”IEEE Int. Conf. Ac. Speech Sig. Proc.5125–5128 (2008).

[CrossRef]

Z. Wang and G. Arce, “Variable density compressed image sampling,”IEEE Tran. on Image Proc.19, 264–270 (2010).

[CrossRef]

R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolutionFourier domain optical coherence tomography,” Opt. Express12, 2156–2165 (2004).

[CrossRef]
[PubMed]

R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof of the restricted isometry property for random matrices,” Constructive Approximation28, 253–263 (2008).

[CrossRef]

B. Wu, E. Lebed, M. Sarunic, and M. Beg, “Quantitative evaluation of transform domains for compressive sampling-based recovery of sparsely sampled volumetric OCT images,” IEEE Trans. Bio. Eng.1–9 (2012).

[CrossRef]

M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography,” Opt. Express2, 2690–2697 (2011)

[CrossRef]

M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “The role of fixational eye movements in visual perception,” Biomed. Opt. Express2(9), 2690–2697 (2011).

[CrossRef]
[PubMed]

C. Liu, A. Wong, K. Bizheva, P. Fieguth, and H. Bie, “Homotopic, non-local sparse reconstruction of optical coherence tomography imagery,” Opt. Express20, 10200–10211 (2012).

[CrossRef]
[PubMed]

P. Puvanathasan, P. Forbes, Z. Ren, D. Malchow, S. Boyd, and K. Bizheva, “High-speed, high-resolution Fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region,” Opt. Lett33, 2479–2481 (2008).

[PubMed]

P. Puvanathasan, P. Forbes, Z. Ren, D. Malchow, S. Boyd, and K. Bizheva, “High-speed, high-resolution Fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region,” Opt. Lett33, 2479–2481 (2008).

[PubMed]

S. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “A method for large-scale L1-regularized least squares problems with applications in signal processing and statistics,” Manuscript, (2007).

M. Elad and A.M. Bruckstein, “A generalized uncertainty principle and sparse representation in pairs of bases,” IEEE Trans. Inf. Theory48, 2558–2567 (2002).

[CrossRef]

E. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,”Communications on Pure and Applied Mathematics59, 1207–1221 (2006).

[CrossRef]

E. J. Candes, “Restricted isometry property and its implications for compressed sensing,” Comptes rendus - Mathematique386, 589–592 (2008).

[CrossRef]

E. J. Candes and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl23, 969–985 (2007).

[CrossRef]

E.J. Candes and T. Tao, “Near-optimal signal recovery from random projections: universal encoding strategies,” IEEE Trans. Inf. Theory52, 5406–5425 (2004).

[CrossRef]

E. Candës, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory52, 489–509 (2006).

[CrossRef]

C. P. Robert and G. Casella, “Stable signal recovery from incomplete and inaccurate measurements,”Monte Carlo Statistical Methods, New York: Springer-Verlag (1999).

L. He, T. Chang, S. Osher, T. Fang, and P. Speier, “MR image reconstruction by using the iterative refinement method and nonlinear inverse scale space methods,” UCLA CAM Reports6–35, 2006.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).

[CrossRef]
[PubMed]

H. Chen, Tutorial on monte carlo sampling (The Ohio state university, department of chemcal and biomolecular engineering, technical report, 2005).

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeriz, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg Lasers Imaging42(4), 15–27 (2011).

[CrossRef]

R. Robucci, L.K. Chiu, J. Gray, J. Romberg, P. Hasler, and D. Anderson, “Compressive sensing on a CMOS separable transform image sensor,”IEEE Int. Conf. Ac. Speech Sig. Proc.5125–5128 (2008).

[CrossRef]

A. Wong, A. Mishra, D. Clausi, and P. Fieguth, “Sparse reconstruction of breast MRI using homotopic L0 minimization in a regional sparsified domain,” Biomed. Eng. IEEE Trans, 1–10 (2010).

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeriz, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg Lasers Imaging42(4), 15–27 (2011).

[CrossRef]

R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof of the restricted isometry property for random matrices,” Constructive Approximation28, 253–263 (2008).

[CrossRef]

R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof of the restricted isometry property for random matrices,” Constructive Approximation28, 253–263 (2008).

[CrossRef]

B. Dierickx, D. Scheffer, G. Meynants, W. Ogiers, and J. Vlummens, “Random addressable active pixel image sensors,” Proc. SPIE2950, 2–7 (1996).

[CrossRef]

D. Donoho and J. Tanner, “Counting faces of randomly-projected polytopes when the projection radically lowers dimension,” J. AMS22, 1–5 (2009).

M. Lustig, D. Donoho, and J. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med.58, 1182–1195 (2007).

[CrossRef]
[PubMed]

D. Donoho, “Compressive sensing,” IEEE Trans. Inf. Theory52, 1289–1306 (2006).

[CrossRef]

D.L. Donoho and X. Huo, “Uncertainty principles and ideal atom decomposition,” IEEE Trans. Inf. Theory47, 2845–2862 (2001).

[CrossRef]

R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolutionFourier domain optical coherence tomography,” Opt. Express12, 2156–2165 (2004).

[CrossRef]
[PubMed]

W. Drexler and J. G. Fujimoto, “Optical coherence tomography,” Springer BerlinHeidelberg (2008).

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeriz, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg Lasers Imaging42(4), 15–27 (2011).

[CrossRef]

M.F. Duarte and Y.C. Elda, “Structured compressed sensing from theory to applications,” IEEE Tran. Sig. Proc. Lett59, 4053–4085 (2011).

[CrossRef]

M. Elad and A.M. Bruckstein, “A generalized uncertainty principle and sparse representation in pairs of bases,” IEEE Trans. Inf. Theory48, 2558–2567 (2002).

[CrossRef]

M.F. Duarte and Y.C. Elda, “Structured compressed sensing from theory to applications,” IEEE Tran. Sig. Proc. Lett59, 4053–4085 (2011).

[CrossRef]

L. He, T. Chang, S. Osher, T. Fang, and P. Speier, “MR image reconstruction by using the iterative refinement method and nonlinear inverse scale space methods,” UCLA CAM Reports6–35, 2006.

R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolutionFourier domain optical coherence tomography,” Opt. Express12, 2156–2165 (2004).

[CrossRef]
[PubMed]

C. Liu, A. Wong, K. Bizheva, P. Fieguth, and H. Bie, “Homotopic, non-local sparse reconstruction of optical coherence tomography imagery,” Opt. Express20, 10200–10211 (2012).

[CrossRef]
[PubMed]

A. Wong, A. Mishra, D. Clausi, and P. Fieguth, “Sparse reconstruction of breast MRI using homotopic L0 minimization in a regional sparsified domain,” Biomed. Eng. IEEE Trans, 1–10 (2010).

P. Fieguth, Statistical image processing and multidimensional modeling (SpringerNew York, 2010).

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).

[CrossRef]
[PubMed]

ML Gabriele, G Wollstein, H Ishikawa, L Kagemann, J Xu, LS Folio, and JS Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest Ophthalmol Vis Sci52, 2425–2436 (2011).

[CrossRef]
[PubMed]

P. Puvanathasan, P. Forbes, Z. Ren, D. Malchow, S. Boyd, and K. Bizheva, “High-speed, high-resolution Fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region,” Opt. Lett33, 2479–2481 (2008).

[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).

[CrossRef]
[PubMed]

W. Drexler and J. G. Fujimoto, “Optical coherence tomography,” Springer BerlinHeidelberg (2008).

ML Gabriele, G Wollstein, H Ishikawa, L Kagemann, J Xu, LS Folio, and JS Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest Ophthalmol Vis Sci52, 2425–2436 (2011).

[CrossRef]
[PubMed]

W. Geitzenauer, C. K. Hitzenberger, and U. M. Schmidt-Erfurth, “Retinal optical coherence tomography: past, present and future perspectives,” Br. J. Ophthalmol95(2), 171–177 (2010).

[CrossRef]
[PubMed]

G. Gilboa and S. Osher, “Nonlocal operators with applications to image processing,” Tech. Rep. CAM Report 07–23, Univ. California, Los Angeles, 2007.

S. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “A method for large-scale L1-regularized least squares problems with applications in signal processing and statistics,” Manuscript, (2007).

R. Robucci, L.K. Chiu, J. Gray, J. Romberg, P. Hasler, and D. Anderson, “Compressive sensing on a CMOS separable transform image sensor,”IEEE Int. Conf. Ac. Speech Sig. Proc.5125–5128 (2008).

[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).

[CrossRef]
[PubMed]

R. Gribonval and M. Nielsen, “Sparse representations in unions of bases,” IEEE Trans. Inf. Theory49, 3320–3325 (2003).

[CrossRef]

W. Guo and F. Huang, “Adaptive total variation based filtering for MRI images with spatially inhomogeneous noise and artifacts,” Int. Sym. Biomed Imag101–104 (2009).

R. Robucci, L.K. Chiu, J. Gray, J. Romberg, P. Hasler, and D. Anderson, “Compressive sensing on a CMOS separable transform image sensor,”IEEE Int. Conf. Ac. Speech Sig. Proc.5125–5128 (2008).

[CrossRef]

L. He, T. Chang, S. Osher, T. Fang, and P. Speier, “MR image reconstruction by using the iterative refinement method and nonlinear inverse scale space methods,” UCLA CAM Reports6–35, 2006.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).

[CrossRef]
[PubMed]

R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolutionFourier domain optical coherence tomography,” Opt. Express12, 2156–2165 (2004).

[CrossRef]
[PubMed]

W. Geitzenauer, C. K. Hitzenberger, and U. M. Schmidt-Erfurth, “Retinal optical coherence tomography: past, present and future perspectives,” Br. J. Ophthalmol95(2), 171–177 (2010).

[CrossRef]
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).

[CrossRef]
[PubMed]

W. Guo and F. Huang, “Adaptive total variation based filtering for MRI images with spatially inhomogeneous noise and artifacts,” Int. Sym. Biomed Imag101–104 (2009).

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci5(3), 229–240 (2004).

[CrossRef]
[PubMed]

D.L. Donoho and X. Huo, “Uncertainty principles and ideal atom decomposition,” IEEE Trans. Inf. Theory47, 2845–2862 (2001).

[CrossRef]

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeriz, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg Lasers Imaging42(4), 15–27 (2011).

[CrossRef]

ML Gabriele, G Wollstein, H Ishikawa, L Kagemann, J Xu, LS Folio, and JS Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest Ophthalmol Vis Sci52, 2425–2436 (2011).

[CrossRef]
[PubMed]

M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography,” Opt. Express2, 2690–2697 (2011)

[CrossRef]

M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “The role of fixational eye movements in visual perception,” Biomed. Opt. Express2(9), 2690–2697 (2011).

[CrossRef]
[PubMed]

ML Gabriele, G Wollstein, H Ishikawa, L Kagemann, J Xu, LS Folio, and JS Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest Ophthalmol Vis Sci52, 2425–2436 (2011).

[CrossRef]
[PubMed]

X. Liu and J.U. Kang, “sparse OCT: optimizing compressed sensing in spectral domain optical coherence tomography,” Proc. SPIE7904, 79041C (2011).

[CrossRef]

N. Mohan, I. Stojanovic, W. C. Karl, B. E. A. Saleh, and M. C. Teich, “Compressed sensing in optical coherence tomography,” Proc. SPIE7570, 75700L–75700L-5 (2010).

[CrossRef]

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeriz, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg Lasers Imaging42(4), 15–27 (2011).

[CrossRef]

S. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “A method for large-scale L1-regularized least squares problems with applications in signal processing and statistics,” Manuscript, (2007).

S. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “A method for large-scale L1-regularized least squares problems with applications in signal processing and statistics,” Manuscript, (2007).

S.P. Monacos, R.K. Lam, A.A. Portillo, and G.G. Ortiz, “Design of an event-driven random-access-windowing CCD-based camera,” Proc. SPIE4975, 115 (2003).

[CrossRef]

R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolutionFourier domain optical coherence tomography,” Opt. Express12, 2156–2165 (2004).

[CrossRef]
[PubMed]

B. Wu, E. Lebed, M. Sarunic, and M. Beg, “Quantitative evaluation of transform domains for compressive sampling-based recovery of sparsely sampled volumetric OCT images,” IEEE Trans. Bio. Eng.1–9 (2012).

[CrossRef]

M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography,” Opt. Express2, 2690–2697 (2011)

[CrossRef]

M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “The role of fixational eye movements in visual perception,” Biomed. Opt. Express2(9), 2690–2697 (2011).

[CrossRef]
[PubMed]

R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolutionFourier domain optical coherence tomography,” Opt. Express12, 2156–2165 (2004).

[CrossRef]
[PubMed]

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeriz, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg Lasers Imaging42(4), 15–27 (2011).

[CrossRef]

D. Liang, H. Wang, and L. Ying, “SENSE reconstruction with nonlocal TV regularization,” Proc. IEEE Eng. Med. Biol. Soc.1032–1035 (2009).

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).

[CrossRef]
[PubMed]

M. Lustig, D. Donoho, and J. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med.58, 1182–1195 (2007).

[CrossRef]
[PubMed]

S. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “A method for large-scale L1-regularized least squares problems with applications in signal processing and statistics,” Manuscript, (2007).

M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography,” Opt. Express2, 2690–2697 (2011)

[CrossRef]

M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “The role of fixational eye movements in visual perception,” Biomed. Opt. Express2(9), 2690–2697 (2011).

[CrossRef]
[PubMed]

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci5(3), 229–240 (2004).

[CrossRef]
[PubMed]

P. Puvanathasan, P. Forbes, Z. Ren, D. Malchow, S. Boyd, and K. Bizheva, “High-speed, high-resolution Fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region,” Opt. Lett33, 2479–2481 (2008).

[PubMed]

J. Trzasko and A. Manduca, “Highly undersampled magnetic resonance image reconstruction via homotopic l0-minimization,” IEEE Trans. Med. Image28, 106–121 (2009).

[CrossRef]

S.M. Potter, A. Mart, and J. Pine, “High-speed CCD movie camera with random pixel selection for neurobiology research,” Proc. SPIE2869, 243253 (1997).

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci5(3), 229–240 (2004).

[CrossRef]
[PubMed]

S. Mendelson, A. Pajor, and N. Tomczak-Jaegermann, “Uniform uncertainty principle for Bernoulli and subgaussian ensembles,” Constructive Approximation28, 277–289 (2008).

[CrossRef]

B. Dierickx, D. Scheffer, G. Meynants, W. Ogiers, and J. Vlummens, “Random addressable active pixel image sensors,” Proc. SPIE2950, 2–7 (1996).

[CrossRef]

A. Wong, A. Mishra, D. Clausi, and P. Fieguth, “Sparse reconstruction of breast MRI using homotopic L0 minimization in a regional sparsified domain,” Biomed. Eng. IEEE Trans, 1–10 (2010).

N. Mohan, I. Stojanovic, W. C. Karl, B. E. A. Saleh, and M. C. Teich, “Compressed sensing in optical coherence tomography,” Proc. SPIE7570, 75700L–75700L-5 (2010).

[CrossRef]

S.P. Monacos, R.K. Lam, A.A. Portillo, and G.G. Ortiz, “Design of an event-driven random-access-windowing CCD-based camera,” Proc. SPIE4975, 115 (2003).

[CrossRef]

B. K. Natarajan, “Sparse approximate solutions to linear systems,” SIAM J. Comput.24, 227–234 (1995).

[CrossRef]

R. Gribonval and M. Nielsen, “Sparse representations in unions of bases,” IEEE Trans. Inf. Theory49, 3320–3325 (2003).

[CrossRef]

B. Dierickx, D. Scheffer, G. Meynants, W. Ogiers, and J. Vlummens, “Random addressable active pixel image sensors,” Proc. SPIE2950, 2–7 (1996).

[CrossRef]

S.P. Monacos, R.K. Lam, A.A. Portillo, and G.G. Ortiz, “Design of an event-driven random-access-windowing CCD-based camera,” Proc. SPIE4975, 115 (2003).

[CrossRef]

G. Gilboa and S. Osher, “Nonlocal operators with applications to image processing,” Tech. Rep. CAM Report 07–23, Univ. California, Los Angeles, 2007.

L. He, T. Chang, S. Osher, T. Fang, and P. Speier, “MR image reconstruction by using the iterative refinement method and nonlinear inverse scale space methods,” UCLA CAM Reports6–35, 2006.

S. Mendelson, A. Pajor, and N. Tomczak-Jaegermann, “Uniform uncertainty principle for Bernoulli and subgaussian ensembles,” Constructive Approximation28, 277–289 (2008).

[CrossRef]

M. Lustig, D. Donoho, and J. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med.58, 1182–1195 (2007).

[CrossRef]
[PubMed]

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeriz, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg Lasers Imaging42(4), 15–27 (2011).

[CrossRef]

S.M. Potter, A. Mart, and J. Pine, “High-speed CCD movie camera with random pixel selection for neurobiology research,” Proc. SPIE2869, 243253 (1997).

S.P. Monacos, R.K. Lam, A.A. Portillo, and G.G. Ortiz, “Design of an event-driven random-access-windowing CCD-based camera,” Proc. SPIE4975, 115 (2003).

[CrossRef]

S.M. Potter, A. Mart, and J. Pine, “High-speed CCD movie camera with random pixel selection for neurobiology research,” Proc. SPIE2869, 243253 (1997).

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).

[CrossRef]
[PubMed]

P. Puvanathasan, P. Forbes, Z. Ren, D. Malchow, S. Boyd, and K. Bizheva, “High-speed, high-resolution Fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region,” Opt. Lett33, 2479–2481 (2008).

[PubMed]

G. Puy, P. Vandergheynst, and Y. Wiaux, “On variable density compressive sampling,” IEEE Sig. Proc. Lett18, 595–598 (2011).

[CrossRef]

P. Puvanathasan, P. Forbes, Z. Ren, D. Malchow, S. Boyd, and K. Bizheva, “High-speed, high-resolution Fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region,” Opt. Lett33, 2479–2481 (2008).

[PubMed]

C. P. Robert and G. Casella, “Stable signal recovery from incomplete and inaccurate measurements,”Monte Carlo Statistical Methods, New York: Springer-Verlag (1999).

R. Robucci, L.K. Chiu, J. Gray, J. Romberg, P. Hasler, and D. Anderson, “Compressive sensing on a CMOS separable transform image sensor,”IEEE Int. Conf. Ac. Speech Sig. Proc.5125–5128 (2008).

[CrossRef]

R. Robucci, L.K. Chiu, J. Gray, J. Romberg, P. Hasler, and D. Anderson, “Compressive sensing on a CMOS separable transform image sensor,”IEEE Int. Conf. Ac. Speech Sig. Proc.5125–5128 (2008).

[CrossRef]

E. J. Candes and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl23, 969–985 (2007).

[CrossRef]

E. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,”Communications on Pure and Applied Mathematics59, 1207–1221 (2006).

[CrossRef]

E. Candës, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory52, 489–509 (2006).

[CrossRef]

M. Rudelson and R. Vershynin, “Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements,” 40th An. Conf. Inf. Sc. Sys.207–210 (2009).

N. Mohan, I. Stojanovic, W. C. Karl, B. E. A. Saleh, and M. C. Teich, “Compressed sensing in optical coherence tomography,” Proc. SPIE7570, 75700L–75700L-5 (2010).

[CrossRef]

B. Wu, E. Lebed, M. Sarunic, and M. Beg, “Quantitative evaluation of transform domains for compressive sampling-based recovery of sparsely sampled volumetric OCT images,” IEEE Trans. Bio. Eng.1–9 (2012).

[CrossRef]

M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “The role of fixational eye movements in visual perception,” Biomed. Opt. Express2(9), 2690–2697 (2011).

[CrossRef]
[PubMed]

M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography,” Opt. Express2, 2690–2697 (2011)

[CrossRef]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183 (2003).

[CrossRef]
[PubMed]

B. Dierickx, D. Scheffer, G. Meynants, W. Ogiers, and J. Vlummens, “Random addressable active pixel image sensors,” Proc. SPIE2950, 2–7 (1996).

[CrossRef]

W. Geitzenauer, C. K. Hitzenberger, and U. M. Schmidt-Erfurth, “Retinal optical coherence tomography: past, present and future perspectives,” Br. J. Ophthalmol95(2), 171–177 (2010).

[CrossRef]
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).

[CrossRef]
[PubMed]

ML Gabriele, G Wollstein, H Ishikawa, L Kagemann, J Xu, LS Folio, and JS Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest Ophthalmol Vis Sci52, 2425–2436 (2011).

[CrossRef]
[PubMed]

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeriz, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg Lasers Imaging42(4), 15–27 (2011).

[CrossRef]

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeriz, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg Lasers Imaging42(4), 15–27 (2011).

[CrossRef]

L. He, T. Chang, S. Osher, T. Fang, and P. Speier, “MR image reconstruction by using the iterative refinement method and nonlinear inverse scale space methods,” UCLA CAM Reports6–35, 2006.

R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolutionFourier domain optical coherence tomography,” Opt. Express12, 2156–2165 (2004).

[CrossRef]
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).

[CrossRef]
[PubMed]

N. Mohan, I. Stojanovic, W. C. Karl, B. E. A. Saleh, and M. C. Teich, “Compressed sensing in optical coherence tomography,” Proc. SPIE7570, 75700L–75700L-5 (2010).

[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).

[CrossRef]
[PubMed]

D. Donoho and J. Tanner, “Counting faces of randomly-projected polytopes when the projection radically lowers dimension,” J. AMS22, 1–5 (2009).

E. Candës, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory52, 489–509 (2006).

[CrossRef]

E. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,”Communications on Pure and Applied Mathematics59, 1207–1221 (2006).

[CrossRef]

E.J. Candes and T. Tao, “Near-optimal signal recovery from random projections: universal encoding strategies,” IEEE Trans. Inf. Theory52, 5406–5425 (2004).

[CrossRef]

N. Mohan, I. Stojanovic, W. C. Karl, B. E. A. Saleh, and M. C. Teich, “Compressed sensing in optical coherence tomography,” Proc. SPIE7570, 75700L–75700L-5 (2010).

[CrossRef]

S. Mendelson, A. Pajor, and N. Tomczak-Jaegermann, “Uniform uncertainty principle for Bernoulli and subgaussian ensembles,” Constructive Approximation28, 277–289 (2008).

[CrossRef]

J. A. Tropp, “Just relax: convex programming methods for identifying sparse signals in noise,” IEEE Trans. Inf. Theory51, 1030–1051 (2006).

[CrossRef]

J. A. Tropp, “Greed is good: algorithmic results for sparse approximation,” IEEE Trans. Inf. Theory50, 2231–2242 (2004).

[CrossRef]

J. Trzasko and A. Manduca, “Highly undersampled magnetic resonance image reconstruction via homotopic l0-minimization,” IEEE Trans. Med. Image28, 106–121 (2009).

[CrossRef]

R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolutionFourier domain optical coherence tomography,” Opt. Express12, 2156–2165 (2004).

[CrossRef]
[PubMed]

G. Puy, P. Vandergheynst, and Y. Wiaux, “On variable density compressive sampling,” IEEE Sig. Proc. Lett18, 595–598 (2011).

[CrossRef]

M. Rudelson and R. Vershynin, “Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements,” 40th An. Conf. Inf. Sc. Sys.207–210 (2009).

B. Dierickx, D. Scheffer, G. Meynants, W. Ogiers, and J. Vlummens, “Random addressable active pixel image sensors,” Proc. SPIE2950, 2–7 (1996).

[CrossRef]

R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof of the restricted isometry property for random matrices,” Constructive Approximation28, 253–263 (2008).

[CrossRef]

D. Liang, H. Wang, and L. Ying, “SENSE reconstruction with nonlocal TV regularization,” Proc. IEEE Eng. Med. Biol. Soc.1032–1035 (2009).

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeriz, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg Lasers Imaging42(4), 15–27 (2011).

[CrossRef]

Z. Wang and G. Arce, “Variable density compressed image sampling,”IEEE Tran. on Image Proc.19, 264–270 (2010).

[CrossRef]

G. Puy, P. Vandergheynst, and Y. Wiaux, “On variable density compressive sampling,” IEEE Sig. Proc. Lett18, 595–598 (2011).

[CrossRef]

ML Gabriele, G Wollstein, H Ishikawa, L Kagemann, J Xu, LS Folio, and JS Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest Ophthalmol Vis Sci52, 2425–2436 (2011).

[CrossRef]
[PubMed]

S. Schwartz, A. Wong, and D. A. Clausi, “Compressive fluorescence microscopy using saliency-guided sparse reconstruction ensemble fusion,” Opt. Express20, 17281–17296 (2012).

[CrossRef]
[PubMed]

C. Liu, A. Wong, K. Bizheva, P. Fieguth, and H. Bie, “Homotopic, non-local sparse reconstruction of optical coherence tomography imagery,” Opt. Express20, 10200–10211 (2012).

[CrossRef]
[PubMed]

A. Wong, A. Mishra, D. Clausi, and P. Fieguth, “Sparse reconstruction of breast MRI using homotopic L0 minimization in a regional sparsified domain,” Biomed. Eng. IEEE Trans, 1–10 (2010).

S. Schwartz, A. Wong, and D. A. Clausi, “Saliency-guided compressive sensing approach to efficient laser range measurement,” Journal of Visual Communication and Image Representation (2012).

[CrossRef]

B. Wu, E. Lebed, M. Sarunic, and M. Beg, “Quantitative evaluation of transform domains for compressive sampling-based recovery of sparsely sampled volumetric OCT images,” IEEE Trans. Bio. Eng.1–9 (2012).

[CrossRef]

ML Gabriele, G Wollstein, H Ishikawa, L Kagemann, J Xu, LS Folio, and JS Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest Ophthalmol Vis Sci52, 2425–2436 (2011).

[CrossRef]
[PubMed]

D. Liang, H. Wang, and L. Ying, “SENSE reconstruction with nonlocal TV regularization,” Proc. IEEE Eng. Med. Biol. Soc.1032–1035 (2009).

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeriz, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg Lasers Imaging42(4), 15–27 (2011).

[CrossRef]

M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography,” Opt. Express2, 2690–2697 (2011)

[CrossRef]

M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “The role of fixational eye movements in visual perception,” Biomed. Opt. Express2(9), 2690–2697 (2011).

[CrossRef]
[PubMed]

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeriz, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg Lasers Imaging42(4), 15–27 (2011).

[CrossRef]

M. Rudelson and R. Vershynin, “Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements,” 40th An. Conf. Inf. Sc. Sys.207–210 (2009).

A. Wong, A. Mishra, D. Clausi, and P. Fieguth, “Sparse reconstruction of breast MRI using homotopic L0 minimization in a regional sparsified domain,” Biomed. Eng. IEEE Trans, 1–10 (2010).

W. Geitzenauer, C. K. Hitzenberger, and U. M. Schmidt-Erfurth, “Retinal optical coherence tomography: past, present and future perspectives,” Br. J. Ophthalmol95(2), 171–177 (2010).

[CrossRef]
[PubMed]

E. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,”Communications on Pure and Applied Mathematics59, 1207–1221 (2006).

[CrossRef]

E. J. Candes, “Restricted isometry property and its implications for compressed sensing,” Comptes rendus - Mathematique386, 589–592 (2008).

[CrossRef]

S. Mendelson, A. Pajor, and N. Tomczak-Jaegermann, “Uniform uncertainty principle for Bernoulli and subgaussian ensembles,” Constructive Approximation28, 277–289 (2008).

[CrossRef]

R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof of the restricted isometry property for random matrices,” Constructive Approximation28, 253–263 (2008).

[CrossRef]

R. Robucci, L.K. Chiu, J. Gray, J. Romberg, P. Hasler, and D. Anderson, “Compressive sensing on a CMOS separable transform image sensor,”IEEE Int. Conf. Ac. Speech Sig. Proc.5125–5128 (2008).

[CrossRef]

G. Puy, P. Vandergheynst, and Y. Wiaux, “On variable density compressive sampling,” IEEE Sig. Proc. Lett18, 595–598 (2011).

[CrossRef]

Z. Wang and G. Arce, “Variable density compressed image sampling,”IEEE Tran. on Image Proc.19, 264–270 (2010).

[CrossRef]

M.F. Duarte and Y.C. Elda, “Structured compressed sensing from theory to applications,” IEEE Tran. Sig. Proc. Lett59, 4053–4085 (2011).

[CrossRef]

B. Wu, E. Lebed, M. Sarunic, and M. Beg, “Quantitative evaluation of transform domains for compressive sampling-based recovery of sparsely sampled volumetric OCT images,” IEEE Trans. Bio. Eng.1–9 (2012).

[CrossRef]

D.L. Donoho and X. Huo, “Uncertainty principles and ideal atom decomposition,” IEEE Trans. Inf. Theory47, 2845–2862 (2001).

[CrossRef]

M. Elad and A.M. Bruckstein, “A generalized uncertainty principle and sparse representation in pairs of bases,” IEEE Trans. Inf. Theory48, 2558–2567 (2002).

[CrossRef]

R. Gribonval and M. Nielsen, “Sparse representations in unions of bases,” IEEE Trans. Inf. Theory49, 3320–3325 (2003).

[CrossRef]

E. Candës, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory52, 489–509 (2006).

[CrossRef]

D. Donoho, “Compressive sensing,” IEEE Trans. Inf. Theory52, 1289–1306 (2006).

[CrossRef]

E.J. Candes and T. Tao, “Near-optimal signal recovery from random projections: universal encoding strategies,” IEEE Trans. Inf. Theory52, 5406–5425 (2004).

[CrossRef]

J. A. Tropp, “Greed is good: algorithmic results for sparse approximation,” IEEE Trans. Inf. Theory50, 2231–2242 (2004).

[CrossRef]

J. A. Tropp, “Just relax: convex programming methods for identifying sparse signals in noise,” IEEE Trans. Inf. Theory51, 1030–1051 (2006).

[CrossRef]

J. Trzasko and A. Manduca, “Highly undersampled magnetic resonance image reconstruction via homotopic l0-minimization,” IEEE Trans. Med. Image28, 106–121 (2009).

[CrossRef]

W. Guo and F. Huang, “Adaptive total variation based filtering for MRI images with spatially inhomogeneous noise and artifacts,” Int. Sym. Biomed Imag101–104 (2009).

E. J. Candes and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl23, 969–985 (2007).

[CrossRef]

ML Gabriele, G Wollstein, H Ishikawa, L Kagemann, J Xu, LS Folio, and JS Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest Ophthalmol Vis Sci52, 2425–2436 (2011).

[CrossRef]
[PubMed]

D. Donoho and J. Tanner, “Counting faces of randomly-projected polytopes when the projection radically lowers dimension,” J. AMS22, 1–5 (2009).

M. Lustig, D. Donoho, and J. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med.58, 1182–1195 (2007).

[CrossRef]
[PubMed]

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci5(3), 229–240 (2004).

[CrossRef]
[PubMed]

J. Wang, M. A. Shousha, V. L. Perez, C. L. Karp, S. H. Yoo, M. Shen, L. Cui, V. Hurmeriz, C. Du, D. Zhu, Q. Chen, and M. Li, “Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye,” Ophthalmic Surg Lasers Imaging42(4), 15–27 (2011).

[CrossRef]

M. Young, E. Lebed, Y. Jian, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography,” Opt. Express2, 2690–2697 (2011)

[CrossRef]

C. Liu, A. Wong, K. Bizheva, P. Fieguth, and H. Bie, “Homotopic, non-local sparse reconstruction of optical coherence tomography imagery,” Opt. Express20, 10200–10211 (2012).

[CrossRef]
[PubMed]

S. Schwartz, A. Wong, and D. A. Clausi, “Compressive fluorescence microscopy using saliency-guided sparse reconstruction ensemble fusion,” Opt. Express20, 17281–17296 (2012).

[CrossRef]
[PubMed]

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183 (2003).

[CrossRef]
[PubMed]

R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolutionFourier domain optical coherence tomography,” Opt. Express12, 2156–2165 (2004).

[CrossRef]
[PubMed]

X. Liu and J. U. Kang, “Compressive SD-OCT: the application of compressed sensing in spectral domain optical coherence tomography,” Opt. Express18, 22010–22019 (2010).

[CrossRef]
[PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011).

[CrossRef]
[PubMed]

P. Puvanathasan, P. Forbes, Z. Ren, D. Malchow, S. Boyd, and K. Bizheva, “High-speed, high-resolution Fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region,” Opt. Lett33, 2479–2481 (2008).

[PubMed]

D. Liang, H. Wang, and L. Ying, “SENSE reconstruction with nonlocal TV regularization,” Proc. IEEE Eng. Med. Biol. Soc.1032–1035 (2009).

N. Mohan, I. Stojanovic, W. C. Karl, B. E. A. Saleh, and M. C. Teich, “Compressed sensing in optical coherence tomography,” Proc. SPIE7570, 75700L–75700L-5 (2010).

[CrossRef]

X. Liu and J.U. Kang, “sparse OCT: optimizing compressed sensing in spectral domain optical coherence tomography,” Proc. SPIE7904, 79041C (2011).

[CrossRef]

S.M. Potter, A. Mart, and J. Pine, “High-speed CCD movie camera with random pixel selection for neurobiology research,” Proc. SPIE2869, 243253 (1997).

S.P. Monacos, R.K. Lam, A.A. Portillo, and G.G. Ortiz, “Design of an event-driven random-access-windowing CCD-based camera,” Proc. SPIE4975, 115 (2003).

[CrossRef]

B. Dierickx, D. Scheffer, G. Meynants, W. Ogiers, and J. Vlummens, “Random addressable active pixel image sensors,” Proc. SPIE2950, 2–7 (1996).

[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).

[CrossRef]
[PubMed]

B. K. Natarajan, “Sparse approximate solutions to linear systems,” SIAM J. Comput.24, 227–234 (1995).

[CrossRef]

G. Gilboa and S. Osher, “Nonlocal operators with applications to image processing,” Tech. Rep. CAM Report 07–23, Univ. California, Los Angeles, 2007.

C. P. Robert and G. Casella, “Stable signal recovery from incomplete and inaccurate measurements,”Monte Carlo Statistical Methods, New York: Springer-Verlag (1999).

H. Chen, Tutorial on monte carlo sampling (The Ohio state university, department of chemcal and biomolecular engineering, technical report, 2005).

P. Fieguth, Statistical image processing and multidimensional modeling (SpringerNew York, 2010).

W. Drexler and J. G. Fujimoto, “Optical coherence tomography,” Springer BerlinHeidelberg (2008).

S. Schwartz, A. Wong, and D. A. Clausi, “Saliency-guided compressive sensing approach to efficient laser range measurement,” Journal of Visual Communication and Image Representation (2012).

[CrossRef]

L. He, T. Chang, S. Osher, T. Fang, and P. Speier, “MR image reconstruction by using the iterative refinement method and nonlinear inverse scale space methods,” UCLA CAM Reports6–35, 2006.

S. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “A method for large-scale L1-regularized least squares problems with applications in signal processing and statistics,” Manuscript, (2007).