Abstract

A gold nanorod-facilitated optical heating method for droplets in microfluidic chips is reported. Individual and stream nanoliter level droplets containing gold nanorods are heated by a low power 808-nm-wavelength laser. Owing to the high photothermal conversion efficiency of gold nanorods, a droplet temperature of 95 °C is achieved by employing a 13.6 mW laser with good reproducibility. The heating and cooling times are 200 and 800 ms, respectively, which are attributed to the fast thermal-transfer rates of the droplets. By controlling the irradiation laser power, the temperature cycles for polymerase chain reaction are also demonstrated.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Song, D. L. Chen, and R. F. Ismagilov, “Reactions in droplets in microflulidic channels,” Angew. Chem. Int. Ed. 45(44), 7336–7356 (2006).
    [CrossRef]
  2. A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
    [PubMed]
  3. V. Trivedi, A. Doshi, G. K. Kurup, E. Ereifej, P. J. Vandevord, and A. S. Basu, “A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening,” Lab Chip 10(18), 2433–2442 (2010).
    [CrossRef] [PubMed]
  4. J.-T. Wang, J. Wang, and J.-J. Han, “Fabrication of advanced particles and particle-based materials assisted by droplet-based microfluidics,” Small 7(13), 1728–1754 (2011).
    [CrossRef] [PubMed]
  5. D. T. Chiu, R. M. Lorenz, and G. D. Jeffries, “Droplets for ultrasmall-volume analysis,” Anal. Chem. 81(13), 5111–5118 (2009).
    [CrossRef] [PubMed]
  6. M. U. Kopp, A. J. Mello, and A. Manz, “Chemical amplification: continuous-flow PCR on a chip,” Science 280(5366), 1046–1048 (1998).
    [CrossRef] [PubMed]
  7. A. J. de Mello, M. Habgood, N. L. Lancaster, T. Welton, and R. C. R. Wootton, “Precise temperature control in microfluidic devices using Joule heating of ionic liquids,” Lab Chip 4(5), 417–419 (2004).
    [CrossRef] [PubMed]
  8. R. Fu, B. Xu, and D. Li, “Study of the temperature field in microchannels of a PDMS chip with embedded local heater using temperature-dependent fluorescent dye,” Int. J. Therm. Sci. 45(9), 841–847 (2006).
    [CrossRef]
  9. B. Selva, J. Marchalot, and M. C. Jullien, “An optimized resistor pattern for temperature gradient control in microfluidics,” J. Micromech. Microeng. 19(6), 065002 (2009).
    [CrossRef]
  10. H. Reinhardt, P. S. Dittrich, A. Manz, and J. Franzke, “Micro-hotplate enhanced optical heating by infrared light for single cell treatment,” Lab Chip 7(11), 1509–1514 (2007).
    [CrossRef] [PubMed]
  11. L. H. Thamdrup, N. B. Larsen, and A. Kristensen, “Light-induced local heating for thermophoretic manipulation of DNA in polymer micro- and nanochannels,” Nano Lett. 10(3), 826–832 (2010).
    [CrossRef] [PubMed]
  12. K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
    [CrossRef] [PubMed]
  13. C.-H. Chou, C.-D. Chen, and C. R. Wang, “Highly efficient, wavelength-tunable, gold nanoparticle based optothermal nanoconvertors,” J. Phys. Chem. B 109(22), 11135–11138 (2005).
    [CrossRef] [PubMed]
  14. H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9(3), 1139–1146 (2009).
    [CrossRef] [PubMed]
  15. S. Merabia, S. Shenogin, L. Joly, P. Keblinski, and J. L. Barrat, “Heat transfer from nanoparticles: a corresponding state analysis,” Proc. Natl. Acad. Sci. U.S.A. 106(36), 15113–15118 (2009).
    [CrossRef] [PubMed]
  16. G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
    [CrossRef] [PubMed]
  17. H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
    [CrossRef] [PubMed]
  18. B. Jang, Y. S. Kim, and Y. Choi, “Effects of gold nanorod concentration on the depth-related temperature increase during hyperthermic ablation,” Small 7(2), 265–270 (2011).
    [CrossRef] [PubMed]
  19. C. Fang, L. Shao, Y. Zhao, J. Wang, and H. Wu, “A gold nanocrystal/poly(dimethylsiloxane) composite for plasmonic heating on microfluidic chips,” Adv. Mater. (Deerfield Beach Fla.) 24(1), 94–98 (2012).
    [CrossRef] [PubMed]
  20. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
    [CrossRef] [PubMed]
  21. P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12(6), 3145–3150 (2012).
    [CrossRef] [PubMed]
  22. D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73(17), 4117–4123 (2001).
    [CrossRef] [PubMed]
  23. G. T. Roman, K. McDaniel, and C. T. Culbertson, “High efficiency micellar electrokinetic chromatography of hydrophobic analytes on poly(dimethylsiloxane) microchips,” Analyst (Lond.) 131(2), 194–201 (2006).
    [CrossRef] [PubMed]
  24. P. H. Hoang, H. Park, and D. P. Kim, “Ultrafast and continuous synthesis of unaccommodating inorganic nanomaterials in droplet- and ionic liquid-assisted microfluidic system,” J. Am. Chem. Soc. 133(37), 14765–14770 (2011).
    [CrossRef] [PubMed]
  25. J. H. Park, A. M. Derfus, E. Segal, K. S. Vecchio, S. N. Bhatia, and M. J. Sailor, “Local heating of discrete droplets using magnetic porous silicon-based photonic crystals,” J. Am. Chem. Soc. 128(24), 7938–7946 (2006).
    [CrossRef] [PubMed]
  26. K. J. Shaw, P. T. Docker, J. V. Yelland, C. E. Dyer, J. Greenman, G. M. Greenway, and S. J. Haswell, “Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling,” Lab Chip 10(13), 1725–1728 (2010).
    [CrossRef] [PubMed]
  27. J. J. Shah, S. G. Sundaresan, J. Geist, D. R. Reyes, J. C. Booth, M. V. Rao, and M. Gaitan, “Microwave dielectric heating of fluids in an integrated microfluidic device,” J. Micromech. Microeng. 17(11), 2224–2230 (2007).
    [CrossRef]

2012 (2)

C. Fang, L. Shao, Y. Zhao, J. Wang, and H. Wu, “A gold nanocrystal/poly(dimethylsiloxane) composite for plasmonic heating on microfluidic chips,” Adv. Mater. (Deerfield Beach Fla.) 24(1), 94–98 (2012).
[CrossRef] [PubMed]

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12(6), 3145–3150 (2012).
[CrossRef] [PubMed]

2011 (4)

B. Jang, Y. S. Kim, and Y. Choi, “Effects of gold nanorod concentration on the depth-related temperature increase during hyperthermic ablation,” Small 7(2), 265–270 (2011).
[CrossRef] [PubMed]

P. H. Hoang, H. Park, and D. P. Kim, “Ultrafast and continuous synthesis of unaccommodating inorganic nanomaterials in droplet- and ionic liquid-assisted microfluidic system,” J. Am. Chem. Soc. 133(37), 14765–14770 (2011).
[CrossRef] [PubMed]

J.-T. Wang, J. Wang, and J.-J. Han, “Fabrication of advanced particles and particle-based materials assisted by droplet-based microfluidics,” Small 7(13), 1728–1754 (2011).
[CrossRef] [PubMed]

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[CrossRef] [PubMed]

2010 (6)

L. H. Thamdrup, N. B. Larsen, and A. Kristensen, “Light-induced local heating for thermophoretic manipulation of DNA in polymer micro- and nanochannels,” Nano Lett. 10(3), 826–832 (2010).
[CrossRef] [PubMed]

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[CrossRef] [PubMed]

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
[CrossRef] [PubMed]

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
[PubMed]

V. Trivedi, A. Doshi, G. K. Kurup, E. Ereifej, P. J. Vandevord, and A. S. Basu, “A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening,” Lab Chip 10(18), 2433–2442 (2010).
[CrossRef] [PubMed]

K. J. Shaw, P. T. Docker, J. V. Yelland, C. E. Dyer, J. Greenman, G. M. Greenway, and S. J. Haswell, “Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling,” Lab Chip 10(13), 1725–1728 (2010).
[CrossRef] [PubMed]

2009 (4)

D. T. Chiu, R. M. Lorenz, and G. D. Jeffries, “Droplets for ultrasmall-volume analysis,” Anal. Chem. 81(13), 5111–5118 (2009).
[CrossRef] [PubMed]

B. Selva, J. Marchalot, and M. C. Jullien, “An optimized resistor pattern for temperature gradient control in microfluidics,” J. Micromech. Microeng. 19(6), 065002 (2009).
[CrossRef]

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[CrossRef] [PubMed]

S. Merabia, S. Shenogin, L. Joly, P. Keblinski, and J. L. Barrat, “Heat transfer from nanoparticles: a corresponding state analysis,” Proc. Natl. Acad. Sci. U.S.A. 106(36), 15113–15118 (2009).
[CrossRef] [PubMed]

2007 (2)

H. Reinhardt, P. S. Dittrich, A. Manz, and J. Franzke, “Micro-hotplate enhanced optical heating by infrared light for single cell treatment,” Lab Chip 7(11), 1509–1514 (2007).
[CrossRef] [PubMed]

J. J. Shah, S. G. Sundaresan, J. Geist, D. R. Reyes, J. C. Booth, M. V. Rao, and M. Gaitan, “Microwave dielectric heating of fluids in an integrated microfluidic device,” J. Micromech. Microeng. 17(11), 2224–2230 (2007).
[CrossRef]

2006 (4)

J. H. Park, A. M. Derfus, E. Segal, K. S. Vecchio, S. N. Bhatia, and M. J. Sailor, “Local heating of discrete droplets using magnetic porous silicon-based photonic crystals,” J. Am. Chem. Soc. 128(24), 7938–7946 (2006).
[CrossRef] [PubMed]

G. T. Roman, K. McDaniel, and C. T. Culbertson, “High efficiency micellar electrokinetic chromatography of hydrophobic analytes on poly(dimethylsiloxane) microchips,” Analyst (Lond.) 131(2), 194–201 (2006).
[CrossRef] [PubMed]

H. Song, D. L. Chen, and R. F. Ismagilov, “Reactions in droplets in microflulidic channels,” Angew. Chem. Int. Ed. 45(44), 7336–7356 (2006).
[CrossRef]

R. Fu, B. Xu, and D. Li, “Study of the temperature field in microchannels of a PDMS chip with embedded local heater using temperature-dependent fluorescent dye,” Int. J. Therm. Sci. 45(9), 841–847 (2006).
[CrossRef]

2005 (1)

C.-H. Chou, C.-D. Chen, and C. R. Wang, “Highly efficient, wavelength-tunable, gold nanoparticle based optothermal nanoconvertors,” J. Phys. Chem. B 109(22), 11135–11138 (2005).
[CrossRef] [PubMed]

2004 (1)

A. J. de Mello, M. Habgood, N. L. Lancaster, T. Welton, and R. C. R. Wootton, “Precise temperature control in microfluidic devices using Joule heating of ionic liquids,” Lab Chip 4(5), 417–419 (2004).
[CrossRef] [PubMed]

2001 (1)

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73(17), 4117–4123 (2001).
[CrossRef] [PubMed]

2000 (1)

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[CrossRef] [PubMed]

1998 (1)

M. U. Kopp, A. J. Mello, and A. Manz, “Chemical amplification: continuous-flow PCR on a chip,” Science 280(5366), 1046–1048 (1998).
[CrossRef] [PubMed]

Abell, C.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
[PubMed]

Anderson, J. R.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[CrossRef] [PubMed]

Baffou, G.

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[CrossRef] [PubMed]

Barrat, J. L.

S. Merabia, S. Shenogin, L. Joly, P. Keblinski, and J. L. Barrat, “Heat transfer from nanoparticles: a corresponding state analysis,” Proc. Natl. Acad. Sci. U.S.A. 106(36), 15113–15118 (2009).
[CrossRef] [PubMed]

Basu, A. S.

V. Trivedi, A. Doshi, G. K. Kurup, E. Ereifej, P. J. Vandevord, and A. S. Basu, “A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening,” Lab Chip 10(18), 2433–2442 (2010).
[CrossRef] [PubMed]

Bhatia, S. N.

J. H. Park, A. M. Derfus, E. Segal, K. S. Vecchio, S. N. Bhatia, and M. J. Sailor, “Local heating of discrete droplets using magnetic porous silicon-based photonic crystals,” J. Am. Chem. Soc. 128(24), 7938–7946 (2006).
[CrossRef] [PubMed]

Booth, J. C.

J. J. Shah, S. G. Sundaresan, J. Geist, D. R. Reyes, J. C. Booth, M. V. Rao, and M. Gaitan, “Microwave dielectric heating of fluids in an integrated microfluidic device,” J. Micromech. Microeng. 17(11), 2224–2230 (2007).
[CrossRef]

Carlson, M. T.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[CrossRef] [PubMed]

Chen, C.-D.

C.-H. Chou, C.-D. Chen, and C. R. Wang, “Highly efficient, wavelength-tunable, gold nanoparticle based optothermal nanoconvertors,” J. Phys. Chem. B 109(22), 11135–11138 (2005).
[CrossRef] [PubMed]

Chen, D. L.

H. Song, D. L. Chen, and R. F. Ismagilov, “Reactions in droplets in microflulidic channels,” Angew. Chem. Int. Ed. 45(44), 7336–7356 (2006).
[CrossRef]

Chen, H.

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
[CrossRef] [PubMed]

Chiu, D. T.

D. T. Chiu, R. M. Lorenz, and G. D. Jeffries, “Droplets for ultrasmall-volume analysis,” Anal. Chem. 81(13), 5111–5118 (2009).
[CrossRef] [PubMed]

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[CrossRef] [PubMed]

Choi, Y.

B. Jang, Y. S. Kim, and Y. Choi, “Effects of gold nanorod concentration on the depth-related temperature increase during hyperthermic ablation,” Small 7(2), 265–270 (2011).
[CrossRef] [PubMed]

Chou, C.-H.

C.-H. Chou, C.-D. Chen, and C. R. Wang, “Highly efficient, wavelength-tunable, gold nanoparticle based optothermal nanoconvertors,” J. Phys. Chem. B 109(22), 11135–11138 (2005).
[CrossRef] [PubMed]

Courtois, F.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
[PubMed]

Culbertson, C. T.

G. T. Roman, K. McDaniel, and C. T. Culbertson, “High efficiency micellar electrokinetic chromatography of hydrophobic analytes on poly(dimethylsiloxane) microchips,” Analyst (Lond.) 131(2), 194–201 (2006).
[CrossRef] [PubMed]

de Mello, A. J.

A. J. de Mello, M. Habgood, N. L. Lancaster, T. Welton, and R. C. R. Wootton, “Precise temperature control in microfluidic devices using Joule heating of ionic liquids,” Lab Chip 4(5), 417–419 (2004).
[CrossRef] [PubMed]

Derfus, A. M.

J. H. Park, A. M. Derfus, E. Segal, K. S. Vecchio, S. N. Bhatia, and M. J. Sailor, “Local heating of discrete droplets using magnetic porous silicon-based photonic crystals,” J. Am. Chem. Soc. 128(24), 7938–7946 (2006).
[CrossRef] [PubMed]

Dittrich, P. S.

H. Reinhardt, P. S. Dittrich, A. Manz, and J. Franzke, “Micro-hotplate enhanced optical heating by infrared light for single cell treatment,” Lab Chip 7(11), 1509–1514 (2007).
[CrossRef] [PubMed]

Docker, P. T.

K. J. Shaw, P. T. Docker, J. V. Yelland, C. E. Dyer, J. Greenman, G. M. Greenway, and S. J. Haswell, “Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling,” Lab Chip 10(13), 1725–1728 (2010).
[CrossRef] [PubMed]

Doshi, A.

V. Trivedi, A. Doshi, G. K. Kurup, E. Ereifej, P. J. Vandevord, and A. S. Basu, “A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening,” Lab Chip 10(18), 2433–2442 (2010).
[CrossRef] [PubMed]

Duffy, D. C.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[CrossRef] [PubMed]

Dyer, C. E.

K. J. Shaw, P. T. Docker, J. V. Yelland, C. E. Dyer, J. Greenman, G. M. Greenway, and S. J. Haswell, “Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling,” Lab Chip 10(13), 1725–1728 (2010).
[CrossRef] [PubMed]

Ereifej, E.

V. Trivedi, A. Doshi, G. K. Kurup, E. Ereifej, P. J. Vandevord, and A. S. Basu, “A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening,” Lab Chip 10(18), 2433–2442 (2010).
[CrossRef] [PubMed]

Fang, C.

C. Fang, L. Shao, Y. Zhao, J. Wang, and H. Wu, “A gold nanocrystal/poly(dimethylsiloxane) composite for plasmonic heating on microfluidic chips,” Adv. Mater. (Deerfield Beach Fla.) 24(1), 94–98 (2012).
[CrossRef] [PubMed]

Fischlechner, M.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
[PubMed]

Franzke, J.

H. Reinhardt, P. S. Dittrich, A. Manz, and J. Franzke, “Micro-hotplate enhanced optical heating by infrared light for single cell treatment,” Lab Chip 7(11), 1509–1514 (2007).
[CrossRef] [PubMed]

Fu, R.

R. Fu, B. Xu, and D. Li, “Study of the temperature field in microchannels of a PDMS chip with embedded local heater using temperature-dependent fluorescent dye,” Int. J. Therm. Sci. 45(9), 841–847 (2006).
[CrossRef]

Gaitan, M.

J. J. Shah, S. G. Sundaresan, J. Geist, D. R. Reyes, J. C. Booth, M. V. Rao, and M. Gaitan, “Microwave dielectric heating of fluids in an integrated microfluidic device,” J. Micromech. Microeng. 17(11), 2224–2230 (2007).
[CrossRef]

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73(17), 4117–4123 (2001).
[CrossRef] [PubMed]

García de Abajo, F. J.

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[CrossRef] [PubMed]

Geist, J.

J. J. Shah, S. G. Sundaresan, J. Geist, D. R. Reyes, J. C. Booth, M. V. Rao, and M. Gaitan, “Microwave dielectric heating of fluids in an integrated microfluidic device,” J. Micromech. Microeng. 17(11), 2224–2230 (2007).
[CrossRef]

Govorov, A. O.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[CrossRef] [PubMed]

Greenman, J.

K. J. Shaw, P. T. Docker, J. V. Yelland, C. E. Dyer, J. Greenman, G. M. Greenway, and S. J. Haswell, “Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling,” Lab Chip 10(13), 1725–1728 (2010).
[CrossRef] [PubMed]

Greenway, G. M.

K. J. Shaw, P. T. Docker, J. V. Yelland, C. E. Dyer, J. Greenman, G. M. Greenway, and S. J. Haswell, “Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling,” Lab Chip 10(13), 1725–1728 (2010).
[CrossRef] [PubMed]

Habgood, M.

A. J. de Mello, M. Habgood, N. L. Lancaster, T. Welton, and R. C. R. Wootton, “Precise temperature control in microfluidic devices using Joule heating of ionic liquids,” Lab Chip 4(5), 417–419 (2004).
[CrossRef] [PubMed]

Han, J.-J.

J.-T. Wang, J. Wang, and J.-J. Han, “Fabrication of advanced particles and particle-based materials assisted by droplet-based microfluidics,” Small 7(13), 1728–1754 (2011).
[CrossRef] [PubMed]

Haswell, S. J.

K. J. Shaw, P. T. Docker, J. V. Yelland, C. E. Dyer, J. Greenman, G. M. Greenway, and S. J. Haswell, “Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling,” Lab Chip 10(13), 1725–1728 (2010).
[CrossRef] [PubMed]

Hernandez, P.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[CrossRef] [PubMed]

Hoang, P. H.

P. H. Hoang, H. Park, and D. P. Kim, “Ultrafast and continuous synthesis of unaccommodating inorganic nanomaterials in droplet- and ionic liquid-assisted microfluidic system,” J. Am. Chem. Soc. 133(37), 14765–14770 (2011).
[CrossRef] [PubMed]

Hollfelder, F.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
[PubMed]

Huck, W. T. S.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
[PubMed]

Ismagilov, R. F.

H. Song, D. L. Chen, and R. F. Ismagilov, “Reactions in droplets in microflulidic channels,” Angew. Chem. Int. Ed. 45(44), 7336–7356 (2006).
[CrossRef]

Jang, B.

B. Jang, Y. S. Kim, and Y. Choi, “Effects of gold nanorod concentration on the depth-related temperature increase during hyperthermic ablation,” Small 7(2), 265–270 (2011).
[CrossRef] [PubMed]

Jeffries, G. D.

D. T. Chiu, R. M. Lorenz, and G. D. Jeffries, “Droplets for ultrasmall-volume analysis,” Anal. Chem. 81(13), 5111–5118 (2009).
[CrossRef] [PubMed]

Jian, A.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[CrossRef] [PubMed]

Joly, L.

S. Merabia, S. Shenogin, L. Joly, P. Keblinski, and J. L. Barrat, “Heat transfer from nanoparticles: a corresponding state analysis,” Proc. Natl. Acad. Sci. U.S.A. 106(36), 15113–15118 (2009).
[CrossRef] [PubMed]

Jullien, M. C.

B. Selva, J. Marchalot, and M. C. Jullien, “An optimized resistor pattern for temperature gradient control in microfluidics,” J. Micromech. Microeng. 19(6), 065002 (2009).
[CrossRef]

Keblinski, P.

S. Merabia, S. Shenogin, L. Joly, P. Keblinski, and J. L. Barrat, “Heat transfer from nanoparticles: a corresponding state analysis,” Proc. Natl. Acad. Sci. U.S.A. 106(36), 15113–15118 (2009).
[CrossRef] [PubMed]

Kim, D. P.

P. H. Hoang, H. Park, and D. P. Kim, “Ultrafast and continuous synthesis of unaccommodating inorganic nanomaterials in droplet- and ionic liquid-assisted microfluidic system,” J. Am. Chem. Soc. 133(37), 14765–14770 (2011).
[CrossRef] [PubMed]

Kim, Y. S.

B. Jang, Y. S. Kim, and Y. Choi, “Effects of gold nanorod concentration on the depth-related temperature increase during hyperthermic ablation,” Small 7(2), 265–270 (2011).
[CrossRef] [PubMed]

Kopp, M. U.

M. U. Kopp, A. J. Mello, and A. Manz, “Chemical amplification: continuous-flow PCR on a chip,” Science 280(5366), 1046–1048 (1998).
[CrossRef] [PubMed]

Kristensen, A.

L. H. Thamdrup, N. B. Larsen, and A. Kristensen, “Light-induced local heating for thermophoretic manipulation of DNA in polymer micro- and nanochannels,” Nano Lett. 10(3), 826–832 (2010).
[CrossRef] [PubMed]

Kurup, G. K.

V. Trivedi, A. Doshi, G. K. Kurup, E. Ereifej, P. J. Vandevord, and A. S. Basu, “A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening,” Lab Chip 10(18), 2433–2442 (2010).
[CrossRef] [PubMed]

Lancaster, N. L.

A. J. de Mello, M. Habgood, N. L. Lancaster, T. Welton, and R. C. R. Wootton, “Precise temperature control in microfluidic devices using Joule heating of ionic liquids,” Lab Chip 4(5), 417–419 (2004).
[CrossRef] [PubMed]

Larsen, N. B.

L. H. Thamdrup, N. B. Larsen, and A. Kristensen, “Light-induced local heating for thermophoretic manipulation of DNA in polymer micro- and nanochannels,” Nano Lett. 10(3), 826–832 (2010).
[CrossRef] [PubMed]

Li, D.

R. Fu, B. Xu, and D. Li, “Study of the temperature field in microchannels of a PDMS chip with embedded local heater using temperature-dependent fluorescent dye,” Int. J. Therm. Sci. 45(9), 841–847 (2006).
[CrossRef]

Li, Z.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[CrossRef] [PubMed]

Locascio, L. E.

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73(17), 4117–4123 (2001).
[CrossRef] [PubMed]

Lorenz, R. M.

D. T. Chiu, R. M. Lorenz, and G. D. Jeffries, “Droplets for ultrasmall-volume analysis,” Anal. Chem. 81(13), 5111–5118 (2009).
[CrossRef] [PubMed]

Manz, A.

H. Reinhardt, P. S. Dittrich, A. Manz, and J. Franzke, “Micro-hotplate enhanced optical heating by infrared light for single cell treatment,” Lab Chip 7(11), 1509–1514 (2007).
[CrossRef] [PubMed]

M. U. Kopp, A. J. Mello, and A. Manz, “Chemical amplification: continuous-flow PCR on a chip,” Science 280(5366), 1046–1048 (1998).
[CrossRef] [PubMed]

Marchalot, J.

B. Selva, J. Marchalot, and M. C. Jullien, “An optimized resistor pattern for temperature gradient control in microfluidics,” J. Micromech. Microeng. 19(6), 065002 (2009).
[CrossRef]

McDaniel, K.

G. T. Roman, K. McDaniel, and C. T. Culbertson, “High efficiency micellar electrokinetic chromatography of hydrophobic analytes on poly(dimethylsiloxane) microchips,” Analyst (Lond.) 131(2), 194–201 (2006).
[CrossRef] [PubMed]

McDonald, J. C.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[CrossRef] [PubMed]

Mello, A. J.

M. U. Kopp, A. J. Mello, and A. Manz, “Chemical amplification: continuous-flow PCR on a chip,” Science 280(5366), 1046–1048 (1998).
[CrossRef] [PubMed]

Merabia, S.

S. Merabia, S. Shenogin, L. Joly, P. Keblinski, and J. L. Barrat, “Heat transfer from nanoparticles: a corresponding state analysis,” Proc. Natl. Acad. Sci. U.S.A. 106(36), 15113–15118 (2009).
[CrossRef] [PubMed]

Ming, T.

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
[CrossRef] [PubMed]

Park, H.

P. H. Hoang, H. Park, and D. P. Kim, “Ultrafast and continuous synthesis of unaccommodating inorganic nanomaterials in droplet- and ionic liquid-assisted microfluidic system,” J. Am. Chem. Soc. 133(37), 14765–14770 (2011).
[CrossRef] [PubMed]

Park, J. H.

J. H. Park, A. M. Derfus, E. Segal, K. S. Vecchio, S. N. Bhatia, and M. J. Sailor, “Local heating of discrete droplets using magnetic porous silicon-based photonic crystals,” J. Am. Chem. Soc. 128(24), 7938–7946 (2006).
[CrossRef] [PubMed]

Quidant, R.

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[CrossRef] [PubMed]

Rao, M. V.

J. J. Shah, S. G. Sundaresan, J. Geist, D. R. Reyes, J. C. Booth, M. V. Rao, and M. Gaitan, “Microwave dielectric heating of fluids in an integrated microfluidic device,” J. Micromech. Microeng. 17(11), 2224–2230 (2007).
[CrossRef]

Reinhardt, H.

H. Reinhardt, P. S. Dittrich, A. Manz, and J. Franzke, “Micro-hotplate enhanced optical heating by infrared light for single cell treatment,” Lab Chip 7(11), 1509–1514 (2007).
[CrossRef] [PubMed]

Reyes, D. R.

J. J. Shah, S. G. Sundaresan, J. Geist, D. R. Reyes, J. C. Booth, M. V. Rao, and M. Gaitan, “Microwave dielectric heating of fluids in an integrated microfluidic device,” J. Micromech. Microeng. 17(11), 2224–2230 (2007).
[CrossRef]

Richardson, H. H.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[CrossRef] [PubMed]

Roman, G. T.

G. T. Roman, K. McDaniel, and C. T. Culbertson, “High efficiency micellar electrokinetic chromatography of hydrophobic analytes on poly(dimethylsiloxane) microchips,” Analyst (Lond.) 131(2), 194–201 (2006).
[CrossRef] [PubMed]

Ross, D.

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73(17), 4117–4123 (2001).
[CrossRef] [PubMed]

Sailor, M. J.

J. H. Park, A. M. Derfus, E. Segal, K. S. Vecchio, S. N. Bhatia, and M. J. Sailor, “Local heating of discrete droplets using magnetic porous silicon-based photonic crystals,” J. Am. Chem. Soc. 128(24), 7938–7946 (2006).
[CrossRef] [PubMed]

Schaerli, Y.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
[PubMed]

Schueller, O. J. A.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[CrossRef] [PubMed]

Segal, E.

J. H. Park, A. M. Derfus, E. Segal, K. S. Vecchio, S. N. Bhatia, and M. J. Sailor, “Local heating of discrete droplets using magnetic porous silicon-based photonic crystals,” J. Am. Chem. Soc. 128(24), 7938–7946 (2006).
[CrossRef] [PubMed]

Selva, B.

B. Selva, J. Marchalot, and M. C. Jullien, “An optimized resistor pattern for temperature gradient control in microfluidics,” J. Micromech. Microeng. 19(6), 065002 (2009).
[CrossRef]

Shah, J. J.

J. J. Shah, S. G. Sundaresan, J. Geist, D. R. Reyes, J. C. Booth, M. V. Rao, and M. Gaitan, “Microwave dielectric heating of fluids in an integrated microfluidic device,” J. Micromech. Microeng. 17(11), 2224–2230 (2007).
[CrossRef]

Shao, L.

C. Fang, L. Shao, Y. Zhao, J. Wang, and H. Wu, “A gold nanocrystal/poly(dimethylsiloxane) composite for plasmonic heating on microfluidic chips,” Adv. Mater. (Deerfield Beach Fla.) 24(1), 94–98 (2012).
[CrossRef] [PubMed]

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
[CrossRef] [PubMed]

Shaw, K. J.

K. J. Shaw, P. T. Docker, J. V. Yelland, C. E. Dyer, J. Greenman, G. M. Greenway, and S. J. Haswell, “Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling,” Lab Chip 10(13), 1725–1728 (2010).
[CrossRef] [PubMed]

Shenogin, S.

S. Merabia, S. Shenogin, L. Joly, P. Keblinski, and J. L. Barrat, “Heat transfer from nanoparticles: a corresponding state analysis,” Proc. Natl. Acad. Sci. U.S.A. 106(36), 15113–15118 (2009).
[CrossRef] [PubMed]

Song, H.

H. Song, D. L. Chen, and R. F. Ismagilov, “Reactions in droplets in microflulidic channels,” Angew. Chem. Int. Ed. 45(44), 7336–7356 (2006).
[CrossRef]

Sun, Z.

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
[CrossRef] [PubMed]

Sundaresan, S. G.

J. J. Shah, S. G. Sundaresan, J. Geist, D. R. Reyes, J. C. Booth, M. V. Rao, and M. Gaitan, “Microwave dielectric heating of fluids in an integrated microfluidic device,” J. Micromech. Microeng. 17(11), 2224–2230 (2007).
[CrossRef]

Tam, H. Y.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[CrossRef] [PubMed]

Tandler, P. J.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[CrossRef] [PubMed]

Thamdrup, L. H.

L. H. Thamdrup, N. B. Larsen, and A. Kristensen, “Light-induced local heating for thermophoretic manipulation of DNA in polymer micro- and nanochannels,” Nano Lett. 10(3), 826–832 (2010).
[CrossRef] [PubMed]

Theberge, A. B.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
[PubMed]

Tong, L.

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12(6), 3145–3150 (2012).
[CrossRef] [PubMed]

Trivedi, V.

V. Trivedi, A. Doshi, G. K. Kurup, E. Ereifej, P. J. Vandevord, and A. S. Basu, “A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening,” Lab Chip 10(18), 2433–2442 (2010).
[CrossRef] [PubMed]

Vandevord, P. J.

V. Trivedi, A. Doshi, G. K. Kurup, E. Ereifej, P. J. Vandevord, and A. S. Basu, “A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening,” Lab Chip 10(18), 2433–2442 (2010).
[CrossRef] [PubMed]

Vecchio, K. S.

J. H. Park, A. M. Derfus, E. Segal, K. S. Vecchio, S. N. Bhatia, and M. J. Sailor, “Local heating of discrete droplets using magnetic porous silicon-based photonic crystals,” J. Am. Chem. Soc. 128(24), 7938–7946 (2006).
[CrossRef] [PubMed]

Wang, C. R.

C.-H. Chou, C.-D. Chen, and C. R. Wang, “Highly efficient, wavelength-tunable, gold nanoparticle based optothermal nanoconvertors,” J. Phys. Chem. B 109(22), 11135–11138 (2005).
[CrossRef] [PubMed]

Wang, J.

C. Fang, L. Shao, Y. Zhao, J. Wang, and H. Wu, “A gold nanocrystal/poly(dimethylsiloxane) composite for plasmonic heating on microfluidic chips,” Adv. Mater. (Deerfield Beach Fla.) 24(1), 94–98 (2012).
[CrossRef] [PubMed]

J.-T. Wang, J. Wang, and J.-J. Han, “Fabrication of advanced particles and particle-based materials assisted by droplet-based microfluidics,” Small 7(13), 1728–1754 (2011).
[CrossRef] [PubMed]

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
[CrossRef] [PubMed]

Wang, J.-T.

J.-T. Wang, J. Wang, and J.-J. Han, “Fabrication of advanced particles and particle-based materials assisted by droplet-based microfluidics,” Small 7(13), 1728–1754 (2011).
[CrossRef] [PubMed]

Wang, P.

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12(6), 3145–3150 (2012).
[CrossRef] [PubMed]

Wang, Y.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[CrossRef] [PubMed]

Welton, T.

A. J. de Mello, M. Habgood, N. L. Lancaster, T. Welton, and R. C. R. Wootton, “Precise temperature control in microfluidic devices using Joule heating of ionic liquids,” Lab Chip 4(5), 417–419 (2004).
[CrossRef] [PubMed]

Whitesides, G. M.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[CrossRef] [PubMed]

Wootton, R. C. R.

A. J. de Mello, M. Habgood, N. L. Lancaster, T. Welton, and R. C. R. Wootton, “Precise temperature control in microfluidic devices using Joule heating of ionic liquids,” Lab Chip 4(5), 417–419 (2004).
[CrossRef] [PubMed]

Wu, H.

C. Fang, L. Shao, Y. Zhao, J. Wang, and H. Wu, “A gold nanocrystal/poly(dimethylsiloxane) composite for plasmonic heating on microfluidic chips,” Adv. Mater. (Deerfield Beach Fla.) 24(1), 94–98 (2012).
[CrossRef] [PubMed]

Wu, H. K.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[CrossRef] [PubMed]

Xia, Y.

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12(6), 3145–3150 (2012).
[CrossRef] [PubMed]

Xu, B.

R. Fu, B. Xu, and D. Li, “Study of the temperature field in microchannels of a PDMS chip with embedded local heater using temperature-dependent fluorescent dye,” Int. J. Therm. Sci. 45(9), 841–847 (2006).
[CrossRef]

Xu, X.

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12(6), 3145–3150 (2012).
[CrossRef] [PubMed]

Yang, B.

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
[CrossRef] [PubMed]

Yelland, J. V.

K. J. Shaw, P. T. Docker, J. V. Yelland, C. E. Dyer, J. Greenman, G. M. Greenway, and S. J. Haswell, “Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling,” Lab Chip 10(13), 1725–1728 (2010).
[CrossRef] [PubMed]

Ying, Y.

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12(6), 3145–3150 (2012).
[CrossRef] [PubMed]

Zhang, K.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[CrossRef] [PubMed]

Zhang, L.

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12(6), 3145–3150 (2012).
[CrossRef] [PubMed]

Zhang, X.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[CrossRef] [PubMed]

Zhao, C.

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
[CrossRef] [PubMed]

Zhao, Y.

C. Fang, L. Shao, Y. Zhao, J. Wang, and H. Wu, “A gold nanocrystal/poly(dimethylsiloxane) composite for plasmonic heating on microfluidic chips,” Adv. Mater. (Deerfield Beach Fla.) 24(1), 94–98 (2012).
[CrossRef] [PubMed]

ACS Nano (1)

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

C. Fang, L. Shao, Y. Zhao, J. Wang, and H. Wu, “A gold nanocrystal/poly(dimethylsiloxane) composite for plasmonic heating on microfluidic chips,” Adv. Mater. (Deerfield Beach Fla.) 24(1), 94–98 (2012).
[CrossRef] [PubMed]

Anal. Chem. (2)

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73(17), 4117–4123 (2001).
[CrossRef] [PubMed]

D. T. Chiu, R. M. Lorenz, and G. D. Jeffries, “Droplets for ultrasmall-volume analysis,” Anal. Chem. 81(13), 5111–5118 (2009).
[CrossRef] [PubMed]

Analyst (Lond.) (1)

G. T. Roman, K. McDaniel, and C. T. Culbertson, “High efficiency micellar electrokinetic chromatography of hydrophobic analytes on poly(dimethylsiloxane) microchips,” Analyst (Lond.) 131(2), 194–201 (2006).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. (1)

H. Song, D. L. Chen, and R. F. Ismagilov, “Reactions in droplets in microflulidic channels,” Angew. Chem. Int. Ed. 45(44), 7336–7356 (2006).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
[PubMed]

Electrophoresis (1)

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[CrossRef] [PubMed]

Int. J. Therm. Sci. (1)

R. Fu, B. Xu, and D. Li, “Study of the temperature field in microchannels of a PDMS chip with embedded local heater using temperature-dependent fluorescent dye,” Int. J. Therm. Sci. 45(9), 841–847 (2006).
[CrossRef]

J. Am. Chem. Soc. (2)

P. H. Hoang, H. Park, and D. P. Kim, “Ultrafast and continuous synthesis of unaccommodating inorganic nanomaterials in droplet- and ionic liquid-assisted microfluidic system,” J. Am. Chem. Soc. 133(37), 14765–14770 (2011).
[CrossRef] [PubMed]

J. H. Park, A. M. Derfus, E. Segal, K. S. Vecchio, S. N. Bhatia, and M. J. Sailor, “Local heating of discrete droplets using magnetic porous silicon-based photonic crystals,” J. Am. Chem. Soc. 128(24), 7938–7946 (2006).
[CrossRef] [PubMed]

J. Micromech. Microeng. (2)

J. J. Shah, S. G. Sundaresan, J. Geist, D. R. Reyes, J. C. Booth, M. V. Rao, and M. Gaitan, “Microwave dielectric heating of fluids in an integrated microfluidic device,” J. Micromech. Microeng. 17(11), 2224–2230 (2007).
[CrossRef]

B. Selva, J. Marchalot, and M. C. Jullien, “An optimized resistor pattern for temperature gradient control in microfluidics,” J. Micromech. Microeng. 19(6), 065002 (2009).
[CrossRef]

J. Phys. Chem. B (1)

C.-H. Chou, C.-D. Chen, and C. R. Wang, “Highly efficient, wavelength-tunable, gold nanoparticle based optothermal nanoconvertors,” J. Phys. Chem. B 109(22), 11135–11138 (2005).
[CrossRef] [PubMed]

Lab Chip (5)

A. J. de Mello, M. Habgood, N. L. Lancaster, T. Welton, and R. C. R. Wootton, “Precise temperature control in microfluidic devices using Joule heating of ionic liquids,” Lab Chip 4(5), 417–419 (2004).
[CrossRef] [PubMed]

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[CrossRef] [PubMed]

H. Reinhardt, P. S. Dittrich, A. Manz, and J. Franzke, “Micro-hotplate enhanced optical heating by infrared light for single cell treatment,” Lab Chip 7(11), 1509–1514 (2007).
[CrossRef] [PubMed]

V. Trivedi, A. Doshi, G. K. Kurup, E. Ereifej, P. J. Vandevord, and A. S. Basu, “A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening,” Lab Chip 10(18), 2433–2442 (2010).
[CrossRef] [PubMed]

K. J. Shaw, P. T. Docker, J. V. Yelland, C. E. Dyer, J. Greenman, G. M. Greenway, and S. J. Haswell, “Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling,” Lab Chip 10(13), 1725–1728 (2010).
[CrossRef] [PubMed]

Nano Lett. (3)

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett. 12(6), 3145–3150 (2012).
[CrossRef] [PubMed]

L. H. Thamdrup, N. B. Larsen, and A. Kristensen, “Light-induced local heating for thermophoretic manipulation of DNA in polymer micro- and nanochannels,” Nano Lett. 10(3), 826–832 (2010).
[CrossRef] [PubMed]

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. Merabia, S. Shenogin, L. Joly, P. Keblinski, and J. L. Barrat, “Heat transfer from nanoparticles: a corresponding state analysis,” Proc. Natl. Acad. Sci. U.S.A. 106(36), 15113–15118 (2009).
[CrossRef] [PubMed]

Science (1)

M. U. Kopp, A. J. Mello, and A. Manz, “Chemical amplification: continuous-flow PCR on a chip,” Science 280(5366), 1046–1048 (1998).
[CrossRef] [PubMed]

Small (3)

H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, and J. Wang, “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small 6(20), 2272–2280 (2010).
[CrossRef] [PubMed]

B. Jang, Y. S. Kim, and Y. Choi, “Effects of gold nanorod concentration on the depth-related temperature increase during hyperthermic ablation,” Small 7(2), 265–270 (2011).
[CrossRef] [PubMed]

J.-T. Wang, J. Wang, and J.-J. Han, “Fabrication of advanced particles and particle-based materials assisted by droplet-based microfluidics,” Small 7(13), 1728–1754 (2011).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic illustration of the microfluidic chip. (b and c) Optical microscope images of (b) droplets generation and (c) droplets flowing through the heating zone.

Fig. 2
Fig. 2

(a) TEM image of the GNRs. (b) Extinction spectrum of the GNRs dispersed in water.

Fig. 3
Fig. 3

(a) Fluorescence spectra of rhodamine B in the droplet obtained at increasing laser powers. The insets are optical microscope images of a droplet containing GNRs taken without (top) and with (bottom) a 13.6 mW 808-nm-wavelength laser heating. The scale bars: 100 μm. (b) Temperature of the droplet as a function of laser power.

Fig. 4
Fig. 4

(a) Reversible response of the droplet temperature when the laser was switched on (11 mW) and off alternatively. (b) Typical time-dependent temperature of the droplet reveals the heating and cooling times of about 200 and 800 ms, respectively.

Fig. 5
Fig. 5

Reversible response of fluorescence intensity of stream droplets by alternately switching on and off a 20 mW 808-nm-wavelength laser.

Fig. 6
Fig. 6

Typical thermal cycling profiles of the laser heating system for rapid PCR amplification. The DNA denaturation, primer annealing, and DNA extension temperatures were of 96 °C, 60 °C and 78 °C, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T=123237I+235 I 2 100 I 3

Metrics