Abstract

We study the influence of the presence of an interface on the scattering by a Rayleigh scatterer. The influence of an interface on the spontaneous emission has been known for many years. Here, we study the influence on the extinction cross-section and absorption cross-section. We provide a detailed analysis of interference and near-field effects. We show that the presence of a Rayleigh scatterer may enhance the specular reflection or specular transmission under certain conditions. Finally, we analyze the enhancement of absorption in the bulk in the presence of a small scatterer.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93, 191113 (2008).
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
    [CrossRef] [PubMed]
  3. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon.2, 299–301 (2008).
    [CrossRef]
  4. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101, 093105 (2007).
    [CrossRef]
  5. J. R. Nagel and M. A. Scarpulla, “Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles,” Opt. Express18, A139–A146 (2010).
    [CrossRef] [PubMed]
  6. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96, 7519–7526 (2004).
    [CrossRef]
  7. O. Stenzel, A. Stendal, K. Voigtsberger, and C. von Borczyskowski, “Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters,” Sol. Energy Mater. Sol. Cells37, 337–348 (1995).
    [CrossRef]
  8. R. B. Dunbar, T. Pfadler, and L. Schmidt-Mende, “Highly absorbing solar cells—a survey of plasmonic nanostructures,” Opt. Express20, A177–A189 (2012).
    [CrossRef] [PubMed]
  9. K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin.1,2693–701 (1970).
    [CrossRef]
  10. R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys.60, 2744–2748 (1974).
    [CrossRef]
  11. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” J. Opt. Soc. Am.67, 1607–1615 (1977).
    [CrossRef]
  12. E. H. Hellen and D. Axelrod, “Fluorescence emission at dielectric and metal-film interfaces,” J. Opt. Soc. Am. B4, 337–350 (1987).
    [CrossRef]
  13. L. Novotny, “Allowed and forbidden light in near-field optics. I. A single dipolar light source,” J. Opt. Soc. Am. A14, 91–104 (1997).
    [CrossRef]
  14. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J.333, 848–872 (1988).
    [CrossRef]
  15. R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun.261, 368–375 (2006).
    [CrossRef]
  16. C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys.59, 657–699 (1996).
    [CrossRef]
  17. L. Novotny, “Allowed and forbidden light in near-field optics. II. Interacting dipolar particles,” J. Opt. Soc. Am. A14, 105–113 (1997).
    [CrossRef]
  18. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Anlytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express15, 8550–8565 (2007).
    [CrossRef] [PubMed]
  19. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).
  20. J. E. Sipe, “New Green-function formalism for surface optics,” J. Opt. Soc. Am. B4, 481–489 (1987).
    [CrossRef]
  21. I. V. Lindell, A. H. Sihvola, K. O. Muinonen, and P. W. Barber, “Scattering by a small object close to an interface. I. Exact-image theory formulation,” J. Opt. Soc. Am. A8, 472–476 (1991).
    [CrossRef]
  22. G. Videen, M. G. Turner, V. J. Iafelice, W. S. Bickel, and W. L. Wolfe, “Scattering from a small sphere near a surface,” J. Opt. Soc. Am. A10, 118–126 (1993).
    [CrossRef]
  23. J. Mertz, “Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description,” J. Opt. Soc. Am. B17, 1906–1913 (2000).
    [CrossRef]
  24. S. Efrima and H. Metiu, “Classical theory of light scattering by an adsorbed molecule. I. theory,” J. Chem. Phys.70, 1602–1613 (1979).
    [CrossRef]
  25. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J.186, 705–714 (1973).
    [CrossRef]
  26. A. Lakhtakia, “Macroscopic theory of the coupled dipole approximation method,” Opt. Commun.79, 1–5 (1990).
    [CrossRef]
  27. J.-J. Greffet and F.-R. Ladan, “Comparison between theoretical and experimental scattering of an s-polarized electromagnetic wave by a two-dimensional obstacle on a surface,” J. Opt. Soc. Am. A8, 1261–1269 (1991).
    [CrossRef]
  28. D. Torrungrueng, B. Ungan, and J. T. Johnson, “Optical theorem for electromagnetic scattering by a three-dimensional scatterer in the presence of a lossless half space,” IEEE Geosci. Remote Sens. Lett.1, 131–135 (2004).
    [CrossRef]
  29. D. R. Lytle, P. S. Carney, J. C. Schotland, and E. Wolf, “Generalized optical theorem for reflection, transmission, and extinction of power for electromagnetic fields,” Phys. Rev. E71, 056610 (2005).
    [CrossRef]
  30. S. Bauer, “Optical properties of a metal film and its application as an infrared absorber and as a beam splitter,” Am. J. Phys.60, 257–261 (1992).
    [CrossRef]

2012 (1)

2010 (2)

2008 (1)

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon.2, 299–301 (2008).
[CrossRef]

2007 (2)

2006 (1)

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun.261, 368–375 (2006).
[CrossRef]

2005 (1)

D. R. Lytle, P. S. Carney, J. C. Schotland, and E. Wolf, “Generalized optical theorem for reflection, transmission, and extinction of power for electromagnetic fields,” Phys. Rev. E71, 056610 (2005).
[CrossRef]

2004 (2)

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96, 7519–7526 (2004).
[CrossRef]

D. Torrungrueng, B. Ungan, and J. T. Johnson, “Optical theorem for electromagnetic scattering by a three-dimensional scatterer in the presence of a lossless half space,” IEEE Geosci. Remote Sens. Lett.1, 131–135 (2004).
[CrossRef]

2000 (1)

1997 (2)

1996 (1)

C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys.59, 657–699 (1996).
[CrossRef]

1995 (1)

O. Stenzel, A. Stendal, K. Voigtsberger, and C. von Borczyskowski, “Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters,” Sol. Energy Mater. Sol. Cells37, 337–348 (1995).
[CrossRef]

1993 (1)

1992 (1)

S. Bauer, “Optical properties of a metal film and its application as an infrared absorber and as a beam splitter,” Am. J. Phys.60, 257–261 (1992).
[CrossRef]

1991 (2)

1990 (1)

A. Lakhtakia, “Macroscopic theory of the coupled dipole approximation method,” Opt. Commun.79, 1–5 (1990).
[CrossRef]

1988 (1)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J.333, 848–872 (1988).
[CrossRef]

1987 (2)

1979 (1)

S. Efrima and H. Metiu, “Classical theory of light scattering by an adsorbed molecule. I. theory,” J. Chem. Phys.70, 1602–1613 (1979).
[CrossRef]

1977 (1)

1974 (1)

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys.60, 2744–2748 (1974).
[CrossRef]

1973 (1)

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J.186, 705–714 (1973).
[CrossRef]

1970 (1)

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin.1,2693–701 (1970).
[CrossRef]

1911 (1)

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93, 191113 (2008).

Abdelsalam, M.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon.2, 299–301 (2008).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

Axelrod, D.

Barber, P. W.

Bartlett, P. N.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon.2, 299–301 (2008).
[CrossRef]

Bauer, S.

S. Bauer, “Optical properties of a metal film and its application as an infrared absorber and as a beam splitter,” Am. J. Phys.60, 257–261 (1992).
[CrossRef]

Baumberg, J. J.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon.2, 299–301 (2008).
[CrossRef]

Bickel, W. S.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).

Borisov, A. G.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon.2, 299–301 (2008).
[CrossRef]

Carminati, R.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun.261, 368–375 (2006).
[CrossRef]

Carney, P. S.

D. R. Lytle, P. S. Carney, J. C. Schotland, and E. Wolf, “Generalized optical theorem for reflection, transmission, and extinction of power for electromagnetic fields,” Phys. Rev. E71, 056610 (2005).
[CrossRef]

Catchpole, K. R.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101, 093105 (2007).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93, 191113 (2008).

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys.60, 2744–2748 (1974).
[CrossRef]

Cvitkovic, A.

Dereux, A.

C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys.59, 657–699 (1996).
[CrossRef]

Draine, B. T.

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J.333, 848–872 (1988).
[CrossRef]

Drexhage, K. H.

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin.1,2693–701 (1970).
[CrossRef]

Dunbar, R. B.

Efrima, S.

S. Efrima and H. Metiu, “Classical theory of light scattering by an adsorbed molecule. I. theory,” J. Chem. Phys.70, 1602–1613 (1979).
[CrossRef]

Forrest, S. R.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96, 7519–7526 (2004).
[CrossRef]

García de Abajo, F. J.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon.2, 299–301 (2008).
[CrossRef]

Girard, C.

C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys.59, 657–699 (1996).
[CrossRef]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101, 093105 (2007).
[CrossRef]

Greffet, J.-J.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun.261, 368–375 (2006).
[CrossRef]

J.-J. Greffet and F.-R. Ladan, “Comparison between theoretical and experimental scattering of an s-polarized electromagnetic wave by a two-dimensional obstacle on a surface,” J. Opt. Soc. Am. A8, 1261–1269 (1991).
[CrossRef]

Hellen, E. H.

Henkel, C.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun.261, 368–375 (2006).
[CrossRef]

Hillenbrand, R.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).

Iafelice, V. J.

Johnson, J. T.

D. Torrungrueng, B. Ungan, and J. T. Johnson, “Optical theorem for electromagnetic scattering by a three-dimensional scatterer in the presence of a lossless half space,” IEEE Geosci. Remote Sens. Lett.1, 131–135 (2004).
[CrossRef]

Kunz, R. E.

Ladan, F.-R.

Lakhtakia, A.

A. Lakhtakia, “Macroscopic theory of the coupled dipole approximation method,” Opt. Commun.79, 1–5 (1990).
[CrossRef]

Lindell, I. V.

Lukosz, W.

Lytle, D. R.

D. R. Lytle, P. S. Carney, J. C. Schotland, and E. Wolf, “Generalized optical theorem for reflection, transmission, and extinction of power for electromagnetic fields,” Phys. Rev. E71, 056610 (2005).
[CrossRef]

Mertz, J.

Metiu, H.

S. Efrima and H. Metiu, “Classical theory of light scattering by an adsorbed molecule. I. theory,” J. Chem. Phys.70, 1602–1613 (1979).
[CrossRef]

Muinonen, K. O.

Nagel, J. R.

Novotny, L.

Ocelic, N.

Pennypacker, C. R.

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J.186, 705–714 (1973).
[CrossRef]

Peumans, P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96, 7519–7526 (2004).
[CrossRef]

Pfadler, T.

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101, 093105 (2007).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93, 191113 (2008).

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys.60, 2744–2748 (1974).
[CrossRef]

Purcell, E. M.

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J.186, 705–714 (1973).
[CrossRef]

Rand, B. P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96, 7519–7526 (2004).
[CrossRef]

Scarpulla, M. A.

Schmidt-Mende, L.

Schotland, J. C.

D. R. Lytle, P. S. Carney, J. C. Schotland, and E. Wolf, “Generalized optical theorem for reflection, transmission, and extinction of power for electromagnetic fields,” Phys. Rev. E71, 056610 (2005).
[CrossRef]

Sihvola, A. H.

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys.60, 2744–2748 (1974).
[CrossRef]

Sipe, J. E.

Stendal, A.

O. Stenzel, A. Stendal, K. Voigtsberger, and C. von Borczyskowski, “Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters,” Sol. Energy Mater. Sol. Cells37, 337–348 (1995).
[CrossRef]

Stenzel, O.

O. Stenzel, A. Stendal, K. Voigtsberger, and C. von Borczyskowski, “Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters,” Sol. Energy Mater. Sol. Cells37, 337–348 (1995).
[CrossRef]

Sugawara, Y.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon.2, 299–301 (2008).
[CrossRef]

Teperik, T. V.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon.2, 299–301 (2008).
[CrossRef]

Torrungrueng, D.

D. Torrungrueng, B. Ungan, and J. T. Johnson, “Optical theorem for electromagnetic scattering by a three-dimensional scatterer in the presence of a lossless half space,” IEEE Geosci. Remote Sens. Lett.1, 131–135 (2004).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101, 093105 (2007).
[CrossRef]

Turner, M. G.

Ungan, B.

D. Torrungrueng, B. Ungan, and J. T. Johnson, “Optical theorem for electromagnetic scattering by a three-dimensional scatterer in the presence of a lossless half space,” IEEE Geosci. Remote Sens. Lett.1, 131–135 (2004).
[CrossRef]

Videen, G.

Vigoureux, J. M.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun.261, 368–375 (2006).
[CrossRef]

Voigtsberger, K.

O. Stenzel, A. Stendal, K. Voigtsberger, and C. von Borczyskowski, “Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters,” Sol. Energy Mater. Sol. Cells37, 337–348 (1995).
[CrossRef]

von Borczyskowski, C.

O. Stenzel, A. Stendal, K. Voigtsberger, and C. von Borczyskowski, “Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters,” Sol. Energy Mater. Sol. Cells37, 337–348 (1995).
[CrossRef]

Wolf, E.

D. R. Lytle, P. S. Carney, J. C. Schotland, and E. Wolf, “Generalized optical theorem for reflection, transmission, and extinction of power for electromagnetic fields,” Phys. Rev. E71, 056610 (2005).
[CrossRef]

Wolfe, W. L.

Am. J. Phys. (1)

S. Bauer, “Optical properties of a metal film and its application as an infrared absorber and as a beam splitter,” Am. J. Phys.60, 257–261 (1992).
[CrossRef]

Appl. Phys. Lett. (1)

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93, 191113 (2008).

Astrophys. J. (2)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J.333, 848–872 (1988).
[CrossRef]

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J.186, 705–714 (1973).
[CrossRef]

IEEE Geosci. Remote Sens. Lett. (1)

D. Torrungrueng, B. Ungan, and J. T. Johnson, “Optical theorem for electromagnetic scattering by a three-dimensional scatterer in the presence of a lossless half space,” IEEE Geosci. Remote Sens. Lett.1, 131–135 (2004).
[CrossRef]

J. Appl. Phys. (2)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101, 093105 (2007).
[CrossRef]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96, 7519–7526 (2004).
[CrossRef]

J. Chem. Phys. (2)

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys.60, 2744–2748 (1974).
[CrossRef]

S. Efrima and H. Metiu, “Classical theory of light scattering by an adsorbed molecule. I. theory,” J. Chem. Phys.70, 1602–1613 (1979).
[CrossRef]

J. Lumin. (1)

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin.1,2693–701 (1970).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (5)

J. Opt. Soc. Am. B (3)

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

Nat. Photon. (1)

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon.2, 299–301 (2008).
[CrossRef]

Opt. Commun. (2)

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun.261, 368–375 (2006).
[CrossRef]

A. Lakhtakia, “Macroscopic theory of the coupled dipole approximation method,” Opt. Commun.79, 1–5 (1990).
[CrossRef]

Opt. Express (3)

Phys. Rev. E (1)

D. R. Lytle, P. S. Carney, J. C. Schotland, and E. Wolf, “Generalized optical theorem for reflection, transmission, and extinction of power for electromagnetic fields,” Phys. Rev. E71, 056610 (2005).
[CrossRef]

Rep. Prog. Phys. (1)

C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys.59, 657–699 (1996).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

O. Stenzel, A. Stendal, K. Voigtsberger, and C. von Borczyskowski, “Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters,” Sol. Energy Mater. Sol. Cells37, 337–348 (1995).
[CrossRef]

Other (1)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic set-up of scattering from a small particle – a dielectric sphere with refractive index ns = 2 and radius a = 50 nm modeled by a dipole moment P0.

Fig. 2
Fig. 2

Absorption efficiency depends on the particle height from the surface for transparent (line), lossy (dash), and metallic-like (dash-dot) substrates. Illumination in normal direction.

Fig. 3
Fig. 3

Absorption efficiency as a function of the parallel wave vector, k||, in medium 2 due to (a) particle on the interface (z0 = a), and (b) particle at z0 = λ/2 for transparent (line), lossy (dash), and metallic-like (dash-dot) substrates. The dotted vertical lines present the wave vectors in medium 1 and 2.

Fig. 4
Fig. 4

Absorption efficiency in the (k, ω) plane when the substrate is silver and the particle is placed on the surface. Illumination in normal incident direction corresponds to wavelength between 300 nm and 1200 nm. The white line denotes the light-line in medium 1.

Fig. 5
Fig. 5

Extinction efficiency of reflected (dash), transmitted (dash-dot) and total power (line, scale on the right) vs. the particle height from the surface for (a) transparent, (b) lossy, and (c) metallic-like substrates. Normal incident illumination.

Fig. 6
Fig. 6

Extinction efficiency of reflected (dash), transmitted (dash-dot) and total power (line, scale on the right) as a function of the angle of incidence for (a) transparent, (b) lossy, and (c) metallic-like substrates. Illuminating the particle on the interface (z0 = a), by an unpolarized light.

Equations (50)

Equations on this page are rendered with MathJax. Learn more.

k | | = ( k x , k y )
k z j = k j 2 k | | 2
u ^ j + = ( k | | cos ϕ , k | | sin ϕ , k z j ) / k j
u ^ j = ( k | | cos ϕ , k | | sin ϕ , k z j ) / k j .
s ^ = κ ^ × z ^
p ^ j ± = s ^ × u ^ j ± .
e ^ i = { ( 0 , 1 , 0 ) s polarization ( k z 1 , 0 , k | | ) / k 1 p polarization
E d ( r 0 ) = [ ( 1 + r 12 s e 2 i k z 1 z 0 ) s ^ s ^ + ( p ^ 1 p ^ 1 + r 12 p e 2 i k z 1 z 0 p ^ 1 + p ^ 1 ) ] e ^ i
r i j s , p = Q i Q j Q i + Q j , t i j s = 2 Q i Q i + Q j , t i j p = n i n j 2 Q i Q i + Q j ,
p 0 = ε 1 α E d .
α eff = α 0 1 ζ 0 α 0
ζ 0 = i k 1 3 6 π .
α eff = α 0 [ 1 ζ α 0 ] 1 ,
ζ = ζ 0 I + ε 1 G r ( r 0 , r 0 )
G r ( r , r 0 ) = + d 2 k | | ( 2 π ) 2 G r ( k | | ; z z 0 ) e i k | | R
P ( r ) = p 0 δ ( r r 0 ) ,
E ( r ) = d 2 k | | ( 2 π ) 2 F ( k | | ; z ) e i k | | R .
F ( k | | ; z ) = G ( k | | ; z z ) P ( k | | ; z ) d z ,
F ( k | | ; z ) = G ( k | | ; z z 0 ) p 0 .
G = G 0 + G r ,
G 0 ( k | | ; z z 0 ) = i 2 ( ω c ) 2 e i k z 1 ( z z 0 ) k z 1 ( s ^ s ^ + p ^ 1 + p ^ 1 + ) G r ( k | | ; z z 0 ) = i 2 ( ω c ) 2 e i k z 1 ( z + z 0 ) k z 1 ( r 12 s s ^ s ^ + r 12 p p ^ 1 + p ^ 1 ) .
F s 1 ( k | | ; z > z 0 ) = i 2 ( ω c ) 2 e i k z 1 ( z z 0 ) k z 1 × [ ( 1 + r 12 s e 2 i k z 1 z 0 ) s ^ s ^ + ( p ^ 1 + p ^ 1 + + r 12 p e 2 i k z 1 z 0 p ^ 1 + p ^ 1 ) ] p 0 .
F s 2 ( k | | ; z < 0 ) = i 2 ( ω c ) 2 e i k z 1 z 0 k z 1 ( t 12 s s ^ s ^ + t 12 p p ^ 2 p ^ 1 ) e i k z 2 z p 0 .
W ext ( r ) + W ext ( t ) = W sca ( r ) + W sca ( t ) ,
Q ext = W ext W i ( π a 2 ) ; Q sca = W sca W i ( π a 2 ) ,
Q ext ( r ) = 2 π a 2 Re { E r F s 1 * } ; Q ext ( t ) = 2 π a 2 k z 2 k z 1 Re { E t F s 2 * } .
Q abs , 2 = Q sca ( t ) .
E ( r ) = E exc ( r ) + V G ( r , r ) ( ε s ε h ) E ( r ) d 3 r ,
E ( r ) = E exc ( r ) + V [ G 0 ( r , r ) + G r ( r , r ) ] ε h ( m 2 1 ) E ( r ) d 3 r
G 0 ( r , r 0 ) = PV [ k h 2 I + ] exp ( i k h ρ ) 4 π ε h ρ I 3 ε h δ ( r r 0 ) ,
G 0 ( r , r 0 ) I 3 ε h δ ( r r 0 ) + i k h 3 6 π ε h I .
E ( r 0 ) = E exc ( r 0 ) + [ i k 1 3 6 π ε h I + G r ( r 0 , r 0 ) ] V ε h ( m 2 1 ) E ( r 0 ) I ( m 2 1 ) 3 E ( r 0 )
E ( r 0 ) = 3 E exc ( r 0 ) m 2 + 2 { I 4 π a 3 m 2 1 m 2 + 2 [ i k h 3 6 π I ε h G r ( r 0 , r 0 ) ] } 1
p = V ( ε s ε h ) E ( r 0 ) = ε h α eff E exc ( r 0 )
α eff = α 0 { I [ i k h 3 6 π I + ε h G r ( r 0 , r 0 ) ] α 0 } 1 .
E 1 = E i + E r
E 2 = E t .
S 1 = 1 2 Re { E 1 × H 1 * } = 1 2 Re { ( E i + E r ) × ( H i * + H r * ) } S 2 = 1 2 Re { E 2 × H 2 * } = 1 2 Re { E t × H t * } .
A S d A = A 1 S 1 d A + A 2 S 2 d A = 0
1 2 Re { E i × H i * } + 1 2 Re { E r × H r * } + 1 2 Re { E t × H t * } = 0 .
E 1 = E i + E r + E s 1 E 2 = E t + E s 2
S 1 = 1 2 Re { ( E i + E r + E s 1 ) × ( H i * + H r * + H s 1 * ) } S 2 = 1 2 Re { ( E t + E s 2 ) × ( H t * + H s 2 * ) } .
A 1 1 2 Re { ( E i × H s 1 * + E s 1 × H i * ) + ( E r × H s 1 * + E s 1 × H r * ) + ( E s 1 × H s 1 * ) } d A + A 2 1 2 { ( E i × H s 2 * + E s 2 × H t * ) + ( E s 2 × H s 2 * ) } d A = 0 .
W ext ( i ) = A 1 1 2 Re { E i × H s 1 * + E s 1 × H i * } d A W ext ( r ) = A 1 1 2 Re { E r × H s 1 * + E s 1 × H r * } d A W sca ( r ) = A 1 1 2 Re { E s 1 × H s 1 * } d A W ext ( t ) = A 2 1 2 Re { E t × H s 2 * + E s 2 × H t * } d A W sca ( t ) = A 2 1 2 Re { E s 2 × H s 2 * } d A
W ext ( i ) + W ext ( r ) + W ext ( t ) = W sca ( r ) + W sca ( t ) .
E i = e ^ i e i k i r H i * = k i * ω μ × E i * E s = d 2 k | | ( 2 π ) 2 F s e i k r H s * = k s * ω μ × E s * = d 2 k | | ( 2 π ) 2 k s * ω μ × F s * e i k r .
W ext = A 1 2 Re { ( E i × H s * + E s × H i * ) } d A .
e i ( Δ k x x + Δ k y y ) d x d y = ( 2 π ) 2 δ ( Δ k x ) δ ( Δ k y ) ,
W ext ( i ) = 0 W ext ( r ) = 1 2 ω μ Re { E r × [ k r * × F s 1 * ( u ^ r ) ] + F s 1 ( u ^ r ) × [ k r * × E r * ] } ( + z ^ ) W ext ( t ) = 1 2 ω μ Re { E t × [ k t * × F s 2 * ( u ^ t ) ] + F s 2 ( u ^ t ) × [ k t * × E t * ] } ( z ^ )
W sca ( r ) = 1 2 ω μ Re d 2 k | | ( 2 π ) 2 { F s 1 ( k | | ) × [ k s * × F s 1 * ( k | | ) ] } ( + z ^ ) W sca ( t ) = 1 2 ω μ Re d 2 k | | ( 2 π ) 2 { F s 2 ( k | | ) × [ k s * × F s 2 * ( k | | ) ] } ( z ^ ) .

Metrics