Abstract

Plasmonic Ag nanoparticles were deposited on the silicon pyramid structures to further reduce surface reflectance. Compared with the bare silicon pyramid surface, a dramatic reflectance reduction around 380 nm was observed and the weighted average surface reflectance from 300 nm to 1100 nm could be reduced about 3.4%. By a series of designed experiments combined with Mie theory calculations, the influences of the size, shape and density distribution of Ag nanoparticles on the surface reflectance reduction were investigated in detail. This study shows a practicable method to improve light trapping for the application to solar cells.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Eminian, F. J. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovolt. Res. Appl. 19(3), 260–265 (2011).
    [CrossRef]
  2. J. K. Mapel, M. Singh, M. A. Baldo, and K. Celebi, “Plasmonic excitation of organic double heterostructure solar cells,” Appl. Phys. Lett. 90(12), 121102 (2007).
    [CrossRef]
  3. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
    [CrossRef]
  4. S. Mokkapati, F. J. Beck, R. de. Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys. 44(18), 185101 (2011).
    [CrossRef]
  5. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [CrossRef]
  6. M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for Plasmonic Applications,” Chem. Rev. 111(6), 3669–3712 (2011).
    [CrossRef] [PubMed]
  7. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
    [CrossRef]
  8. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  9. C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
    [CrossRef]
  10. P. A. Ragip, W. Justin, B. Edward, L. John, and B. L. Mark, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21, 1–6 (2009).
  11. N. C. Panoiu and R. M. Osgood., “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Opt. Lett. 32(19), 2825–2827 (2007).
    [CrossRef] [PubMed]
  12. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [CrossRef]
  13. M. C. Carotta, M. Merli, L. Passari, D. Palmeri, G. Martinelli, and R. Van Steenwinkel, “Effect of Thickness and surface treatment on silicon water reflectance,” Sol. Energy Mater. Sol. Cells 27(3), 265–272 (1992).
    [CrossRef]
  14. A. W. Smith and A. Rohatgi, “Ray tracing analysis of the inverted pyramid texturing geometry for high efficiency silicon solar cells,” Sol. Energy Mater. Sol. Cells 29(1), 37–49 (1993).
    [CrossRef]
  15. Z. Xin, W. Lei, and Y. D. Ren, “Investigations of random pyramid texture on the surface of single-crystalline silicon for solar cells,” Proceedings of ISES World Congress 4, 1126–1130 (2007).
  16. T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
    [CrossRef]
  17. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).
  18. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
    [CrossRef]
  19. H. Qian, Z. X. Dan, and W. Shuo, “Research on fabricating functional optical Ag thin films and optical properties,” Acta. Phys. Sin. (Overseas Ed) 58, 2731–2736 (2009).
  20. U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer-Verlag, 1995).
  21. B. Soller, The Interaction Between Metal Nanoparticle Resonances and Optical Frequency Surface Waves (University of Rochester, 2002).

2011

C. Eminian, F. J. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovolt. Res. Appl. 19(3), 260–265 (2011).
[CrossRef]

S. Mokkapati, F. J. Beck, R. de. Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys. 44(18), 185101 (2011).
[CrossRef]

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for Plasmonic Applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[CrossRef] [PubMed]

2009

P. A. Ragip, W. Justin, B. Edward, L. John, and B. L. Mark, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21, 1–6 (2009).

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[CrossRef]

H. Qian, Z. X. Dan, and W. Shuo, “Research on fabricating functional optical Ag thin films and optical properties,” Acta. Phys. Sin. (Overseas Ed) 58, 2731–2736 (2009).

2008

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[CrossRef]

2007

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

J. K. Mapel, M. Singh, M. A. Baldo, and K. Celebi, “Plasmonic excitation of organic double heterostructure solar cells,” Appl. Phys. Lett. 90(12), 121102 (2007).
[CrossRef]

N. C. Panoiu and R. M. Osgood., “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Opt. Lett. 32(19), 2825–2827 (2007).
[CrossRef] [PubMed]

2006

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

2003

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

1993

A. W. Smith and A. Rohatgi, “Ray tracing analysis of the inverted pyramid texturing geometry for high efficiency silicon solar cells,” Sol. Energy Mater. Sol. Cells 29(1), 37–49 (1993).
[CrossRef]

1992

M. C. Carotta, M. Merli, L. Passari, D. Palmeri, G. Martinelli, and R. Van Steenwinkel, “Effect of Thickness and surface treatment on silicon water reflectance,” Sol. Energy Mater. Sol. Cells 27(3), 265–272 (1992).
[CrossRef]

Atwater, H. A.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

Bagnall, D. M.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[CrossRef]

Baldo, M. A.

J. K. Mapel, M. Singh, M. A. Baldo, and K. Celebi, “Plasmonic excitation of organic double heterostructure solar cells,” Appl. Phys. Lett. 90(12), 121102 (2007).
[CrossRef]

Ballif, C.

C. Eminian, F. J. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovolt. Res. Appl. 19(3), 260–265 (2011).
[CrossRef]

Beck, F. J.

S. Mokkapati, F. J. Beck, R. de. Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys. 44(18), 185101 (2011).
[CrossRef]

Carotta, M. C.

M. C. Carotta, M. Merli, L. Passari, D. Palmeri, G. Martinelli, and R. Van Steenwinkel, “Effect of Thickness and surface treatment on silicon water reflectance,” Sol. Energy Mater. Sol. Cells 27(3), 265–272 (1992).
[CrossRef]

Catchpole, K. R.

S. Mokkapati, F. J. Beck, R. de. Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys. 44(18), 185101 (2011).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Celebi, K.

J. K. Mapel, M. Singh, M. A. Baldo, and K. Celebi, “Plasmonic excitation of organic double heterostructure solar cells,” Appl. Phys. Lett. 90(12), 121102 (2007).
[CrossRef]

Cobley, C. M.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for Plasmonic Applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[CrossRef] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Cubero, O.

C. Eminian, F. J. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovolt. Res. Appl. 19(3), 260–265 (2011).
[CrossRef]

Dan, Z. X.

H. Qian, Z. X. Dan, and W. Shuo, “Research on fabricating functional optical Ag thin films and optical properties,” Acta. Phys. Sin. (Overseas Ed) 58, 2731–2736 (2009).

de. Waele, R.

S. Mokkapati, F. J. Beck, R. de. Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys. 44(18), 185101 (2011).
[CrossRef]

Derkacs, D.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Edward, B.

P. A. Ragip, W. Justin, B. Edward, L. John, and B. L. Mark, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21, 1–6 (2009).

Eminian, C.

C. Eminian, F. J. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovolt. Res. Appl. 19(3), 260–265 (2011).
[CrossRef]

Fahr, S.

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[CrossRef]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Haug, F. J.

C. Eminian, F. J. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovolt. Res. Appl. 19(3), 260–265 (2011).
[CrossRef]

John, L.

P. A. Ragip, W. Justin, B. Edward, L. John, and B. L. Mark, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21, 1–6 (2009).

Justin, W.

P. A. Ragip, W. Justin, B. Edward, L. John, and B. L. Mark, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21, 1–6 (2009).

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Lederer, F.

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[CrossRef]

Li, W.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for Plasmonic Applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[CrossRef] [PubMed]

Lim, S. H.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Mahanama, G. D. K.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[CrossRef]

Mapel, J. K.

J. K. Mapel, M. Singh, M. A. Baldo, and K. Celebi, “Plasmonic excitation of organic double heterostructure solar cells,” Appl. Phys. Lett. 90(12), 121102 (2007).
[CrossRef]

Mar, W.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Mark, B. L.

P. A. Ragip, W. Justin, B. Edward, L. John, and B. L. Mark, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21, 1–6 (2009).

Martinelli, G.

M. C. Carotta, M. Merli, L. Passari, D. Palmeri, G. Martinelli, and R. Van Steenwinkel, “Effect of Thickness and surface treatment on silicon water reflectance,” Sol. Energy Mater. Sol. Cells 27(3), 265–272 (1992).
[CrossRef]

Matheu, P.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Merli, M.

M. C. Carotta, M. Merli, L. Passari, D. Palmeri, G. Martinelli, and R. Van Steenwinkel, “Effect of Thickness and surface treatment on silicon water reflectance,” Sol. Energy Mater. Sol. Cells 27(3), 265–272 (1992).
[CrossRef]

Mokkapati, S.

S. Mokkapati, F. J. Beck, R. de. Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys. 44(18), 185101 (2011).
[CrossRef]

Moran, C. H.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for Plasmonic Applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[CrossRef] [PubMed]

Nakayama, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

Niquille, X.

C. Eminian, F. J. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovolt. Res. Appl. 19(3), 260–265 (2011).
[CrossRef]

Osgood, R. M.

Palmeri, D.

M. C. Carotta, M. Merli, L. Passari, D. Palmeri, G. Martinelli, and R. Van Steenwinkel, “Effect of Thickness and surface treatment on silicon water reflectance,” Sol. Energy Mater. Sol. Cells 27(3), 265–272 (1992).
[CrossRef]

Panoiu, N. C.

Passari, L.

M. C. Carotta, M. Merli, L. Passari, D. Palmeri, G. Martinelli, and R. Van Steenwinkel, “Effect of Thickness and surface treatment on silicon water reflectance,” Sol. Energy Mater. Sol. Cells 27(3), 265–272 (1992).
[CrossRef]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Polman, A.

S. Mokkapati, F. J. Beck, R. de. Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys. 44(18), 185101 (2011).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

Qian, H.

H. Qian, Z. X. Dan, and W. Shuo, “Research on fabricating functional optical Ag thin films and optical properties,” Acta. Phys. Sin. (Overseas Ed) 58, 2731–2736 (2009).

Qin, D.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for Plasmonic Applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[CrossRef] [PubMed]

Ragip, P. A.

P. A. Ragip, W. Justin, B. Edward, L. John, and B. L. Mark, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21, 1–6 (2009).

Reehal, H. S.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[CrossRef]

Rockstuhl, C.

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[CrossRef]

Rohatgi, A.

A. W. Smith and A. Rohatgi, “Ray tracing analysis of the inverted pyramid texturing geometry for high efficiency silicon solar cells,” Sol. Energy Mater. Sol. Cells 29(1), 37–49 (1993).
[CrossRef]

Rycenga, M.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for Plasmonic Applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[CrossRef] [PubMed]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Shuo, W.

H. Qian, Z. X. Dan, and W. Shuo, “Research on fabricating functional optical Ag thin films and optical properties,” Acta. Phys. Sin. (Overseas Ed) 58, 2731–2736 (2009).

Singh, M.

J. K. Mapel, M. Singh, M. A. Baldo, and K. Celebi, “Plasmonic excitation of organic double heterostructure solar cells,” Appl. Phys. Lett. 90(12), 121102 (2007).
[CrossRef]

Smith, A. W.

A. W. Smith and A. Rohatgi, “Ray tracing analysis of the inverted pyramid texturing geometry for high efficiency silicon solar cells,” Sol. Energy Mater. Sol. Cells 29(1), 37–49 (1993).
[CrossRef]

Tanabe, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

Temple, T. L.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Van Steenwinkel, R.

M. C. Carotta, M. Merli, L. Passari, D. Palmeri, G. Martinelli, and R. Van Steenwinkel, “Effect of Thickness and surface treatment on silicon water reflectance,” Sol. Energy Mater. Sol. Cells 27(3), 265–272 (1992).
[CrossRef]

Xia, Y.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for Plasmonic Applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[CrossRef] [PubMed]

Yu, E. T.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Zeng, J.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for Plasmonic Applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[CrossRef] [PubMed]

Zhang, Q.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for Plasmonic Applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[CrossRef] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Acta. Phys. Sin. (Overseas Ed)

H. Qian, Z. X. Dan, and W. Shuo, “Research on fabricating functional optical Ag thin films and optical properties,” Acta. Phys. Sin. (Overseas Ed) 58, 2731–2736 (2009).

Adv. Mater. (Deerfield Beach Fla.)

P. A. Ragip, W. Justin, B. Edward, L. John, and B. L. Mark, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21, 1–6 (2009).

Appl. Phys. Lett.

J. K. Mapel, M. Singh, M. A. Baldo, and K. Celebi, “Plasmonic excitation of organic double heterostructure solar cells,” Appl. Phys. Lett. 90(12), 121102 (2007).
[CrossRef]

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

Chem. Rev.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for Plasmonic Applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[CrossRef] [PubMed]

J. Appl. Phys.

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

J. Phys. Chem. B

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

J. Phys. D Appl. Phys.

S. Mokkapati, F. J. Beck, R. de. Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys. 44(18), 185101 (2011).
[CrossRef]

Opt. Lett.

Prog. Photovolt. Res. Appl.

C. Eminian, F. J. Haug, O. Cubero, X. Niquille, and C. Ballif, “Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles,” Prog. Photovolt. Res. Appl. 19(3), 260–265 (2011).
[CrossRef]

Sol. Energy Mater. Sol. Cells

M. C. Carotta, M. Merli, L. Passari, D. Palmeri, G. Martinelli, and R. Van Steenwinkel, “Effect of Thickness and surface treatment on silicon water reflectance,” Sol. Energy Mater. Sol. Cells 27(3), 265–272 (1992).
[CrossRef]

A. W. Smith and A. Rohatgi, “Ray tracing analysis of the inverted pyramid texturing geometry for high efficiency silicon solar cells,” Sol. Energy Mater. Sol. Cells 29(1), 37–49 (1993).
[CrossRef]

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[CrossRef]

Other

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).

U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer-Verlag, 1995).

B. Soller, The Interaction Between Metal Nanoparticle Resonances and Optical Frequency Surface Waves (University of Rochester, 2002).

Z. Xin, W. Lei, and Y. D. Ren, “Investigations of random pyramid texture on the surface of single-crystalline silicon for solar cells,” Proceedings of ISES World Congress 4, 1126–1130 (2007).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Surface reflectance calculation model of Ag nanoparticles deposited on the pyramids (a) Scattering model of Ag particles deposited on pyramids. (b) The dividing methods for single pyramid.

Fig. 2
Fig. 2

Experiment results of surface reflectance curves of Si surface with different sizes of Ag nanoparticles.

Fig. 3
Fig. 3

Ag nanoparticles with different radii deposited on silicon pyramid surface and the surface reflectance results by experiment and calculation. (a) SEM image of silicon pyramid surface with 60 nm Ag nanoparticles deposited on the surface. (b) SEM image of silicon pyramid surface with 85 nm Ag nanoparticles deposited on the surface. (c) Experiment results of surface reflectance. (d) Calculation results of surface reflectance.

Fig. 4
Fig. 4

SEM image of the sample with irregular particle shape Ag nanoparticles and the surface reflectance properties comparison with regular sample. (a) SEM image of sample with irregular shape Ag nanoparticles. (b) Reflectance comparison between with regular shape Ag nanoparticles and irregular shape Ag nanoparticels on the surface.

Fig. 5
Fig. 5

SEM results and surface reflectance properties of the structure with different densities of Ag nanoparticles on the surface. (a) SEM image of sample with higher particle density. (b) SEM image of sample with smaller particles density. (c) Surface reflectance with different particle densities.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

l n =4 2Δh 3 (n1).
θ n =Arccos( (n1/2)Δhcos( 70.6 )h n1/2 ) 2 Δ h 2 + h 2 2cos( 70.6 )h×(n1/2)Δh ).
C sca = 2 x 2 n=1 (2n+1)( | a n | 2 + | b n | 2 ) .
C ext = 2 x 2 n=1 (2n+1)Re( a n + b n ) .
S 1 (cos(θ))= n 2n+1 n(n+1) ( a n σ n + b n τ n ).
S 2 (cos(θ))= n 2n+1 n(n+1) ( a n τ n + b n σ n ).
η A forward = I 0 2 C sca l n C ext l (2 0 35.3 | S j (θ) | 2 dθ + 35.3 144.7 | S j (θ) | 2 dθ ).
η A back = I 0 2 C sca l n C ext l 35.3 35.3 θ n | S j (θ) | 2 dθ .
re f total =1 η A forward η B forward .

Metrics