Abstract

We have developed a new experimental setup based on optical Kerr gating in order to isolate either the transmitted or the scattered light going through an optically thick medium. This selectivity can be obtained by finely tuning the focusing of the different laser beams in the Kerr medium. We have developed an experimental setup. A Monte Carlo simulation scheme generates an accurate model of scattering processes taking into account the time of flight, the geometry of the Kerr gating and the polarization. We show that our experimental setup is capable of analyzing the transmitted light with optical densities up to OD = 9.7, and scattered light beyond OD = 347 in poly-disperse silica spheres in water (distribution centered on ~0.9µm radius) at λ = 550 nm. Strongly positive correlations are obtained with simulations.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Paciaroni and M. Linne, “Single-shot, two-dimensional ballistic imaging through scattering media,” Appl. Opt.43(26), 5100–5109 (2004).
    [CrossRef] [PubMed]
  2. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science253(5021), 769–771 (1991).
    [CrossRef] [PubMed]
  3. C. Schultz, J. Gronki, and S. Andersson, “Multi-species laser-based imaging measurements in a diesel spray,” SAE Transactions113(4), 1032–1042 (2004).
  4. M. Barthélémy, N. Rivière, L. Hespel, and T. Dartigalongue, “Pump probe experiment for high scattering media diagnostics,” in Reflection, scattering, and diffraction from surfaces, Z.-H. Gu and L.M. Hanssen, eds., Proc SPIE 7065, 70650Z (2008).
  5. A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up conversion,” J. Mod. Opt.51(9–10), 1433–1445 (2009).
  6. P. P. Ho, N. L. Yang, T. Jimbo, Q. Z. Wang, and R. R. Alfano, “Ultrafast resonant optical Kerr effect in 4-butoxycarbonylmethylurethane polydiacetylene,” J. Opt. Soc. Am. B4(6), 1025–1029 (1987).
    [CrossRef]
  7. C. Calba, L. Méès, C. Rozé, and T. Girasole, “Ultrashort pulse propagation through a strongly scattering medium: simulation and experiments,” J. Opt. Soc. Am. A25(7), 1541–1550 (2008).
    [CrossRef] [PubMed]
  8. M. Barthélémy, Apport d’une source laser femtoseconde amplifiée pour la mesure de spectre d’extinction d’un milieu diffusant optiquement épais. PhD thesis, Université de Toulouse, 2009.
  9. N. Rivière, M. Barthélémy, T. Dartigalongue, and L. Hespel, “Modeling of femtosecond pulse propagation through dense scattering media,” in Reflection, scattering, and diffraction from surfaces, Z.-H. Gu and L.M. Hanssen, eds., Proc SPIE 7065, 70650X (2008).
  10. L. Méès, G. Gréhan, and G. Gouesbet, “Time-resolved scattering diagram for a sphere illuminated by plane wave and focused short pulses,” Opt. Commun.194(1-3), 59–65 (2001).
    [CrossRef]
  11. A. E. Hovenac and J. A. Lock, “Assessing the contributions of surface waves and complex rays to far-field Mie scattering by use of the Debye series,” J. Opt. Soc. Am. A9(5), 781–795 (1992).
    [CrossRef]
  12. R. Hellwarth, J. Cherlow, and T. Yang, “Origin and frequency dependence of nonlinear susceptibilities of glasses,” Phys. Rev. B11(2), 964–967 (1975).
    [CrossRef]
  13. N. Pfeiffer and G. H. Chapman, “Monte Carlo simulations of the growth and decay of quasi-ballistic photon fractions with depth in an isotropic medium,” in Optical Interactions with Tissue and Cells XVI, S.L. Jacques and W.P. Roach, eds. Proc. SPIE 5695, 136–147 (2005).
  14. W. F. Long and D. H. Burns, “Particle sizing and optical constant measurement in granular samples using statistical descriptors of photon time-of-flight distributions,” Anal. Chim. Acta434(1), 113–123 (2001).
    [CrossRef]
  15. L. Hespel and A. Delfour, “Mie light-scattering granulometer with adaptive numerical filtering. I. Theory,” Appl. Opt.39(36), 6897–6917 (2000).
    [CrossRef] [PubMed]
  16. G. P. Box, K. M. Sealey, and M. A. Box, “Inversion of Mie extinction measurement using analytic eigenfunction theory,” J. Atmos. Sci.49(22), 2074–2081 (1992).
    [CrossRef]
  17. J. P. Butler, J. A. Reeds, and S. V. Dawson, “Estimating solutions of first kind integral equation with nonnegative constraints and optimal smoothing,” SIAM J. Numer. Anal.18(3), 381–397 (1981).
    [CrossRef]
  18. M. Kervella, F.-X. d’Abzac, F. Hache, L. Hespel, and T. Dartigalongue, “Picosecond time scale modification of forward scattered light induced by absorption inside particles,” Opt. Express20(1), 32–41 (2012).
    [CrossRef] [PubMed]
  19. S. G. Demos and R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett.21(2), 161–163 (1996).
    [CrossRef] [PubMed]

2012

2009

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up conversion,” J. Mod. Opt.51(9–10), 1433–1445 (2009).

2008

2004

M. Paciaroni and M. Linne, “Single-shot, two-dimensional ballistic imaging through scattering media,” Appl. Opt.43(26), 5100–5109 (2004).
[CrossRef] [PubMed]

C. Schultz, J. Gronki, and S. Andersson, “Multi-species laser-based imaging measurements in a diesel spray,” SAE Transactions113(4), 1032–1042 (2004).

2001

L. Méès, G. Gréhan, and G. Gouesbet, “Time-resolved scattering diagram for a sphere illuminated by plane wave and focused short pulses,” Opt. Commun.194(1-3), 59–65 (2001).
[CrossRef]

W. F. Long and D. H. Burns, “Particle sizing and optical constant measurement in granular samples using statistical descriptors of photon time-of-flight distributions,” Anal. Chim. Acta434(1), 113–123 (2001).
[CrossRef]

2000

1996

1992

G. P. Box, K. M. Sealey, and M. A. Box, “Inversion of Mie extinction measurement using analytic eigenfunction theory,” J. Atmos. Sci.49(22), 2074–2081 (1992).
[CrossRef]

A. E. Hovenac and J. A. Lock, “Assessing the contributions of surface waves and complex rays to far-field Mie scattering by use of the Debye series,” J. Opt. Soc. Am. A9(5), 781–795 (1992).
[CrossRef]

1991

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science253(5021), 769–771 (1991).
[CrossRef] [PubMed]

1987

1981

J. P. Butler, J. A. Reeds, and S. V. Dawson, “Estimating solutions of first kind integral equation with nonnegative constraints and optimal smoothing,” SIAM J. Numer. Anal.18(3), 381–397 (1981).
[CrossRef]

1975

R. Hellwarth, J. Cherlow, and T. Yang, “Origin and frequency dependence of nonlinear susceptibilities of glasses,” Phys. Rev. B11(2), 964–967 (1975).
[CrossRef]

Alfano, R. R.

Andersson, S.

C. Schultz, J. Gronki, and S. Andersson, “Multi-species laser-based imaging measurements in a diesel spray,” SAE Transactions113(4), 1032–1042 (2004).

Box, G. P.

G. P. Box, K. M. Sealey, and M. A. Box, “Inversion of Mie extinction measurement using analytic eigenfunction theory,” J. Atmos. Sci.49(22), 2074–2081 (1992).
[CrossRef]

Box, M. A.

G. P. Box, K. M. Sealey, and M. A. Box, “Inversion of Mie extinction measurement using analytic eigenfunction theory,” J. Atmos. Sci.49(22), 2074–2081 (1992).
[CrossRef]

Burns, D. H.

W. F. Long and D. H. Burns, “Particle sizing and optical constant measurement in granular samples using statistical descriptors of photon time-of-flight distributions,” Anal. Chim. Acta434(1), 113–123 (2001).
[CrossRef]

Butler, J. P.

J. P. Butler, J. A. Reeds, and S. V. Dawson, “Estimating solutions of first kind integral equation with nonnegative constraints and optimal smoothing,” SIAM J. Numer. Anal.18(3), 381–397 (1981).
[CrossRef]

Calba, C.

Cherlow, J.

R. Hellwarth, J. Cherlow, and T. Yang, “Origin and frequency dependence of nonlinear susceptibilities of glasses,” Phys. Rev. B11(2), 964–967 (1975).
[CrossRef]

d’Abzac, F.-X.

Dartigalongue, T.

Dawson, S. V.

J. P. Butler, J. A. Reeds, and S. V. Dawson, “Estimating solutions of first kind integral equation with nonnegative constraints and optimal smoothing,” SIAM J. Numer. Anal.18(3), 381–397 (1981).
[CrossRef]

Delfour, A.

Demos, S. G.

Girasole, T.

Gouesbet, G.

L. Méès, G. Gréhan, and G. Gouesbet, “Time-resolved scattering diagram for a sphere illuminated by plane wave and focused short pulses,” Opt. Commun.194(1-3), 59–65 (2001).
[CrossRef]

Gréhan, G.

L. Méès, G. Gréhan, and G. Gouesbet, “Time-resolved scattering diagram for a sphere illuminated by plane wave and focused short pulses,” Opt. Commun.194(1-3), 59–65 (2001).
[CrossRef]

Gronki, J.

C. Schultz, J. Gronki, and S. Andersson, “Multi-species laser-based imaging measurements in a diesel spray,” SAE Transactions113(4), 1032–1042 (2004).

Hache, F.

Hellwarth, R.

R. Hellwarth, J. Cherlow, and T. Yang, “Origin and frequency dependence of nonlinear susceptibilities of glasses,” Phys. Rev. B11(2), 964–967 (1975).
[CrossRef]

Hespel, L.

Ho, P. P.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science253(5021), 769–771 (1991).
[CrossRef] [PubMed]

P. P. Ho, N. L. Yang, T. Jimbo, Q. Z. Wang, and R. R. Alfano, “Ultrafast resonant optical Kerr effect in 4-butoxycarbonylmethylurethane polydiacetylene,” J. Opt. Soc. Am. B4(6), 1025–1029 (1987).
[CrossRef]

Hovenac, A. E.

Jimbo, T.

Kervella, M.

Kwiat, P. G.

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up conversion,” J. Mod. Opt.51(9–10), 1433–1445 (2009).

Linne, M.

Liu, C.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science253(5021), 769–771 (1991).
[CrossRef] [PubMed]

Lock, J. A.

Long, W. F.

W. F. Long and D. H. Burns, “Particle sizing and optical constant measurement in granular samples using statistical descriptors of photon time-of-flight distributions,” Anal. Chim. Acta434(1), 113–123 (2001).
[CrossRef]

Méès, L.

C. Calba, L. Méès, C. Rozé, and T. Girasole, “Ultrashort pulse propagation through a strongly scattering medium: simulation and experiments,” J. Opt. Soc. Am. A25(7), 1541–1550 (2008).
[CrossRef] [PubMed]

L. Méès, G. Gréhan, and G. Gouesbet, “Time-resolved scattering diagram for a sphere illuminated by plane wave and focused short pulses,” Opt. Commun.194(1-3), 59–65 (2001).
[CrossRef]

Paciaroni, M.

Reeds, J. A.

J. P. Butler, J. A. Reeds, and S. V. Dawson, “Estimating solutions of first kind integral equation with nonnegative constraints and optimal smoothing,” SIAM J. Numer. Anal.18(3), 381–397 (1981).
[CrossRef]

Rozé, C.

Schultz, C.

C. Schultz, J. Gronki, and S. Andersson, “Multi-species laser-based imaging measurements in a diesel spray,” SAE Transactions113(4), 1032–1042 (2004).

Sealey, K. M.

G. P. Box, K. M. Sealey, and M. A. Box, “Inversion of Mie extinction measurement using analytic eigenfunction theory,” J. Atmos. Sci.49(22), 2074–2081 (1992).
[CrossRef]

Vandevender, A. P.

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up conversion,” J. Mod. Opt.51(9–10), 1433–1445 (2009).

Wang, L.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science253(5021), 769–771 (1991).
[CrossRef] [PubMed]

Wang, Q. Z.

Yang, N. L.

Yang, T.

R. Hellwarth, J. Cherlow, and T. Yang, “Origin and frequency dependence of nonlinear susceptibilities of glasses,” Phys. Rev. B11(2), 964–967 (1975).
[CrossRef]

Zhang, G.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science253(5021), 769–771 (1991).
[CrossRef] [PubMed]

Anal. Chim. Acta

W. F. Long and D. H. Burns, “Particle sizing and optical constant measurement in granular samples using statistical descriptors of photon time-of-flight distributions,” Anal. Chim. Acta434(1), 113–123 (2001).
[CrossRef]

Appl. Opt.

J. Atmos. Sci.

G. P. Box, K. M. Sealey, and M. A. Box, “Inversion of Mie extinction measurement using analytic eigenfunction theory,” J. Atmos. Sci.49(22), 2074–2081 (1992).
[CrossRef]

J. Mod. Opt.

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up conversion,” J. Mod. Opt.51(9–10), 1433–1445 (2009).

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Commun.

L. Méès, G. Gréhan, and G. Gouesbet, “Time-resolved scattering diagram for a sphere illuminated by plane wave and focused short pulses,” Opt. Commun.194(1-3), 59–65 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

R. Hellwarth, J. Cherlow, and T. Yang, “Origin and frequency dependence of nonlinear susceptibilities of glasses,” Phys. Rev. B11(2), 964–967 (1975).
[CrossRef]

SAE Transactions

C. Schultz, J. Gronki, and S. Andersson, “Multi-species laser-based imaging measurements in a diesel spray,” SAE Transactions113(4), 1032–1042 (2004).

Science

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science253(5021), 769–771 (1991).
[CrossRef] [PubMed]

SIAM J. Numer. Anal.

J. P. Butler, J. A. Reeds, and S. V. Dawson, “Estimating solutions of first kind integral equation with nonnegative constraints and optimal smoothing,” SIAM J. Numer. Anal.18(3), 381–397 (1981).
[CrossRef]

Other

N. Pfeiffer and G. H. Chapman, “Monte Carlo simulations of the growth and decay of quasi-ballistic photon fractions with depth in an isotropic medium,” in Optical Interactions with Tissue and Cells XVI, S.L. Jacques and W.P. Roach, eds. Proc. SPIE 5695, 136–147 (2005).

M. Barthélémy, N. Rivière, L. Hespel, and T. Dartigalongue, “Pump probe experiment for high scattering media diagnostics,” in Reflection, scattering, and diffraction from surfaces, Z.-H. Gu and L.M. Hanssen, eds., Proc SPIE 7065, 70650Z (2008).

M. Barthélémy, Apport d’une source laser femtoseconde amplifiée pour la mesure de spectre d’extinction d’un milieu diffusant optiquement épais. PhD thesis, Université de Toulouse, 2009.

N. Rivière, M. Barthélémy, T. Dartigalongue, and L. Hespel, “Modeling of femtosecond pulse propagation through dense scattering media,” in Reflection, scattering, and diffraction from surfaces, Z.-H. Gu and L.M. Hanssen, eds., Proc SPIE 7065, 70650X (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Interaction of an ultra short scattering pulse and a scattering medium, and resulting temporal intensity of the signal.

Fig. 2
Fig. 2

Schematic representation of the sampling set up. The probe beam crosses the scattering sample S, and the iris I1 constrains the area of interest. The iris I2 defines the angle of collection of the scattered light. A convergent lens Lpr focuses both the ballistic and scattered light. The ballistic light follows a Gaussian propagation and focuses at the focal point F’. The scattered light follows a geometric propagation and the sample is imaged at plane (A’). The OKG plate is placed either at F’ or A’. P1 and P2 are two crossed polarizers.

Fig. 3
Fig. 3

(b) different PSD evaluated by the spectral inversion code for the corresponding absorption spectra (a), giving similar temporal scattering profiles (c) in SLM configuration, for OD = 12.

Fig. 4
Fig. 4

Experimental and simulated temporal scattering diagrams in BPM configuration, for samples OD8, OD8.6 and OD9. Intensities and zero time delay are normalized to the experimental ballistic light peak. Scattered light is represented in (a) with a zoom on ballistic photons in (b).

Fig. 5
Fig. 5

Experimental and simulated temporal scattering diagrams in SLM configuration, for samples OD8.6, OD10.5, OD18 and OD42.7. Intensities are normalized to the maximum measured signal for each sample. Zero delay is the previously detected ballistic peak of OD8.6, not visible anymore in SLM.

Fig. 6
Fig. 6

Experimental temporal scattering diagram in SLM configuration, for sample OD347.

Fig. 7
Fig. 7

Limits of detection of ballistic and/or scattered photons, relatively to the two different experimental configurations (BPM and SLM). The upper limits given for scattered light correspond to OD acquired with a signal / background ratio of ~1. The lower limit for scattered light corresponds to a scattered signal / ballistic signal ratio of 0.1. The upper limit for ballistic light corresponds to scattered signal / ballistic signal ratio of 2.

Tables (3)

Tables Icon

Table 1 Beam waist at 1/e (in µm) of pump (ωpump) and probe (ωprobe) and spot size Rspot on the OKG plate in the two sampling configurations

Tables Icon

Table 2 Geometrical parameters of the experimental setup

Tables Icon

Table 3 Maximum retrievable optical densities with ≤5% relative uncertainty for regular and OKG filtering. We consider a mono disperse distribution of silica particles in water illuminated by a λ = 550nm laser beam

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η= T bal T scatt = ω pump 2 ω pump 2 + ω probe 2 × u 1 e u
OD=O D ref +log( I ref I sample )
Δ t n = t n I(t)dt I(t)dt

Metrics