S. Carretero-Palacios, F. J. García-Vidal, L. Martín-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B 85(3), 035417 (2012).
[Crossref]
S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 23(22-23), 2515–2533 (2011).
[Crossref]
[PubMed]
S. Carretero-Palacios, O. Mahboub, F. J. García-Vidal, L. Martín-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express 19(11), 10429–10442 (2011).
[Crossref]
[PubMed]
Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express 19(22), 21425–21431 (2011).
[Crossref]
[PubMed]
Q. Wang, C. J. Tang, J. Chen, P. Zhan, and Z. L. Wang, “Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells,” Opt. Express 19(24), 23889–23900 (2011).
[Crossref]
[PubMed]
M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Optical resonance transmission properties of nano-hole arrays in a gold film: effect of adhesion layer,” Opt. Express 19(27), 26186–26197 (2011).
[Crossref]
[PubMed]
Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
[Crossref]
[PubMed]
Z. Marcet, Z. H. Hang, C. T. Chan, I. Kravchenko, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and H. B. Chan, “Optical transmission through double-layer, laterally shifted metallic subwavelength hole arrays,” Opt. Lett. 35(13), 2124–2126 (2010).
[Crossref]
[PubMed]
M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays,” Opt. Express 18(21), 22255–22270 (2010).
[Crossref]
[PubMed]
F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]
Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures 8(2), 94–101 (2010).
[Crossref]
R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: Physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010).
[Crossref]
Y. Hou, J. Xu, X. Zhang, and D. Yu, “SERS on periodic arrays of coupled quadrate-holes and squares,” Nanotechnology 21(19), 195203 (2010).
[Crossref]
[PubMed]
J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26(11), 7859–7864 (2010).
[Crossref]
[PubMed]
Z. Chen, H. Dong, J. Pan, P. Zhan, C. J. Tang, and Z. L. Wang, “Monolayer rigid arrays of cavity-controllable metallic mesoparticles: Electrochemical preparation and light transmission resonances,” Appl. Phys. Lett. 96(5), 051904 (2010).
[Crossref]
C. J. Tang, Z. L. Wang, W. Y. Zhang, N. B. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009).
[Crossref]
L. Landström, D. Brodoceanu, D. Bäuerle, F. J. García-Vidal, S. G. Rodrigo, and L. Martín-Moreno, “Extraordinary transmission through metal-coated monolayers of microspheres,” Opt. Express 17(2), 761–772 (2009).
[Crossref]
[PubMed]
Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys., A Mater. Sci. Process. 92(2), 291–294 (2008).
[Crossref]
S. G. Romanov, M. Bardosova, I. M. Povey, M. E. Pemble, and C. M. Sotomayor Torres, “Understanding of transmission in the range of high-order photonic bands in thin opal ðlm,” Appl. Phys. Lett. 92(19), 191106 (2008).
[Crossref]
J. Sun, Y. Y. Li, H. Dong, P. Zhan, C. J. Tang, M. W. Zhu, and Z. L. Wang, “Fabrication and light-transmission properties of monolayer square symmetric colloidal crystals via controlled convective self-assembly on 1D grooves,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 123–128 (2008).
[Crossref]
R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[Crossref]
[PubMed]
S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[Crossref]
Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[Crossref]
[PubMed]
C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref]
[PubMed]
C. Farcau and S. Astilean, “Probing the unusual optical transmission of silver ðlms deposited on two-dimensional regular arrays of polystyrene microspheres,” J. Opt. A, Pure Appl. Opt. 9(9), S345–S349 (2007).
[Crossref]
Y. H. Ye, Z. B. Wang, D. S. Yan, and J. Y. Zhang, “Role of shape in middle-infrared transmission enhancement through periodically perforated metal films,” Opt. Lett. 32(21), 3140–3142 (2007).
[Crossref]
[PubMed]
P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1612–1616 (2006).
[Crossref]
L. Landström, D. Brodoceanu, K. Piglmayer, and D. Bäuerle, “Extraordinary optical transmission through metal-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 84(4), 373–377 (2006).
[Crossref]
Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[Crossref]
[PubMed]
A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[Crossref]
Q. J. Wang, J. Q. Li, C. P. Huang, C. Zhang, and Y. Y. Zhu, “Enhanced optical transmission through metal ðlms with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[Crossref]
L. Landström, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bäuerle, “Photonic properties of silicon-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 81(5), 911–913 (2005).
[Crossref]
B. F. Bai, L. F. Li, and L. J. Zeng, “Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes,” Opt. Lett. 30(18), 2360–2362 (2005).
[Crossref]
[PubMed]
K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[Crossref]
W. J. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B 72(15), 153406 (2005).
[Crossref]
T. Kondo, S. Yamaguti, M. Hangyo, K. Yamamoto, Y. Segawa, and K. Ohtaka, “Refractive index dependence of the transmission properties for a photonic crystal array of dielectric spheres,” Phys. Rev. B 70(23), 235113 (2004).
[Crossref]
A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref]
[PubMed]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]
[PubMed]
H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000).
[Crossref]
I. Avrutsky, Y. Zhao, and V. Kochergin, “Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film,” Opt. Lett. 25(9), 595–597 (2000).
[Crossref]
[PubMed]
J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]
L. Landström, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bäuerle, “Photonic properties of silicon-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 81(5), 911–913 (2005).
[Crossref]
C. Farcau and S. Astilean, “Probing the unusual optical transmission of silver ðlms deposited on two-dimensional regular arrays of polystyrene microspheres,” J. Opt. A, Pure Appl. Opt. 9(9), S345–S349 (2007).
[Crossref]
Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[Crossref]
[PubMed]
S. G. Romanov, M. Bardosova, I. M. Povey, M. E. Pemble, and C. M. Sotomayor Torres, “Understanding of transmission in the range of high-order photonic bands in thin opal ðlm,” Appl. Phys. Lett. 92(19), 191106 (2008).
[Crossref]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]
[PubMed]
L. Landström, D. Brodoceanu, D. Bäuerle, F. J. García-Vidal, S. G. Rodrigo, and L. Martín-Moreno, “Extraordinary transmission through metal-coated monolayers of microspheres,” Opt. Express 17(2), 761–772 (2009).
[Crossref]
[PubMed]
L. Landström, D. Brodoceanu, K. Piglmayer, and D. Bäuerle, “Extraordinary optical transmission through metal-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 84(4), 373–377 (2006).
[Crossref]
L. Landström, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bäuerle, “Photonic properties of silicon-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 81(5), 911–913 (2005).
[Crossref]
Z. Marcet, Z. H. Hang, C. T. Chan, I. Kravchenko, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and H. B. Chan, “Optical transmission through double-layer, laterally shifted metallic subwavelength hole arrays,” Opt. Lett. 35(13), 2124–2126 (2010).
[Crossref]
[PubMed]
L. Landström, D. Brodoceanu, D. Bäuerle, F. J. García-Vidal, S. G. Rodrigo, and L. Martín-Moreno, “Extraordinary transmission through metal-coated monolayers of microspheres,” Opt. Express 17(2), 761–772 (2009).
[Crossref]
[PubMed]
L. Landström, D. Brodoceanu, K. Piglmayer, and D. Bäuerle, “Extraordinary optical transmission through metal-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 84(4), 373–377 (2006).
[Crossref]
L. Landström, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bäuerle, “Photonic properties of silicon-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 81(5), 911–913 (2005).
[Crossref]
R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: Physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010).
[Crossref]
R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[Crossref]
[PubMed]
A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref]
[PubMed]
Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express 19(22), 21425–21431 (2011).
[Crossref]
[PubMed]
Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures 8(2), 94–101 (2010).
[Crossref]
J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26(11), 7859–7864 (2010).
[Crossref]
[PubMed]
Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys., A Mater. Sci. Process. 92(2), 291–294 (2008).
[Crossref]
S. Carretero-Palacios, F. J. García-Vidal, L. Martín-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B 85(3), 035417 (2012).
[Crossref]
S. Carretero-Palacios, O. Mahboub, F. J. García-Vidal, L. Martín-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express 19(11), 10429–10442 (2011).
[Crossref]
[PubMed]
M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Optical resonance transmission properties of nano-hole arrays in a gold film: effect of adhesion layer,” Opt. Express 19(27), 26186–26197 (2011).
[Crossref]
[PubMed]
M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays,” Opt. Express 18(21), 22255–22270 (2010).
[Crossref]
[PubMed]
Z. Marcet, Z. H. Hang, C. T. Chan, I. Kravchenko, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and H. B. Chan, “Optical transmission through double-layer, laterally shifted metallic subwavelength hole arrays,” Opt. Lett. 35(13), 2124–2126 (2010).
[Crossref]
[PubMed]
W. J. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B 72(15), 153406 (2005).
[Crossref]
Z. Marcet, Z. H. Hang, C. T. Chan, I. Kravchenko, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and H. B. Chan, “Optical transmission through double-layer, laterally shifted metallic subwavelength hole arrays,” Opt. Lett. 35(13), 2124–2126 (2010).
[Crossref]
[PubMed]
Z. Chen, H. Dong, J. Pan, P. Zhan, C. J. Tang, and Z. L. Wang, “Monolayer rigid arrays of cavity-controllable metallic mesoparticles: Electrochemical preparation and light transmission resonances,” Appl. Phys. Lett. 96(5), 051904 (2010).
[Crossref]
Z. Marcet, Z. H. Hang, C. T. Chan, I. Kravchenko, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and H. B. Chan, “Optical transmission through double-layer, laterally shifted metallic subwavelength hole arrays,” Opt. Lett. 35(13), 2124–2126 (2010).
[Crossref]
[PubMed]
A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[Crossref]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]
[PubMed]
Z. Chen, H. Dong, J. Pan, P. Zhan, C. J. Tang, and Z. L. Wang, “Monolayer rigid arrays of cavity-controllable metallic mesoparticles: Electrochemical preparation and light transmission resonances,” Appl. Phys. Lett. 96(5), 051904 (2010).
[Crossref]
J. Sun, Y. Y. Li, H. Dong, P. Zhan, C. J. Tang, M. W. Zhu, and Z. L. Wang, “Fabrication and light-transmission properties of monolayer square symmetric colloidal crystals via controlled convective self-assembly on 1D grooves,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 123–128 (2008).
[Crossref]
P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1612–1616 (2006).
[Crossref]
S. Carretero-Palacios, O. Mahboub, F. J. García-Vidal, L. Martín-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express 19(11), 10429–10442 (2011).
[Crossref]
[PubMed]
F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]
C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref]
[PubMed]
A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[Crossref]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]
[PubMed]
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]
K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[Crossref]
C. Farcau and S. Astilean, “Probing the unusual optical transmission of silver ðlms deposited on two-dimensional regular arrays of polystyrene microspheres,” J. Opt. A, Pure Appl. Opt. 9(9), S345–S349 (2007).
[Crossref]
Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures 8(2), 94–101 (2010).
[Crossref]
S. Carretero-Palacios, F. J. García-Vidal, L. Martín-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B 85(3), 035417 (2012).
[Crossref]
S. Carretero-Palacios, O. Mahboub, F. J. García-Vidal, L. Martín-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express 19(11), 10429–10442 (2011).
[Crossref]
[PubMed]
F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]
L. Landström, D. Brodoceanu, D. Bäuerle, F. J. García-Vidal, S. G. Rodrigo, and L. Martín-Moreno, “Extraordinary transmission through metal-coated monolayers of microspheres,” Opt. Express 17(2), 761–772 (2009).
[Crossref]
[PubMed]
J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]
S. Carretero-Palacios, O. Mahboub, F. J. García-Vidal, L. Martín-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express 19(11), 10429–10442 (2011).
[Crossref]
[PubMed]
C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref]
[PubMed]
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]
R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: Physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010).
[Crossref]
R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[Crossref]
[PubMed]
A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref]
[PubMed]
Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
[Crossref]
[PubMed]
J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26(11), 7859–7864 (2010).
[Crossref]
[PubMed]
Z. Marcet, Z. H. Hang, C. T. Chan, I. Kravchenko, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and H. B. Chan, “Optical transmission through double-layer, laterally shifted metallic subwavelength hole arrays,” Opt. Lett. 35(13), 2124–2126 (2010).
[Crossref]
[PubMed]
T. Kondo, S. Yamaguti, M. Hangyo, K. Yamamoto, Y. Segawa, and K. Ohtaka, “Refractive index dependence of the transmission properties for a photonic crystal array of dielectric spheres,” Phys. Rev. B 70(23), 235113 (2004).
[Crossref]
J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]
W. J. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B 72(15), 153406 (2005).
[Crossref]
Y. Hou, J. Xu, X. Zhang, and D. Yu, “SERS on periodic arrays of coupled quadrate-holes and squares,” Nanotechnology 21(19), 195203 (2010).
[Crossref]
[PubMed]
Q. J. Wang, J. Q. Li, C. P. Huang, C. Zhang, and Y. Y. Zhu, “Enhanced optical transmission through metal ðlms with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[Crossref]
Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
[Crossref]
[PubMed]
M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Optical resonance transmission properties of nano-hole arrays in a gold film: effect of adhesion layer,” Opt. Express 19(27), 26186–26197 (2011).
[Crossref]
[PubMed]
M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays,” Opt. Express 18(21), 22255–22270 (2010).
[Crossref]
[PubMed]
R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: Physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010).
[Crossref]
R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[Crossref]
[PubMed]
A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref]
[PubMed]
K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[Crossref]
Z. Marcet, Z. H. Hang, C. T. Chan, I. Kravchenko, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and H. B. Chan, “Optical transmission through double-layer, laterally shifted metallic subwavelength hole arrays,” Opt. Lett. 35(13), 2124–2126 (2010).
[Crossref]
[PubMed]
T. Kondo, S. Yamaguti, M. Hangyo, K. Yamamoto, Y. Segawa, and K. Ohtaka, “Refractive index dependence of the transmission properties for a photonic crystal array of dielectric spheres,” Phys. Rev. B 70(23), 235113 (2004).
[Crossref]
S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 23(22-23), 2515–2533 (2011).
[Crossref]
[PubMed]
Z. Marcet, Z. H. Hang, C. T. Chan, I. Kravchenko, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and H. B. Chan, “Optical transmission through double-layer, laterally shifted metallic subwavelength hole arrays,” Opt. Lett. 35(13), 2124–2126 (2010).
[Crossref]
[PubMed]
F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]
K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[Crossref]
L. Landström, D. Brodoceanu, D. Bäuerle, F. J. García-Vidal, S. G. Rodrigo, and L. Martín-Moreno, “Extraordinary transmission through metal-coated monolayers of microspheres,” Opt. Express 17(2), 761–772 (2009).
[Crossref]
[PubMed]
L. Landström, D. Brodoceanu, K. Piglmayer, and D. Bäuerle, “Extraordinary optical transmission through metal-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 84(4), 373–377 (2006).
[Crossref]
L. Landström, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bäuerle, “Photonic properties of silicon-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 81(5), 911–913 (2005).
[Crossref]
A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref]
[PubMed]
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]
Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express 19(22), 21425–21431 (2011).
[Crossref]
[PubMed]
Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures 8(2), 94–101 (2010).
[Crossref]
S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[Crossref]
Q. J. Wang, J. Q. Li, C. P. Huang, C. Zhang, and Y. Y. Zhu, “Enhanced optical transmission through metal ðlms with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[Crossref]
Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
[Crossref]
[PubMed]
J. Sun, Y. Y. Li, H. Dong, P. Zhan, C. J. Tang, M. W. Zhu, and Z. L. Wang, “Fabrication and light-transmission properties of monolayer square symmetric colloidal crystals via controlled convective self-assembly on 1D grooves,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 123–128 (2008).
[Crossref]
Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys., A Mater. Sci. Process. 92(2), 291–294 (2008).
[Crossref]
S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[Crossref]
Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[Crossref]
[PubMed]
Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[Crossref]
[PubMed]
Z. Marcet, Z. H. Hang, C. T. Chan, I. Kravchenko, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and H. B. Chan, “Optical transmission through double-layer, laterally shifted metallic subwavelength hole arrays,” Opt. Lett. 35(13), 2124–2126 (2010).
[Crossref]
[PubMed]
Z. Marcet, Z. H. Hang, C. T. Chan, I. Kravchenko, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and H. B. Chan, “Optical transmission through double-layer, laterally shifted metallic subwavelength hole arrays,” Opt. Lett. 35(13), 2124–2126 (2010).
[Crossref]
[PubMed]
S. Carretero-Palacios, F. J. García-Vidal, L. Martín-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B 85(3), 035417 (2012).
[Crossref]
S. Carretero-Palacios, O. Mahboub, F. J. García-Vidal, L. Martín-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express 19(11), 10429–10442 (2011).
[Crossref]
[PubMed]
F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]
L. Landström, D. Brodoceanu, D. Bäuerle, F. J. García-Vidal, S. G. Rodrigo, and L. Martín-Moreno, “Extraordinary transmission through metal-coated monolayers of microspheres,” Opt. Express 17(2), 761–772 (2009).
[Crossref]
[PubMed]
Z. Marcet, Z. H. Hang, C. T. Chan, I. Kravchenko, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and H. B. Chan, “Optical transmission through double-layer, laterally shifted metallic subwavelength hole arrays,” Opt. Lett. 35(13), 2124–2126 (2010).
[Crossref]
[PubMed]
Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
[Crossref]
[PubMed]
C. J. Tang, Z. L. Wang, W. Y. Zhang, N. B. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009).
[Crossref]
Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[Crossref]
[PubMed]
P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1612–1616 (2006).
[Crossref]
H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000).
[Crossref]
H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000).
[Crossref]
M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Optical resonance transmission properties of nano-hole arrays in a gold film: effect of adhesion layer,” Opt. Express 19(27), 26186–26197 (2011).
[Crossref]
[PubMed]
M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays,” Opt. Express 18(21), 22255–22270 (2010).
[Crossref]
[PubMed]
T. Kondo, S. Yamaguti, M. Hangyo, K. Yamamoto, Y. Segawa, and K. Ohtaka, “Refractive index dependence of the transmission properties for a photonic crystal array of dielectric spheres,” Phys. Rev. B 70(23), 235113 (2004).
[Crossref]
H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000).
[Crossref]
Z. Marcet, Z. H. Hang, C. T. Chan, I. Kravchenko, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and H. B. Chan, “Optical transmission through double-layer, laterally shifted metallic subwavelength hole arrays,” Opt. Lett. 35(13), 2124–2126 (2010).
[Crossref]
[PubMed]
Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
[Crossref]
[PubMed]
Z. Chen, H. Dong, J. Pan, P. Zhan, C. J. Tang, and Z. L. Wang, “Monolayer rigid arrays of cavity-controllable metallic mesoparticles: Electrochemical preparation and light transmission resonances,” Appl. Phys. Lett. 96(5), 051904 (2010).
[Crossref]
S. G. Romanov, M. Bardosova, I. M. Povey, M. E. Pemble, and C. M. Sotomayor Torres, “Understanding of transmission in the range of high-order photonic bands in thin opal ðlm,” Appl. Phys. Lett. 92(19), 191106 (2008).
[Crossref]
Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[Crossref]
[PubMed]
S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 23(22-23), 2515–2533 (2011).
[Crossref]
[PubMed]
L. Landström, D. Brodoceanu, K. Piglmayer, and D. Bäuerle, “Extraordinary optical transmission through metal-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 84(4), 373–377 (2006).
[Crossref]
L. Landström, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bäuerle, “Photonic properties of silicon-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 81(5), 911–913 (2005).
[Crossref]
S. G. Romanov, M. Bardosova, I. M. Povey, M. E. Pemble, and C. M. Sotomayor Torres, “Understanding of transmission in the range of high-order photonic bands in thin opal ðlm,” Appl. Phys. Lett. 92(19), 191106 (2008).
[Crossref]
Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[Crossref]
[PubMed]
S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 23(22-23), 2515–2533 (2011).
[Crossref]
[PubMed]
S. Carretero-Palacios, F. J. García-Vidal, L. Martín-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B 85(3), 035417 (2012).
[Crossref]
S. Carretero-Palacios, O. Mahboub, F. J. García-Vidal, L. Martín-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express 19(11), 10429–10442 (2011).
[Crossref]
[PubMed]
L. Landström, D. Brodoceanu, D. Bäuerle, F. J. García-Vidal, S. G. Rodrigo, and L. Martín-Moreno, “Extraordinary transmission through metal-coated monolayers of microspheres,” Opt. Express 17(2), 761–772 (2009).
[Crossref]
[PubMed]
S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 23(22-23), 2515–2533 (2011).
[Crossref]
[PubMed]
S. G. Romanov, M. Bardosova, I. M. Povey, M. E. Pemble, and C. M. Sotomayor Torres, “Understanding of transmission in the range of high-order photonic bands in thin opal ðlm,” Appl. Phys. Lett. 92(19), 191106 (2008).
[Crossref]
Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[Crossref]
[PubMed]
H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000).
[Crossref]
T. Kondo, S. Yamaguti, M. Hangyo, K. Yamamoto, Y. Segawa, and K. Ohtaka, “Refractive index dependence of the transmission properties for a photonic crystal array of dielectric spheres,” Phys. Rev. B 70(23), 235113 (2004).
[Crossref]
K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[Crossref]
Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[Crossref]
[PubMed]
C. J. Tang, Z. L. Wang, W. Y. Zhang, N. B. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009).
[Crossref]
W. J. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B 72(15), 153406 (2005).
[Crossref]
Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[Crossref]
[PubMed]
R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: Physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010).
[Crossref]
R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[Crossref]
[PubMed]
S. G. Romanov, M. Bardosova, I. M. Povey, M. E. Pemble, and C. M. Sotomayor Torres, “Understanding of transmission in the range of high-order photonic bands in thin opal ðlm,” Appl. Phys. Lett. 92(19), 191106 (2008).
[Crossref]
C. J. Tang, Z. L. Wang, W. Y. Zhang, N. B. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009).
[Crossref]
J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26(11), 7859–7864 (2010).
[Crossref]
[PubMed]
J. Sun, Y. Y. Li, H. Dong, P. Zhan, C. J. Tang, M. W. Zhu, and Z. L. Wang, “Fabrication and light-transmission properties of monolayer square symmetric colloidal crystals via controlled convective self-assembly on 1D grooves,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 123–128 (2008).
[Crossref]
Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys., A Mater. Sci. Process. 92(2), 291–294 (2008).
[Crossref]
P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1612–1616 (2006).
[Crossref]
Q. Wang, C. J. Tang, J. Chen, P. Zhan, and Z. L. Wang, “Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells,” Opt. Express 19(24), 23889–23900 (2011).
[Crossref]
[PubMed]
Z. Chen, H. Dong, J. Pan, P. Zhan, C. J. Tang, and Z. L. Wang, “Monolayer rigid arrays of cavity-controllable metallic mesoparticles: Electrochemical preparation and light transmission resonances,” Appl. Phys. Lett. 96(5), 051904 (2010).
[Crossref]
J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26(11), 7859–7864 (2010).
[Crossref]
[PubMed]
C. J. Tang, Z. L. Wang, W. Y. Zhang, N. B. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009).
[Crossref]
J. Sun, Y. Y. Li, H. Dong, P. Zhan, C. J. Tang, M. W. Zhu, and Z. L. Wang, “Fabrication and light-transmission properties of monolayer square symmetric colloidal crystals via controlled convective self-assembly on 1D grooves,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 123–128 (2008).
[Crossref]
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]
K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[Crossref]
K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[Crossref]
M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Optical resonance transmission properties of nano-hole arrays in a gold film: effect of adhesion layer,” Opt. Express 19(27), 26186–26197 (2011).
[Crossref]
[PubMed]
M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays,” Opt. Express 18(21), 22255–22270 (2010).
[Crossref]
[PubMed]
P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1612–1616 (2006).
[Crossref]
Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys., A Mater. Sci. Process. 92(2), 291–294 (2008).
[Crossref]
Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[Crossref]
[PubMed]
S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[Crossref]
Q. J. Wang, J. Q. Li, C. P. Huang, C. Zhang, and Y. Y. Zhu, “Enhanced optical transmission through metal ðlms with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[Crossref]
Q. Wang, C. J. Tang, J. Chen, P. Zhan, and Z. L. Wang, “Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells,” Opt. Express 19(24), 23889–23900 (2011).
[Crossref]
[PubMed]
Z. Chen, H. Dong, J. Pan, P. Zhan, C. J. Tang, and Z. L. Wang, “Monolayer rigid arrays of cavity-controllable metallic mesoparticles: Electrochemical preparation and light transmission resonances,” Appl. Phys. Lett. 96(5), 051904 (2010).
[Crossref]
Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
[Crossref]
[PubMed]
J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26(11), 7859–7864 (2010).
[Crossref]
[PubMed]
C. J. Tang, Z. L. Wang, W. Y. Zhang, N. B. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009).
[Crossref]
Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys., A Mater. Sci. Process. 92(2), 291–294 (2008).
[Crossref]
J. Sun, Y. Y. Li, H. Dong, P. Zhan, C. J. Tang, M. W. Zhu, and Z. L. Wang, “Fabrication and light-transmission properties of monolayer square symmetric colloidal crystals via controlled convective self-assembly on 1D grooves,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 123–128 (2008).
[Crossref]
P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1612–1616 (2006).
[Crossref]
Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express 19(22), 21425–21431 (2011).
[Crossref]
[PubMed]
Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures 8(2), 94–101 (2010).
[Crossref]
W. J. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B 72(15), 153406 (2005).
[Crossref]
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]
Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures 8(2), 94–101 (2010).
[Crossref]
S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[Crossref]
Y. Hou, J. Xu, X. Zhang, and D. Yu, “SERS on periodic arrays of coupled quadrate-holes and squares,” Nanotechnology 21(19), 195203 (2010).
[Crossref]
[PubMed]
T. Kondo, S. Yamaguti, M. Hangyo, K. Yamamoto, Y. Segawa, and K. Ohtaka, “Refractive index dependence of the transmission properties for a photonic crystal array of dielectric spheres,” Phys. Rev. B 70(23), 235113 (2004).
[Crossref]
T. Kondo, S. Yamaguti, M. Hangyo, K. Yamamoto, Y. Segawa, and K. Ohtaka, “Refractive index dependence of the transmission properties for a photonic crystal array of dielectric spheres,” Phys. Rev. B 70(23), 235113 (2004).
[Crossref]
J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]
S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[Crossref]
Y. Hou, J. Xu, X. Zhang, and D. Yu, “SERS on periodic arrays of coupled quadrate-holes and squares,” Nanotechnology 21(19), 195203 (2010).
[Crossref]
[PubMed]
Q. Wang, C. J. Tang, J. Chen, P. Zhan, and Z. L. Wang, “Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells,” Opt. Express 19(24), 23889–23900 (2011).
[Crossref]
[PubMed]
Z. Chen, H. Dong, J. Pan, P. Zhan, C. J. Tang, and Z. L. Wang, “Monolayer rigid arrays of cavity-controllable metallic mesoparticles: Electrochemical preparation and light transmission resonances,” Appl. Phys. Lett. 96(5), 051904 (2010).
[Crossref]
Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
[Crossref]
[PubMed]
J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26(11), 7859–7864 (2010).
[Crossref]
[PubMed]
J. Sun, Y. Y. Li, H. Dong, P. Zhan, C. J. Tang, M. W. Zhu, and Z. L. Wang, “Fabrication and light-transmission properties of monolayer square symmetric colloidal crystals via controlled convective self-assembly on 1D grooves,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 123–128 (2008).
[Crossref]
Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys., A Mater. Sci. Process. 92(2), 291–294 (2008).
[Crossref]
P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1612–1616 (2006).
[Crossref]
Q. J. Wang, J. Q. Li, C. P. Huang, C. Zhang, and Y. Y. Zhu, “Enhanced optical transmission through metal ðlms with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[Crossref]
C. J. Tang, Z. L. Wang, W. Y. Zhang, N. B. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009).
[Crossref]
Y. Hou, J. Xu, X. Zhang, and D. Yu, “SERS on periodic arrays of coupled quadrate-holes and squares,” Nanotechnology 21(19), 195203 (2010).
[Crossref]
[PubMed]
W. J. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B 72(15), 153406 (2005).
[Crossref]
S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[Crossref]
J. Sun, Y. Y. Li, H. Dong, P. Zhan, C. J. Tang, M. W. Zhu, and Z. L. Wang, “Fabrication and light-transmission properties of monolayer square symmetric colloidal crystals via controlled convective self-assembly on 1D grooves,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 123–128 (2008).
[Crossref]
Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
[Crossref]
[PubMed]
P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1612–1616 (2006).
[Crossref]
S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[Crossref]
Q. J. Wang, J. Q. Li, C. P. Huang, C. Zhang, and Y. Y. Zhu, “Enhanced optical transmission through metal ðlms with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[Crossref]
Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
[Crossref]
[PubMed]
P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1612–1616 (2006).
[Crossref]
R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[Crossref]
[PubMed]
P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1612–1616 (2006).
[Crossref]
S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 23(22-23), 2515–2533 (2011).
[Crossref]
[PubMed]
J. Sun, Y. Y. Li, H. Dong, P. Zhan, C. J. Tang, M. W. Zhu, and Z. L. Wang, “Fabrication and light-transmission properties of monolayer square symmetric colloidal crystals via controlled convective self-assembly on 1D grooves,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 123–128 (2008).
[Crossref]
S. G. Romanov, M. Bardosova, I. M. Povey, M. E. Pemble, and C. M. Sotomayor Torres, “Understanding of transmission in the range of high-order photonic bands in thin opal ðlm,” Appl. Phys. Lett. 92(19), 191106 (2008).
[Crossref]
Z. Chen, H. Dong, J. Pan, P. Zhan, C. J. Tang, and Z. L. Wang, “Monolayer rigid arrays of cavity-controllable metallic mesoparticles: Electrochemical preparation and light transmission resonances,” Appl. Phys. Lett. 96(5), 051904 (2010).
[Crossref]
Q. J. Wang, J. Q. Li, C. P. Huang, C. Zhang, and Y. Y. Zhu, “Enhanced optical transmission through metal ðlms with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[Crossref]
S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[Crossref]
L. Landström, D. Brodoceanu, K. Piglmayer, and D. Bäuerle, “Extraordinary optical transmission through metal-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 84(4), 373–377 (2006).
[Crossref]
Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal,” Appl. Phys., A Mater. Sci. Process. 92(2), 291–294 (2008).
[Crossref]
L. Landström, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bäuerle, “Photonic properties of silicon-coated colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 81(5), 911–913 (2005).
[Crossref]
H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, “Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope,” J. Appl. Phys. 87(10), 7152–7158 (2000).
[Crossref]
C. Farcau and S. Astilean, “Probing the unusual optical transmission of silver ðlms deposited on two-dimensional regular arrays of polystyrene microspheres,” J. Opt. A, Pure Appl. Opt. 9(9), S345–S349 (2007).
[Crossref]
A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[Crossref]
A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref]
[PubMed]
J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir 26(11), 7859–7864 (2010).
[Crossref]
[PubMed]
R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: Physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010).
[Crossref]
Y. Hou, J. Xu, X. Zhang, and D. Yu, “SERS on periodic arrays of coupled quadrate-holes and squares,” Nanotechnology 21(19), 195203 (2010).
[Crossref]
[PubMed]
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]
C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref]
[PubMed]
W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]
[PubMed]
M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays,” Opt. Express 18(21), 22255–22270 (2010).
[Crossref]
[PubMed]
S. Carretero-Palacios, O. Mahboub, F. J. García-Vidal, L. Martín-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express 19(11), 10429–10442 (2011).
[Crossref]
[PubMed]
Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express 19(22), 21425–21431 (2011).
[Crossref]
[PubMed]
Q. Wang, C. J. Tang, J. Chen, P. Zhan, and Z. L. Wang, “Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells,” Opt. Express 19(24), 23889–23900 (2011).
[Crossref]
[PubMed]
M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Optical resonance transmission properties of nano-hole arrays in a gold film: effect of adhesion layer,” Opt. Express 19(27), 26186–26197 (2011).
[Crossref]
[PubMed]
L. Landström, D. Brodoceanu, D. Bäuerle, F. J. García-Vidal, S. G. Rodrigo, and L. Martín-Moreno, “Extraordinary transmission through metal-coated monolayers of microspheres,” Opt. Express 17(2), 761–772 (2009).
[Crossref]
[PubMed]
Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010).
[Crossref]
[PubMed]
Z. Marcet, Z. H. Hang, C. T. Chan, I. Kravchenko, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and H. B. Chan, “Optical transmission through double-layer, laterally shifted metallic subwavelength hole arrays,” Opt. Lett. 35(13), 2124–2126 (2010).
[Crossref]
[PubMed]
I. Avrutsky, Y. Zhao, and V. Kochergin, “Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film,” Opt. Lett. 25(9), 595–597 (2000).
[Crossref]
[PubMed]
B. F. Bai, L. F. Li, and L. J. Zeng, “Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes,” Opt. Lett. 30(18), 2360–2362 (2005).
[Crossref]
[PubMed]
Y. H. Ye, Z. B. Wang, D. S. Yan, and J. Y. Zhang, “Role of shape in middle-infrared transmission enhancement through periodically perforated metal films,” Opt. Lett. 32(21), 3140–3142 (2007).
[Crossref]
[PubMed]
Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures 8(2), 94–101 (2010).
[Crossref]
S. Carretero-Palacios, F. J. García-Vidal, L. Martín-Moreno, and S. G. Rodrigo, “Effect of film thickness and dielectric environment on optical transmission through subwavelength holes,” Phys. Rev. B 85(3), 035417 (2012).
[Crossref]
C. J. Tang, Z. L. Wang, W. Y. Zhang, N. B. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009).
[Crossref]
K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[Crossref]
W. J. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B 72(15), 153406 (2005).
[Crossref]
T. Kondo, S. Yamaguti, M. Hangyo, K. Yamamoto, Y. Segawa, and K. Ohtaka, “Refractive index dependence of the transmission properties for a photonic crystal array of dielectric spheres,” Phys. Rev. B 70(23), 235113 (2004).
[Crossref]
Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[Crossref]
[PubMed]
Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[Crossref]
[PubMed]
F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]
J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]
A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).