Abstract

We present a novel approach for convenient tuning of the local refractive index around nanostructures. We apply this technique to study the influence of the local refractive index on the radiative decay time of CdSe/ZnS quantum dots with three distinct emission wavelengths. The dependence of the luminescence decay time on the environment is well described by an effective medium approach. A critical distance of about 80 nm is found for the determination of the effective local index of refraction. An estimation for the emitting-state quantum efficiency can be extracted.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Fermi, “Quantum theory of radiation,” Rev. Mod. Phys. 4, 87–132 (1932).
    [CrossRef]
  2. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681–681 (1946).
  3. D. Toptygin, “Effects of the solvent refractive index and its dispersion on the radiative decay rate and extinction coefficient of a fluorescent solute,” J. Fluoresc. 13, 201–219 (2003).
    [CrossRef]
  4. A. Chizhik, F. Schleifenbaum, R. Gutbrod, A. Chizhik, D. Khoptyar, A. J. Meixner, and J. Enderlein, “Tuning the fluorescence emission spectra of a single molecule with a variable optical subwavelength metal microcavity,” Phys. Rev. Lett. 102, 073002 (2009).
    [CrossRef] [PubMed]
  5. A. Belarouci, F. Menchini, H. Rigneault, B. Jacquier, R. M. Montereali, F. Somma, and P. Moretti, “Spontaneous emission properties of color centers based optical microcavities,” Opt. Commun. 189, 281–287 (2001).
    [CrossRef]
  6. J. Vučković, D. Fattal, C. Santori, and G. S. Solomon, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596–3598 (2003).
    [CrossRef]
  7. A. I. Chizhik, A. M. Chizhik, D. Khoptyar, S. Bär, A. J. Meixner, and J. Enderlein, “Probing the radiative transition of single molecules with a tunable microresonator,” Nano Lett. 11, 1700–1703 (2011).
    [CrossRef] [PubMed]
  8. G. Lamouche, P. Lavallard, and T. Gacoin, “Optical properties of dye molecules as a function of the surrounding dielectric medium,” Phys. Rev. A 59, 4668–4674 (1999).
    [CrossRef]
  9. X. Brokmann, L. Coolen, M. Dahan, and J. P. Hermier, “Measurement of the radiative and nonradiative decay rates of single cdse nanocrystals through a controlled modification of their spontaneous emission,” Phys. Rev. Lett. 93, 107403 (2004).
    [CrossRef] [PubMed]
  10. S. F. Wuister, C. D. Donega, and A. Meijerink, “Local-field effects on the spontaneous emission rate of cdte and cdse quantum dots in dielectric media,” J. Chem. Phys. 121, 4310–4315 (2004).
    [CrossRef] [PubMed]
  11. R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of y2o3 : Eu3+ nanoparticles on the surrounding medium,” Phys. Rev. B 60, 14012–14015 (1999).
    [CrossRef]
  12. H. Schniepp and V. Sandoghdar, “Spontaneous emission of europium ions embedded in dielectric nanospheres,” Phys. Rev. Lett. 89, 257403 (2002).
    [CrossRef] [PubMed]
  13. D. W. Cooke, J. K. Lee, B. L. Bennett, J. R. Groves, L. G. Jacobsohn, E. A. McKigney, R. E. Muenchausen, M. Nastasi, K. E. Sickafus, M. Tang, J. A. Valdez, J. Y. Kim, and K. S. Hong, “Luminescent properties and reduced dimensional behavior of hydrothermally prepared y(2)sio(5): ce nanophosphors,” Appl. Phys. Lett. 88, 103108 (2006).
    [CrossRef]
  14. V. LeBihan, A. Pillonnet, D. Amans, G. Ledoux, O. Marty, and C. Dujardin, “Critical dimension where the macroscopic definition of refractive index can be applied at a nanometric scale,” Phys. Rev. B 78, 113405 (2008).
    [CrossRef]
  15. D. E. Aspnes, “Local-field effects and effective-medium theory - a microscopic perspective,” Am. J. Phys. 50, 704–709 (1982).
    [CrossRef]
  16. I. N. Bronshtein, K. A. Semendyayev, G. Müsiol, and H. Mühlig, Handbook of Mathematics, 5th ed. (Springer, 2007).
  17. J. Knoester and S. Mukamel, “Intermolecular forces, spontaneous emission, and superradiance in a dielectric medium - polariton-mediated interactions,” Phys. Rev. A 40, 7065–7080 (1989).
    [CrossRef] [PubMed]
  18. R. J. Glauber and M. Lewenstein, “Quantum optics of dielectric media,” Phys. Rev. A 43, 467–491 (1991).
    [CrossRef] [PubMed]
  19. M. E. Crenshaw and C. M. Bowden, “Effects of local fields on spontaneous emission in dielectric media,” Phys. Rev. Lett. 85, 1851–1854 (2000).
    [CrossRef] [PubMed]
  20. C. K. Duan, M. F. Reid, and Z. Q. Wang, “Local field effects on the radiative lifetime of emitters in surrounding media: Virtual- or real-cavity model?” Phys. Lett. A 343, 474–480 (2005).
    [CrossRef]
  21. J. Yao, D. R. Larson, H. D. Vishwasrao, W. R. Zipfel, and W. W. Webb, “Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution,” Proc. Natl. Acad. Sci. U.S.A. 102, 14284–14289 (2005).
    [CrossRef] [PubMed]
  22. P. R. Berman and P. W. Milonni, “Microscopic theory of modified spontaneous emission in a dielectric,” Phys. Rev. Lett. 92, 053601 (2004).
    [CrossRef] [PubMed]

2011

A. I. Chizhik, A. M. Chizhik, D. Khoptyar, S. Bär, A. J. Meixner, and J. Enderlein, “Probing the radiative transition of single molecules with a tunable microresonator,” Nano Lett. 11, 1700–1703 (2011).
[CrossRef] [PubMed]

2009

A. Chizhik, F. Schleifenbaum, R. Gutbrod, A. Chizhik, D. Khoptyar, A. J. Meixner, and J. Enderlein, “Tuning the fluorescence emission spectra of a single molecule with a variable optical subwavelength metal microcavity,” Phys. Rev. Lett. 102, 073002 (2009).
[CrossRef] [PubMed]

2008

V. LeBihan, A. Pillonnet, D. Amans, G. Ledoux, O. Marty, and C. Dujardin, “Critical dimension where the macroscopic definition of refractive index can be applied at a nanometric scale,” Phys. Rev. B 78, 113405 (2008).
[CrossRef]

2006

D. W. Cooke, J. K. Lee, B. L. Bennett, J. R. Groves, L. G. Jacobsohn, E. A. McKigney, R. E. Muenchausen, M. Nastasi, K. E. Sickafus, M. Tang, J. A. Valdez, J. Y. Kim, and K. S. Hong, “Luminescent properties and reduced dimensional behavior of hydrothermally prepared y(2)sio(5): ce nanophosphors,” Appl. Phys. Lett. 88, 103108 (2006).
[CrossRef]

2005

C. K. Duan, M. F. Reid, and Z. Q. Wang, “Local field effects on the radiative lifetime of emitters in surrounding media: Virtual- or real-cavity model?” Phys. Lett. A 343, 474–480 (2005).
[CrossRef]

J. Yao, D. R. Larson, H. D. Vishwasrao, W. R. Zipfel, and W. W. Webb, “Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution,” Proc. Natl. Acad. Sci. U.S.A. 102, 14284–14289 (2005).
[CrossRef] [PubMed]

2004

P. R. Berman and P. W. Milonni, “Microscopic theory of modified spontaneous emission in a dielectric,” Phys. Rev. Lett. 92, 053601 (2004).
[CrossRef] [PubMed]

X. Brokmann, L. Coolen, M. Dahan, and J. P. Hermier, “Measurement of the radiative and nonradiative decay rates of single cdse nanocrystals through a controlled modification of their spontaneous emission,” Phys. Rev. Lett. 93, 107403 (2004).
[CrossRef] [PubMed]

S. F. Wuister, C. D. Donega, and A. Meijerink, “Local-field effects on the spontaneous emission rate of cdte and cdse quantum dots in dielectric media,” J. Chem. Phys. 121, 4310–4315 (2004).
[CrossRef] [PubMed]

2003

D. Toptygin, “Effects of the solvent refractive index and its dispersion on the radiative decay rate and extinction coefficient of a fluorescent solute,” J. Fluoresc. 13, 201–219 (2003).
[CrossRef]

J. Vučković, D. Fattal, C. Santori, and G. S. Solomon, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596–3598 (2003).
[CrossRef]

2002

H. Schniepp and V. Sandoghdar, “Spontaneous emission of europium ions embedded in dielectric nanospheres,” Phys. Rev. Lett. 89, 257403 (2002).
[CrossRef] [PubMed]

2001

A. Belarouci, F. Menchini, H. Rigneault, B. Jacquier, R. M. Montereali, F. Somma, and P. Moretti, “Spontaneous emission properties of color centers based optical microcavities,” Opt. Commun. 189, 281–287 (2001).
[CrossRef]

2000

M. E. Crenshaw and C. M. Bowden, “Effects of local fields on spontaneous emission in dielectric media,” Phys. Rev. Lett. 85, 1851–1854 (2000).
[CrossRef] [PubMed]

1999

G. Lamouche, P. Lavallard, and T. Gacoin, “Optical properties of dye molecules as a function of the surrounding dielectric medium,” Phys. Rev. A 59, 4668–4674 (1999).
[CrossRef]

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of y2o3 : Eu3+ nanoparticles on the surrounding medium,” Phys. Rev. B 60, 14012–14015 (1999).
[CrossRef]

1991

R. J. Glauber and M. Lewenstein, “Quantum optics of dielectric media,” Phys. Rev. A 43, 467–491 (1991).
[CrossRef] [PubMed]

1989

J. Knoester and S. Mukamel, “Intermolecular forces, spontaneous emission, and superradiance in a dielectric medium - polariton-mediated interactions,” Phys. Rev. A 40, 7065–7080 (1989).
[CrossRef] [PubMed]

1982

D. E. Aspnes, “Local-field effects and effective-medium theory - a microscopic perspective,” Am. J. Phys. 50, 704–709 (1982).
[CrossRef]

1946

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681–681 (1946).

1932

E. Fermi, “Quantum theory of radiation,” Rev. Mod. Phys. 4, 87–132 (1932).
[CrossRef]

Amans, D.

V. LeBihan, A. Pillonnet, D. Amans, G. Ledoux, O. Marty, and C. Dujardin, “Critical dimension where the macroscopic definition of refractive index can be applied at a nanometric scale,” Phys. Rev. B 78, 113405 (2008).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, “Local-field effects and effective-medium theory - a microscopic perspective,” Am. J. Phys. 50, 704–709 (1982).
[CrossRef]

Bär, S.

A. I. Chizhik, A. M. Chizhik, D. Khoptyar, S. Bär, A. J. Meixner, and J. Enderlein, “Probing the radiative transition of single molecules with a tunable microresonator,” Nano Lett. 11, 1700–1703 (2011).
[CrossRef] [PubMed]

Belarouci, A.

A. Belarouci, F. Menchini, H. Rigneault, B. Jacquier, R. M. Montereali, F. Somma, and P. Moretti, “Spontaneous emission properties of color centers based optical microcavities,” Opt. Commun. 189, 281–287 (2001).
[CrossRef]

Bennett, B. L.

D. W. Cooke, J. K. Lee, B. L. Bennett, J. R. Groves, L. G. Jacobsohn, E. A. McKigney, R. E. Muenchausen, M. Nastasi, K. E. Sickafus, M. Tang, J. A. Valdez, J. Y. Kim, and K. S. Hong, “Luminescent properties and reduced dimensional behavior of hydrothermally prepared y(2)sio(5): ce nanophosphors,” Appl. Phys. Lett. 88, 103108 (2006).
[CrossRef]

Berman, P. R.

P. R. Berman and P. W. Milonni, “Microscopic theory of modified spontaneous emission in a dielectric,” Phys. Rev. Lett. 92, 053601 (2004).
[CrossRef] [PubMed]

Bowden, C. M.

M. E. Crenshaw and C. M. Bowden, “Effects of local fields on spontaneous emission in dielectric media,” Phys. Rev. Lett. 85, 1851–1854 (2000).
[CrossRef] [PubMed]

Brokmann, X.

X. Brokmann, L. Coolen, M. Dahan, and J. P. Hermier, “Measurement of the radiative and nonradiative decay rates of single cdse nanocrystals through a controlled modification of their spontaneous emission,” Phys. Rev. Lett. 93, 107403 (2004).
[CrossRef] [PubMed]

Bronshtein, I. N.

I. N. Bronshtein, K. A. Semendyayev, G. Müsiol, and H. Mühlig, Handbook of Mathematics, 5th ed. (Springer, 2007).

Chizhik, A.

A. Chizhik, F. Schleifenbaum, R. Gutbrod, A. Chizhik, D. Khoptyar, A. J. Meixner, and J. Enderlein, “Tuning the fluorescence emission spectra of a single molecule with a variable optical subwavelength metal microcavity,” Phys. Rev. Lett. 102, 073002 (2009).
[CrossRef] [PubMed]

A. Chizhik, F. Schleifenbaum, R. Gutbrod, A. Chizhik, D. Khoptyar, A. J. Meixner, and J. Enderlein, “Tuning the fluorescence emission spectra of a single molecule with a variable optical subwavelength metal microcavity,” Phys. Rev. Lett. 102, 073002 (2009).
[CrossRef] [PubMed]

Chizhik, A. I.

A. I. Chizhik, A. M. Chizhik, D. Khoptyar, S. Bär, A. J. Meixner, and J. Enderlein, “Probing the radiative transition of single molecules with a tunable microresonator,” Nano Lett. 11, 1700–1703 (2011).
[CrossRef] [PubMed]

Chizhik, A. M.

A. I. Chizhik, A. M. Chizhik, D. Khoptyar, S. Bär, A. J. Meixner, and J. Enderlein, “Probing the radiative transition of single molecules with a tunable microresonator,” Nano Lett. 11, 1700–1703 (2011).
[CrossRef] [PubMed]

Cooke, D. W.

D. W. Cooke, J. K. Lee, B. L. Bennett, J. R. Groves, L. G. Jacobsohn, E. A. McKigney, R. E. Muenchausen, M. Nastasi, K. E. Sickafus, M. Tang, J. A. Valdez, J. Y. Kim, and K. S. Hong, “Luminescent properties and reduced dimensional behavior of hydrothermally prepared y(2)sio(5): ce nanophosphors,” Appl. Phys. Lett. 88, 103108 (2006).
[CrossRef]

Coolen, L.

X. Brokmann, L. Coolen, M. Dahan, and J. P. Hermier, “Measurement of the radiative and nonradiative decay rates of single cdse nanocrystals through a controlled modification of their spontaneous emission,” Phys. Rev. Lett. 93, 107403 (2004).
[CrossRef] [PubMed]

Crenshaw, M. E.

M. E. Crenshaw and C. M. Bowden, “Effects of local fields on spontaneous emission in dielectric media,” Phys. Rev. Lett. 85, 1851–1854 (2000).
[CrossRef] [PubMed]

Dahan, M.

X. Brokmann, L. Coolen, M. Dahan, and J. P. Hermier, “Measurement of the radiative and nonradiative decay rates of single cdse nanocrystals through a controlled modification of their spontaneous emission,” Phys. Rev. Lett. 93, 107403 (2004).
[CrossRef] [PubMed]

Donega, C. D.

S. F. Wuister, C. D. Donega, and A. Meijerink, “Local-field effects on the spontaneous emission rate of cdte and cdse quantum dots in dielectric media,” J. Chem. Phys. 121, 4310–4315 (2004).
[CrossRef] [PubMed]

Duan, C. K.

C. K. Duan, M. F. Reid, and Z. Q. Wang, “Local field effects on the radiative lifetime of emitters in surrounding media: Virtual- or real-cavity model?” Phys. Lett. A 343, 474–480 (2005).
[CrossRef]

Dujardin, C.

V. LeBihan, A. Pillonnet, D. Amans, G. Ledoux, O. Marty, and C. Dujardin, “Critical dimension where the macroscopic definition of refractive index can be applied at a nanometric scale,” Phys. Rev. B 78, 113405 (2008).
[CrossRef]

Enderlein, J.

A. I. Chizhik, A. M. Chizhik, D. Khoptyar, S. Bär, A. J. Meixner, and J. Enderlein, “Probing the radiative transition of single molecules with a tunable microresonator,” Nano Lett. 11, 1700–1703 (2011).
[CrossRef] [PubMed]

A. Chizhik, F. Schleifenbaum, R. Gutbrod, A. Chizhik, D. Khoptyar, A. J. Meixner, and J. Enderlein, “Tuning the fluorescence emission spectra of a single molecule with a variable optical subwavelength metal microcavity,” Phys. Rev. Lett. 102, 073002 (2009).
[CrossRef] [PubMed]

Fattal, D.

J. Vučković, D. Fattal, C. Santori, and G. S. Solomon, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596–3598 (2003).
[CrossRef]

Feofilov, S. P.

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of y2o3 : Eu3+ nanoparticles on the surrounding medium,” Phys. Rev. B 60, 14012–14015 (1999).
[CrossRef]

Fermi, E.

E. Fermi, “Quantum theory of radiation,” Rev. Mod. Phys. 4, 87–132 (1932).
[CrossRef]

Gacoin, T.

G. Lamouche, P. Lavallard, and T. Gacoin, “Optical properties of dye molecules as a function of the surrounding dielectric medium,” Phys. Rev. A 59, 4668–4674 (1999).
[CrossRef]

Glauber, R. J.

R. J. Glauber and M. Lewenstein, “Quantum optics of dielectric media,” Phys. Rev. A 43, 467–491 (1991).
[CrossRef] [PubMed]

Groves, J. R.

D. W. Cooke, J. K. Lee, B. L. Bennett, J. R. Groves, L. G. Jacobsohn, E. A. McKigney, R. E. Muenchausen, M. Nastasi, K. E. Sickafus, M. Tang, J. A. Valdez, J. Y. Kim, and K. S. Hong, “Luminescent properties and reduced dimensional behavior of hydrothermally prepared y(2)sio(5): ce nanophosphors,” Appl. Phys. Lett. 88, 103108 (2006).
[CrossRef]

Gutbrod, R.

A. Chizhik, F. Schleifenbaum, R. Gutbrod, A. Chizhik, D. Khoptyar, A. J. Meixner, and J. Enderlein, “Tuning the fluorescence emission spectra of a single molecule with a variable optical subwavelength metal microcavity,” Phys. Rev. Lett. 102, 073002 (2009).
[CrossRef] [PubMed]

Hermier, J. P.

X. Brokmann, L. Coolen, M. Dahan, and J. P. Hermier, “Measurement of the radiative and nonradiative decay rates of single cdse nanocrystals through a controlled modification of their spontaneous emission,” Phys. Rev. Lett. 93, 107403 (2004).
[CrossRef] [PubMed]

Hong, K. S.

D. W. Cooke, J. K. Lee, B. L. Bennett, J. R. Groves, L. G. Jacobsohn, E. A. McKigney, R. E. Muenchausen, M. Nastasi, K. E. Sickafus, M. Tang, J. A. Valdez, J. Y. Kim, and K. S. Hong, “Luminescent properties and reduced dimensional behavior of hydrothermally prepared y(2)sio(5): ce nanophosphors,” Appl. Phys. Lett. 88, 103108 (2006).
[CrossRef]

Jacobsohn, L. G.

D. W. Cooke, J. K. Lee, B. L. Bennett, J. R. Groves, L. G. Jacobsohn, E. A. McKigney, R. E. Muenchausen, M. Nastasi, K. E. Sickafus, M. Tang, J. A. Valdez, J. Y. Kim, and K. S. Hong, “Luminescent properties and reduced dimensional behavior of hydrothermally prepared y(2)sio(5): ce nanophosphors,” Appl. Phys. Lett. 88, 103108 (2006).
[CrossRef]

Jacquier, B.

A. Belarouci, F. Menchini, H. Rigneault, B. Jacquier, R. M. Montereali, F. Somma, and P. Moretti, “Spontaneous emission properties of color centers based optical microcavities,” Opt. Commun. 189, 281–287 (2001).
[CrossRef]

Khoptyar, D.

A. I. Chizhik, A. M. Chizhik, D. Khoptyar, S. Bär, A. J. Meixner, and J. Enderlein, “Probing the radiative transition of single molecules with a tunable microresonator,” Nano Lett. 11, 1700–1703 (2011).
[CrossRef] [PubMed]

A. Chizhik, F. Schleifenbaum, R. Gutbrod, A. Chizhik, D. Khoptyar, A. J. Meixner, and J. Enderlein, “Tuning the fluorescence emission spectra of a single molecule with a variable optical subwavelength metal microcavity,” Phys. Rev. Lett. 102, 073002 (2009).
[CrossRef] [PubMed]

Kim, J. Y.

D. W. Cooke, J. K. Lee, B. L. Bennett, J. R. Groves, L. G. Jacobsohn, E. A. McKigney, R. E. Muenchausen, M. Nastasi, K. E. Sickafus, M. Tang, J. A. Valdez, J. Y. Kim, and K. S. Hong, “Luminescent properties and reduced dimensional behavior of hydrothermally prepared y(2)sio(5): ce nanophosphors,” Appl. Phys. Lett. 88, 103108 (2006).
[CrossRef]

Knoester, J.

J. Knoester and S. Mukamel, “Intermolecular forces, spontaneous emission, and superradiance in a dielectric medium - polariton-mediated interactions,” Phys. Rev. A 40, 7065–7080 (1989).
[CrossRef] [PubMed]

Lamouche, G.

G. Lamouche, P. Lavallard, and T. Gacoin, “Optical properties of dye molecules as a function of the surrounding dielectric medium,” Phys. Rev. A 59, 4668–4674 (1999).
[CrossRef]

Larson, D. R.

J. Yao, D. R. Larson, H. D. Vishwasrao, W. R. Zipfel, and W. W. Webb, “Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution,” Proc. Natl. Acad. Sci. U.S.A. 102, 14284–14289 (2005).
[CrossRef] [PubMed]

Lavallard, P.

G. Lamouche, P. Lavallard, and T. Gacoin, “Optical properties of dye molecules as a function of the surrounding dielectric medium,” Phys. Rev. A 59, 4668–4674 (1999).
[CrossRef]

LeBihan, V.

V. LeBihan, A. Pillonnet, D. Amans, G. Ledoux, O. Marty, and C. Dujardin, “Critical dimension where the macroscopic definition of refractive index can be applied at a nanometric scale,” Phys. Rev. B 78, 113405 (2008).
[CrossRef]

Ledoux, G.

V. LeBihan, A. Pillonnet, D. Amans, G. Ledoux, O. Marty, and C. Dujardin, “Critical dimension where the macroscopic definition of refractive index can be applied at a nanometric scale,” Phys. Rev. B 78, 113405 (2008).
[CrossRef]

Lee, J. K.

D. W. Cooke, J. K. Lee, B. L. Bennett, J. R. Groves, L. G. Jacobsohn, E. A. McKigney, R. E. Muenchausen, M. Nastasi, K. E. Sickafus, M. Tang, J. A. Valdez, J. Y. Kim, and K. S. Hong, “Luminescent properties and reduced dimensional behavior of hydrothermally prepared y(2)sio(5): ce nanophosphors,” Appl. Phys. Lett. 88, 103108 (2006).
[CrossRef]

Lewenstein, M.

R. J. Glauber and M. Lewenstein, “Quantum optics of dielectric media,” Phys. Rev. A 43, 467–491 (1991).
[CrossRef] [PubMed]

Marty, O.

V. LeBihan, A. Pillonnet, D. Amans, G. Ledoux, O. Marty, and C. Dujardin, “Critical dimension where the macroscopic definition of refractive index can be applied at a nanometric scale,” Phys. Rev. B 78, 113405 (2008).
[CrossRef]

McKigney, E. A.

D. W. Cooke, J. K. Lee, B. L. Bennett, J. R. Groves, L. G. Jacobsohn, E. A. McKigney, R. E. Muenchausen, M. Nastasi, K. E. Sickafus, M. Tang, J. A. Valdez, J. Y. Kim, and K. S. Hong, “Luminescent properties and reduced dimensional behavior of hydrothermally prepared y(2)sio(5): ce nanophosphors,” Appl. Phys. Lett. 88, 103108 (2006).
[CrossRef]

Meijerink, A.

S. F. Wuister, C. D. Donega, and A. Meijerink, “Local-field effects on the spontaneous emission rate of cdte and cdse quantum dots in dielectric media,” J. Chem. Phys. 121, 4310–4315 (2004).
[CrossRef] [PubMed]

Meixner, A. J.

A. I. Chizhik, A. M. Chizhik, D. Khoptyar, S. Bär, A. J. Meixner, and J. Enderlein, “Probing the radiative transition of single molecules with a tunable microresonator,” Nano Lett. 11, 1700–1703 (2011).
[CrossRef] [PubMed]

A. Chizhik, F. Schleifenbaum, R. Gutbrod, A. Chizhik, D. Khoptyar, A. J. Meixner, and J. Enderlein, “Tuning the fluorescence emission spectra of a single molecule with a variable optical subwavelength metal microcavity,” Phys. Rev. Lett. 102, 073002 (2009).
[CrossRef] [PubMed]

Meltzer, R. S.

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of y2o3 : Eu3+ nanoparticles on the surrounding medium,” Phys. Rev. B 60, 14012–14015 (1999).
[CrossRef]

Menchini, F.

A. Belarouci, F. Menchini, H. Rigneault, B. Jacquier, R. M. Montereali, F. Somma, and P. Moretti, “Spontaneous emission properties of color centers based optical microcavities,” Opt. Commun. 189, 281–287 (2001).
[CrossRef]

Milonni, P. W.

P. R. Berman and P. W. Milonni, “Microscopic theory of modified spontaneous emission in a dielectric,” Phys. Rev. Lett. 92, 053601 (2004).
[CrossRef] [PubMed]

Montereali, R. M.

A. Belarouci, F. Menchini, H. Rigneault, B. Jacquier, R. M. Montereali, F. Somma, and P. Moretti, “Spontaneous emission properties of color centers based optical microcavities,” Opt. Commun. 189, 281–287 (2001).
[CrossRef]

Moretti, P.

A. Belarouci, F. Menchini, H. Rigneault, B. Jacquier, R. M. Montereali, F. Somma, and P. Moretti, “Spontaneous emission properties of color centers based optical microcavities,” Opt. Commun. 189, 281–287 (2001).
[CrossRef]

Muenchausen, R. E.

D. W. Cooke, J. K. Lee, B. L. Bennett, J. R. Groves, L. G. Jacobsohn, E. A. McKigney, R. E. Muenchausen, M. Nastasi, K. E. Sickafus, M. Tang, J. A. Valdez, J. Y. Kim, and K. S. Hong, “Luminescent properties and reduced dimensional behavior of hydrothermally prepared y(2)sio(5): ce nanophosphors,” Appl. Phys. Lett. 88, 103108 (2006).
[CrossRef]

Mühlig, H.

I. N. Bronshtein, K. A. Semendyayev, G. Müsiol, and H. Mühlig, Handbook of Mathematics, 5th ed. (Springer, 2007).

Mukamel, S.

J. Knoester and S. Mukamel, “Intermolecular forces, spontaneous emission, and superradiance in a dielectric medium - polariton-mediated interactions,” Phys. Rev. A 40, 7065–7080 (1989).
[CrossRef] [PubMed]

Müsiol, G.

I. N. Bronshtein, K. A. Semendyayev, G. Müsiol, and H. Mühlig, Handbook of Mathematics, 5th ed. (Springer, 2007).

Nastasi, M.

D. W. Cooke, J. K. Lee, B. L. Bennett, J. R. Groves, L. G. Jacobsohn, E. A. McKigney, R. E. Muenchausen, M. Nastasi, K. E. Sickafus, M. Tang, J. A. Valdez, J. Y. Kim, and K. S. Hong, “Luminescent properties and reduced dimensional behavior of hydrothermally prepared y(2)sio(5): ce nanophosphors,” Appl. Phys. Lett. 88, 103108 (2006).
[CrossRef]

Pillonnet, A.

V. LeBihan, A. Pillonnet, D. Amans, G. Ledoux, O. Marty, and C. Dujardin, “Critical dimension where the macroscopic definition of refractive index can be applied at a nanometric scale,” Phys. Rev. B 78, 113405 (2008).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681–681 (1946).

Reid, M. F.

C. K. Duan, M. F. Reid, and Z. Q. Wang, “Local field effects on the radiative lifetime of emitters in surrounding media: Virtual- or real-cavity model?” Phys. Lett. A 343, 474–480 (2005).
[CrossRef]

Rigneault, H.

A. Belarouci, F. Menchini, H. Rigneault, B. Jacquier, R. M. Montereali, F. Somma, and P. Moretti, “Spontaneous emission properties of color centers based optical microcavities,” Opt. Commun. 189, 281–287 (2001).
[CrossRef]

Sandoghdar, V.

H. Schniepp and V. Sandoghdar, “Spontaneous emission of europium ions embedded in dielectric nanospheres,” Phys. Rev. Lett. 89, 257403 (2002).
[CrossRef] [PubMed]

Santori, C.

J. Vučković, D. Fattal, C. Santori, and G. S. Solomon, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596–3598 (2003).
[CrossRef]

Schleifenbaum, F.

A. Chizhik, F. Schleifenbaum, R. Gutbrod, A. Chizhik, D. Khoptyar, A. J. Meixner, and J. Enderlein, “Tuning the fluorescence emission spectra of a single molecule with a variable optical subwavelength metal microcavity,” Phys. Rev. Lett. 102, 073002 (2009).
[CrossRef] [PubMed]

Schniepp, H.

H. Schniepp and V. Sandoghdar, “Spontaneous emission of europium ions embedded in dielectric nanospheres,” Phys. Rev. Lett. 89, 257403 (2002).
[CrossRef] [PubMed]

Semendyayev, K. A.

I. N. Bronshtein, K. A. Semendyayev, G. Müsiol, and H. Mühlig, Handbook of Mathematics, 5th ed. (Springer, 2007).

Sickafus, K. E.

D. W. Cooke, J. K. Lee, B. L. Bennett, J. R. Groves, L. G. Jacobsohn, E. A. McKigney, R. E. Muenchausen, M. Nastasi, K. E. Sickafus, M. Tang, J. A. Valdez, J. Y. Kim, and K. S. Hong, “Luminescent properties and reduced dimensional behavior of hydrothermally prepared y(2)sio(5): ce nanophosphors,” Appl. Phys. Lett. 88, 103108 (2006).
[CrossRef]

Solomon, G. S.

J. Vučković, D. Fattal, C. Santori, and G. S. Solomon, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596–3598 (2003).
[CrossRef]

Somma, F.

A. Belarouci, F. Menchini, H. Rigneault, B. Jacquier, R. M. Montereali, F. Somma, and P. Moretti, “Spontaneous emission properties of color centers based optical microcavities,” Opt. Commun. 189, 281–287 (2001).
[CrossRef]

Tang, M.

D. W. Cooke, J. K. Lee, B. L. Bennett, J. R. Groves, L. G. Jacobsohn, E. A. McKigney, R. E. Muenchausen, M. Nastasi, K. E. Sickafus, M. Tang, J. A. Valdez, J. Y. Kim, and K. S. Hong, “Luminescent properties and reduced dimensional behavior of hydrothermally prepared y(2)sio(5): ce nanophosphors,” Appl. Phys. Lett. 88, 103108 (2006).
[CrossRef]

Tissue, B.

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of y2o3 : Eu3+ nanoparticles on the surrounding medium,” Phys. Rev. B 60, 14012–14015 (1999).
[CrossRef]

Toptygin, D.

D. Toptygin, “Effects of the solvent refractive index and its dispersion on the radiative decay rate and extinction coefficient of a fluorescent solute,” J. Fluoresc. 13, 201–219 (2003).
[CrossRef]

Valdez, J. A.

D. W. Cooke, J. K. Lee, B. L. Bennett, J. R. Groves, L. G. Jacobsohn, E. A. McKigney, R. E. Muenchausen, M. Nastasi, K. E. Sickafus, M. Tang, J. A. Valdez, J. Y. Kim, and K. S. Hong, “Luminescent properties and reduced dimensional behavior of hydrothermally prepared y(2)sio(5): ce nanophosphors,” Appl. Phys. Lett. 88, 103108 (2006).
[CrossRef]

Vishwasrao, H. D.

J. Yao, D. R. Larson, H. D. Vishwasrao, W. R. Zipfel, and W. W. Webb, “Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution,” Proc. Natl. Acad. Sci. U.S.A. 102, 14284–14289 (2005).
[CrossRef] [PubMed]

Vuckovic, J.

J. Vučković, D. Fattal, C. Santori, and G. S. Solomon, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596–3598 (2003).
[CrossRef]

Wang, Z. Q.

C. K. Duan, M. F. Reid, and Z. Q. Wang, “Local field effects on the radiative lifetime of emitters in surrounding media: Virtual- or real-cavity model?” Phys. Lett. A 343, 474–480 (2005).
[CrossRef]

Webb, W. W.

J. Yao, D. R. Larson, H. D. Vishwasrao, W. R. Zipfel, and W. W. Webb, “Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution,” Proc. Natl. Acad. Sci. U.S.A. 102, 14284–14289 (2005).
[CrossRef] [PubMed]

Wuister, S. F.

S. F. Wuister, C. D. Donega, and A. Meijerink, “Local-field effects on the spontaneous emission rate of cdte and cdse quantum dots in dielectric media,” J. Chem. Phys. 121, 4310–4315 (2004).
[CrossRef] [PubMed]

Yao, J.

J. Yao, D. R. Larson, H. D. Vishwasrao, W. R. Zipfel, and W. W. Webb, “Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution,” Proc. Natl. Acad. Sci. U.S.A. 102, 14284–14289 (2005).
[CrossRef] [PubMed]

Yuan, H. B.

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of y2o3 : Eu3+ nanoparticles on the surrounding medium,” Phys. Rev. B 60, 14012–14015 (1999).
[CrossRef]

Zipfel, W. R.

J. Yao, D. R. Larson, H. D. Vishwasrao, W. R. Zipfel, and W. W. Webb, “Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution,” Proc. Natl. Acad. Sci. U.S.A. 102, 14284–14289 (2005).
[CrossRef] [PubMed]

Am. J. Phys.

D. E. Aspnes, “Local-field effects and effective-medium theory - a microscopic perspective,” Am. J. Phys. 50, 704–709 (1982).
[CrossRef]

Appl. Phys. Lett.

D. W. Cooke, J. K. Lee, B. L. Bennett, J. R. Groves, L. G. Jacobsohn, E. A. McKigney, R. E. Muenchausen, M. Nastasi, K. E. Sickafus, M. Tang, J. A. Valdez, J. Y. Kim, and K. S. Hong, “Luminescent properties and reduced dimensional behavior of hydrothermally prepared y(2)sio(5): ce nanophosphors,” Appl. Phys. Lett. 88, 103108 (2006).
[CrossRef]

J. Vučković, D. Fattal, C. Santori, and G. S. Solomon, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596–3598 (2003).
[CrossRef]

J. Chem. Phys.

S. F. Wuister, C. D. Donega, and A. Meijerink, “Local-field effects on the spontaneous emission rate of cdte and cdse quantum dots in dielectric media,” J. Chem. Phys. 121, 4310–4315 (2004).
[CrossRef] [PubMed]

J. Fluoresc.

D. Toptygin, “Effects of the solvent refractive index and its dispersion on the radiative decay rate and extinction coefficient of a fluorescent solute,” J. Fluoresc. 13, 201–219 (2003).
[CrossRef]

Nano Lett.

A. I. Chizhik, A. M. Chizhik, D. Khoptyar, S. Bär, A. J. Meixner, and J. Enderlein, “Probing the radiative transition of single molecules with a tunable microresonator,” Nano Lett. 11, 1700–1703 (2011).
[CrossRef] [PubMed]

Opt. Commun.

A. Belarouci, F. Menchini, H. Rigneault, B. Jacquier, R. M. Montereali, F. Somma, and P. Moretti, “Spontaneous emission properties of color centers based optical microcavities,” Opt. Commun. 189, 281–287 (2001).
[CrossRef]

Phys. Lett. A

C. K. Duan, M. F. Reid, and Z. Q. Wang, “Local field effects on the radiative lifetime of emitters in surrounding media: Virtual- or real-cavity model?” Phys. Lett. A 343, 474–480 (2005).
[CrossRef]

Phys. Rev.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681–681 (1946).

Phys. Rev. A

G. Lamouche, P. Lavallard, and T. Gacoin, “Optical properties of dye molecules as a function of the surrounding dielectric medium,” Phys. Rev. A 59, 4668–4674 (1999).
[CrossRef]

J. Knoester and S. Mukamel, “Intermolecular forces, spontaneous emission, and superradiance in a dielectric medium - polariton-mediated interactions,” Phys. Rev. A 40, 7065–7080 (1989).
[CrossRef] [PubMed]

R. J. Glauber and M. Lewenstein, “Quantum optics of dielectric media,” Phys. Rev. A 43, 467–491 (1991).
[CrossRef] [PubMed]

Phys. Rev. B

R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of y2o3 : Eu3+ nanoparticles on the surrounding medium,” Phys. Rev. B 60, 14012–14015 (1999).
[CrossRef]

V. LeBihan, A. Pillonnet, D. Amans, G. Ledoux, O. Marty, and C. Dujardin, “Critical dimension where the macroscopic definition of refractive index can be applied at a nanometric scale,” Phys. Rev. B 78, 113405 (2008).
[CrossRef]

Phys. Rev. Lett.

H. Schniepp and V. Sandoghdar, “Spontaneous emission of europium ions embedded in dielectric nanospheres,” Phys. Rev. Lett. 89, 257403 (2002).
[CrossRef] [PubMed]

M. E. Crenshaw and C. M. Bowden, “Effects of local fields on spontaneous emission in dielectric media,” Phys. Rev. Lett. 85, 1851–1854 (2000).
[CrossRef] [PubMed]

X. Brokmann, L. Coolen, M. Dahan, and J. P. Hermier, “Measurement of the radiative and nonradiative decay rates of single cdse nanocrystals through a controlled modification of their spontaneous emission,” Phys. Rev. Lett. 93, 107403 (2004).
[CrossRef] [PubMed]

A. Chizhik, F. Schleifenbaum, R. Gutbrod, A. Chizhik, D. Khoptyar, A. J. Meixner, and J. Enderlein, “Tuning the fluorescence emission spectra of a single molecule with a variable optical subwavelength metal microcavity,” Phys. Rev. Lett. 102, 073002 (2009).
[CrossRef] [PubMed]

P. R. Berman and P. W. Milonni, “Microscopic theory of modified spontaneous emission in a dielectric,” Phys. Rev. Lett. 92, 053601 (2004).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

J. Yao, D. R. Larson, H. D. Vishwasrao, W. R. Zipfel, and W. W. Webb, “Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution,” Proc. Natl. Acad. Sci. U.S.A. 102, 14284–14289 (2005).
[CrossRef] [PubMed]

Rev. Mod. Phys.

E. Fermi, “Quantum theory of radiation,” Rev. Mod. Phys. 4, 87–132 (1932).
[CrossRef]

Other

I. N. Bronshtein, K. A. Semendyayev, G. Müsiol, and H. Mühlig, Handbook of Mathematics, 5th ed. (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Luminescence decay times of CdSe/ZnS quantum dots (QDs) reflect variations in the local refractive index. (a) Emission spectra of the CdSe/ZnS quantum dots under excitation with 473 nm laser light. The three different sizes of QDs have distinct emission wavelengths. (b) Construction of the sample: A dilute aqueous solution of three different QDs is spin-cast onto a flat substrate and then covered by a lens, whose optical axis defines the zero position. Laser excitation and luminescence collection is performed through the substrate. The radius R of the interaction sphere is a fit parameter for calculating the effective local index of refraction. (c) Two typical luminescence decay curves and mono-exponential fits for QD565. The difference in lifetime arises from variations in the air gap above the QD film; the lower curve corresponds to the center of the substrate-lens sandwich, the upper trace was recorded 70 μm off-center.

Fig. 2
Fig. 2

Evolution of the luminescence decay time for the three types of QDs as a function of the corrected width of the substrate-lens air gap (ddmin). The symbols represent the data (circles: QD565, triangles: QD605, squares: QD655); two different data points at the same distance correspond to equivalent positions on either side of the lens center. The QD605 dataset shows one obvious outlier, which is attributed to an inhomogeneity in the film and has therefore been disregarded in the fitting procedure. The curves indicate the optimum fits for the three different models (EC: empty cavity, VC: virtual cavity, FM: fully microscopic). The fit parameters are summarized in Table 1.

Fig. 3
Fig. 3

Calculated white-light transmission spectra for an uncoated glass cavity (solid line) and a silver-coated microresonator (dashed line), both with a length of 180 nm. The corresponding cavity quality factors Q are found to be 50 (metallic cavity) and 1 (glass cavity). The thicknesses of the two silver mirrors were taken to be 50 nm and 100 nm, respectively.

Tables (1)

Tables Icon

Table 1 The optimum fit parameters for adjusting the three different models – virtual cavity (VC), empty cavity (EC), and fully microscopic (FM) – to the experimental data of Fig. 2. R is the radius of the interaction sphere in nm; τrv and τnr are, respectively, the radiative lifetime in vacuum and the non-radiative decay time, both measured in ns. The emitting-state quantum efficiency Φ was calculated based of the fit results for a refractive index of n = 1.44 to allow a direct comparison with [20].

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

k r = 1 τ r = 2 π 3 h ¯ ρ ( ω 12 ) | 𝓔 loc | 2 | μ 12 | 2 ,
f SiO 2 n SiO 2 2 n ¯ 2 n SiO 2 2 + 2 n ¯ 2 f BK 7 n BK 7 2 n ¯ 2 n BK 7 2 + 2 n ¯ 2 + ( 1 f SiO 2 f BK 7 ) n air 2 n ¯ 2 n air 2 + 2 n ¯ 2 = 0 ,
V SC = π h X 2 3 ( 3 R h X ) ,
f X = 1 4 ( h X R ) 2 ( 3 h X / R ) ,
h SiO 2 = R d min / 2 and  h BK 7 = R d + d min / 2 .
k r ( n ¯ ) = { ( n ¯ 2 + 2 3 ) 2 n ¯ k rv for the VC model ( 3 n ¯ 2 2 n ¯ 2 + 1 ) 2 n ¯ k rv for the EC model n ¯ 2 + 2 3 k rv for the FM model ,

Metrics