Abstract

We design a slotted photonic crystal waveguide (S-PhCW) and numerically propose that it can efficiently transport polystyrene particle with diameter as small as 50 nm in a 100 nm slot. Excellent optical confinement and slow light effect provided by the photonic crystal structure greatly enhance the optical force exerted on the particle. The S-PhCW can thus transport the particle with optical propulsion force as strong as 5.3 pN/W, which is over 10 times stronger than that generated by the slotted strip waveguide (S-SW). In addition, the vertical optical attraction force induced in the S-PhCW is over 2 times stronger than that of the S-SW. Therefore, the S-PhCW transports particles not only efficiently but also stably. We anticipate this waveguide structure will be beneficial for the future lab-on-chip development

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  3. S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13(18), 6956–6963 (2005).
    [CrossRef] [PubMed]
  4. S. Kawata and T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17(11), 772–774 (1992).
    [CrossRef] [PubMed]
  5. M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84(21), 4236–4238 (2004).
    [CrossRef]
  6. V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, “Extended-area optically induced organization of microparticies on a surface,” Appl. Phys. Lett. 86(3), 031106 (2005).
    [CrossRef]
  7. T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86(17), 174101 (2005).
    [CrossRef]
  8. M. J. Guffey, R. L. Miller, S. K. Gray, and N. F. Scherer, “Plasmon-driven selective deposition of au bipyramidal nanoparticles,” Nano Lett. 11(10), 4058–4066 (2011).
    [CrossRef] [PubMed]
  9. K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999).
    [CrossRef]
  10. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
    [CrossRef]
  11. A. Rahmani and P. C. Chaumet, “Optical trapping near a photonic crystal,” Opt. Express 14(13), 6353–6358 (2006).
    [CrossRef] [PubMed]
  12. M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89(25), 253114 (2006).
    [CrossRef]
  13. S. Kawata and T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21(21), 1768–1770 (1996).
    [CrossRef] [PubMed]
  14. B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
    [CrossRef] [PubMed]
  15. B. S. Ahluwalia, P. McCourt, T. Huser, and O. G. Hellesø, “Optical trapping and propulsion of red blood cells on waveguide surfaces,” Opt. Express 18(20), 21053–21061 (2010).
    [CrossRef] [PubMed]
  16. A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
    [CrossRef] [PubMed]
  17. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
    [CrossRef] [PubMed]
  18. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [CrossRef] [PubMed]
  19. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  20. T. F. Krauss, R. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383(6602), 699–702 (1996).
    [CrossRef]
  21. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D. Appl. Phys. 40(9), 2666–2670 (2007).
    [CrossRef]
  22. A. Di Falco, L. O'Faolain, and T. F. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92(8), 083501 (2008).
    [CrossRef]
  23. A. Di Falco, L. O'Faolain, and T. F. Krauss, “Photonic crystal slotted slab waveguides,” Photon. Nanostructures 6(1), 38–41 (2008).
    [CrossRef]
  24. P. T. Lin and P. T. Lee, “All-optical controllable trapping and transport of subwavelength particles on a tapered photonic crystal waveguide,” Opt. Lett. 36(3), 424–426 (2011).
    [CrossRef] [PubMed]
  25. S. Y. Shi, C. H. Chen, and D. W. Prather, “Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers,” J. Opt. Soc. Am. A 21(9), 1769–1775 (2004).
    [CrossRef] [PubMed]
  26. K. Grujic, O. G. Hellesø, J. P. Hole, and J. S. Wilkinson, “Sorting of polystyrene microspheres using a Y-branched optical waveguide,” Opt. Express 13(1), 1–7 (2005).
    [CrossRef] [PubMed]
  27. R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garcés-Chávez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia, “Optical deflection and sorting of microparticles in a near-field optical geometry,” Opt. Express 16(6), 3712–3726 (2008).
    [CrossRef] [PubMed]
  28. S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
    [CrossRef] [PubMed]
  29. A. H. J. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
    [CrossRef] [PubMed]
  30. J. D. Jackson, Classical Electrodynamics (Wiley, 1975), Chap. 6.

2011 (2)

M. J. Guffey, R. L. Miller, S. K. Gray, and N. F. Scherer, “Plasmon-driven selective deposition of au bipyramidal nanoparticles,” Nano Lett. 11(10), 4058–4066 (2011).
[CrossRef] [PubMed]

P. T. Lin and P. T. Lee, “All-optical controllable trapping and transport of subwavelength particles on a tapered photonic crystal waveguide,” Opt. Lett. 36(3), 424–426 (2011).
[CrossRef] [PubMed]

2010 (2)

2009 (2)

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[CrossRef] [PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

2008 (4)

A. H. J. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
[CrossRef] [PubMed]

R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garcés-Chávez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia, “Optical deflection and sorting of microparticles in a near-field optical geometry,” Opt. Express 16(6), 3712–3726 (2008).
[CrossRef] [PubMed]

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92(8), 083501 (2008).
[CrossRef]

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Photonic crystal slotted slab waveguides,” Photon. Nanostructures 6(1), 38–41 (2008).
[CrossRef]

2007 (2)

2006 (2)

A. Rahmani and P. C. Chaumet, “Optical trapping near a photonic crystal,” Opt. Express 14(13), 6353–6358 (2006).
[CrossRef] [PubMed]

M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89(25), 253114 (2006).
[CrossRef]

2005 (4)

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, “Extended-area optically induced organization of microparticies on a surface,” Appl. Phys. Lett. 86(3), 031106 (2005).
[CrossRef]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86(17), 174101 (2005).
[CrossRef]

S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13(18), 6956–6963 (2005).
[CrossRef] [PubMed]

K. Grujic, O. G. Hellesø, J. P. Hole, and J. S. Wilkinson, “Sorting of polystyrene microspheres using a Y-branched optical waveguide,” Opt. Express 13(1), 1–7 (2005).
[CrossRef] [PubMed]

2004 (3)

1999 (1)

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999).
[CrossRef]

1997 (1)

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

1996 (2)

S. Kawata and T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21(21), 1768–1770 (1996).
[CrossRef] [PubMed]

T. F. Krauss, R. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383(6602), 699–702 (1996).
[CrossRef]

1992 (1)

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

1986 (1)

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Ahluwalia, B. S.

Almeida, V. R.

Ashkin, A.

Barrios, C. A.

Barth, M.

M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89(25), 253114 (2006).
[CrossRef]

Benson, O.

M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89(25), 253114 (2006).
[CrossRef]

Bian, R. X.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Bjorkholm, J. E.

Brand, S.

T. F. Krauss, R. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383(6602), 699–702 (1996).
[CrossRef]

Chatelain, F.

Chaumet, P. C.

Chen, C. H.

Chon, J. W. M.

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84(21), 4236–4238 (2004).
[CrossRef]

Chu, S.

Cižmár, T.

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86(17), 174101 (2005).
[CrossRef]

Colas, G.

De La Rue, R.

T. F. Krauss, R. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383(6602), 699–702 (1996).
[CrossRef]

Dérouard, J.

Dholakia, K.

R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garcés-Chávez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia, “Optical deflection and sorting of microparticles in a near-field optical geometry,” Opt. Express 16(6), 3712–3726 (2008).
[CrossRef] [PubMed]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86(17), 174101 (2005).
[CrossRef]

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, “Extended-area optically induced organization of microparticies on a surface,” Appl. Phys. Lett. 86(3), 031106 (2005).
[CrossRef]

Di Falco, A.

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92(8), 083501 (2008).
[CrossRef]

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Photonic crystal slotted slab waveguides,” Photon. Nanostructures 6(1), 38–41 (2008).
[CrossRef]

Dziedzic, J. M.

Erickson, D.

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[CrossRef] [PubMed]

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[CrossRef] [PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

A. H. J. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
[CrossRef] [PubMed]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[CrossRef] [PubMed]

Fedeli, J. M.

Fuchs, A.

Gan, X.

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84(21), 4236–4238 (2004).
[CrossRef]

Garcés-Chávez, V.

R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garcés-Chávez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia, “Optical deflection and sorting of microparticles in a near-field optical geometry,” Opt. Express 16(6), 3712–3726 (2008).
[CrossRef] [PubMed]

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, “Extended-area optically induced organization of microparticies on a surface,” Appl. Phys. Lett. 86(3), 031106 (2005).
[CrossRef]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86(17), 174101 (2005).
[CrossRef]

Gaugiran, S.

Gétin, S.

Gray, S. K.

M. J. Guffey, R. L. Miller, S. K. Gray, and N. F. Scherer, “Plasmon-driven selective deposition of au bipyramidal nanoparticles,” Nano Lett. 11(10), 4058–4066 (2011).
[CrossRef] [PubMed]

Grujic, K.

Gu, M.

R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garcés-Chávez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia, “Optical deflection and sorting of microparticles in a near-field optical geometry,” Opt. Express 16(6), 3712–3726 (2008).
[CrossRef] [PubMed]

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84(21), 4236–4238 (2004).
[CrossRef]

Guffey, M. J.

M. J. Guffey, R. L. Miller, S. K. Gray, and N. F. Scherer, “Plasmon-driven selective deposition of au bipyramidal nanoparticles,” Nano Lett. 11(10), 4058–4066 (2011).
[CrossRef] [PubMed]

Haumonte, J. B.

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84(21), 4236–4238 (2004).
[CrossRef]

Hellesø, O. G.

Hole, J. P.

Huser, T.

Kawata, S.

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Krauss, T. F.

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Photonic crystal slotted slab waveguides,” Photon. Nanostructures 6(1), 38–41 (2008).
[CrossRef]

R. F. Marchington, M. Mazilu, S. Kuriakose, V. Garcés-Chávez, P. J. Reece, T. F. Krauss, M. Gu, and K. Dholakia, “Optical deflection and sorting of microparticles in a near-field optical geometry,” Opt. Express 16(6), 3712–3726 (2008).
[CrossRef] [PubMed]

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92(8), 083501 (2008).
[CrossRef]

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D. Appl. Phys. 40(9), 2666–2670 (2007).
[CrossRef]

T. F. Krauss, R. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383(6602), 699–702 (1996).
[CrossRef]

Kuriakose, S.

Lee, P. T.

Lerdsuchatawanich, T.

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[CrossRef] [PubMed]

Lin, P. T.

Lipson, M.

Mandal, S.

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[CrossRef] [PubMed]

Marchington, R. F.

Mazilu, M.

McCourt, P.

Micheau, Y.

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84(21), 4236–4238 (2004).
[CrossRef]

Miller, R. L.

M. J. Guffey, R. L. Miller, S. K. Gray, and N. F. Scherer, “Plasmon-driven selective deposition of au bipyramidal nanoparticles,” Nano Lett. 11(10), 4058–4066 (2011).
[CrossRef] [PubMed]

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

O'Faolain, L.

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Photonic crystal slotted slab waveguides,” Photon. Nanostructures 6(1), 38–41 (2008).
[CrossRef]

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92(8), 083501 (2008).
[CrossRef]

Okamoto, K.

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999).
[CrossRef]

Prather, D. W.

Rahmani, A.

Reece, P. J.

Scherer, N. F.

M. J. Guffey, R. L. Miller, S. K. Gray, and N. F. Scherer, “Plasmon-driven selective deposition of au bipyramidal nanoparticles,” Nano Lett. 11(10), 4058–4066 (2011).
[CrossRef] [PubMed]

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[CrossRef] [PubMed]

Serey, X.

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[CrossRef] [PubMed]

Shi, S. Y.

Spalding, G. C.

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, “Extended-area optically induced organization of microparticies on a surface,” Appl. Phys. Lett. 86(3), 031106 (2005).
[CrossRef]

Sugiura, T.

Tani, T.

Wilkinson, J. S.

Xie, X. S.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Xu, Q. F.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yang, A. H. J.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[CrossRef] [PubMed]

A. H. J. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
[CrossRef] [PubMed]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[CrossRef] [PubMed]

Zemánek, P.

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86(17), 174101 (2005).
[CrossRef]

Appl. Phys. Lett. (5)

M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84(21), 4236–4238 (2004).
[CrossRef]

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, “Extended-area optically induced organization of microparticies on a surface,” Appl. Phys. Lett. 86(3), 031106 (2005).
[CrossRef]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86(17), 174101 (2005).
[CrossRef]

M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89(25), 253114 (2006).
[CrossRef]

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92(8), 083501 (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. D. Appl. Phys. (1)

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D. Appl. Phys. 40(9), 2666–2670 (2007).
[CrossRef]

Nano Lett. (3)

A. H. J. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[CrossRef] [PubMed]

M. J. Guffey, R. L. Miller, S. K. Gray, and N. F. Scherer, “Plasmon-driven selective deposition of au bipyramidal nanoparticles,” Nano Lett. 11(10), 4058–4066 (2011).
[CrossRef] [PubMed]

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[CrossRef] [PubMed]

Nanotechnology (1)

A. H. J. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
[CrossRef] [PubMed]

Nature (2)

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

T. F. Krauss, R. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383(6602), 699–702 (1996).
[CrossRef]

Opt. Express (6)

Opt. Lett. (5)

Photon. Nanostructures (1)

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Photonic crystal slotted slab waveguides,” Photon. Nanostructures 6(1), 38–41 (2008).
[CrossRef]

Phys. Rev. Lett. (4)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999).
[CrossRef]

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Other (1)

J. D. Jackson, Classical Electrodynamics (Wiley, 1975), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) and (c) are schematic illustrations of the S-PhCW and the S-SW respectively. (b) and (d) are the corresponding band diagrams.

Fig. 2
Fig. 2

(a) Propulsion forces exerting on the particle when it is located at slot center of the S-PhCW and S-SW. (b) Confinement factors of the waveguides. (c) and (d) are intensity profiles of waves guided along the S-PhCW and S-SW respectively.

Fig. 3
Fig. 3

(a) Vertical optical force exerting on the particle at different vertical positions z in the slot. Wavelengths excited in the S-PhCW and the S-SW are at 1505 nm and 1475 nm respectively. Insets are the corresponding intensity profiles when the particle is at the slot entrance. (b) Potentials experienced by the particle in the S-PhCW and S-SW.

Fig. 4
Fig. 4

(a) Horizontal optical force exerting on the particle at different horizontal positions y when it is above the waveguide surface by 5 nm. The S-PhCW and S-SW are operated at 1505 nm and 1475 nm respectively. (b) Potentials experienced by the particle in the S-PhCW and S-SW.

Fig. 5
Fig. 5

(a) Vertical optical force exerting on the particle in the hole nearest to the slot of the S-PhCW at different vertical positions z. The excited wavelength is 1505 nm. (b) Potential experienced by the particle.

Metrics