Abstract

A high-penetration swept-source optical coherence tomography (HP-SS-OCT) system based on a 1-μm short cavity laser is developed. Doppler OCT processing is applied, along with a custom-made numerical phase stabilization algorithm; this process does not require additional calibration hardware. Thus, our phase stabilization method is simple and can be employed in a variety of SS-OCT systems. The bidirectional blood flow and vasculature in the deep choroid was successfully imaged via two Doppler modes that use different time intervals for Doppler processing. En face projection image of squared power of Doppler shift is compared to ICGA, and the utility of our method is verified.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Patel, S. Rassam, R. Newsom, J. Wiek, and E. Kohner, “Retinal blood flow in diabetic retinopathy,” Br. Med. J. 305, 678–683 (1992).
    [CrossRef]
  2. E. Friedman, “A hemodynamic model of the pathogenesis of age-related macular degeneration,” Am. J. Ophthalmol. 124, 677–682 (1997).
    [PubMed]
  3. J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye. Res. 21, 359–393 (2002).
    [CrossRef] [PubMed]
  4. M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101, 529–533 (1994).
    [PubMed]
  5. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito and a. et, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  6. X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by optical doppler tomography,” Opt. Lett. 20, 1337–1339 (1995), http://www.opticsinfobase.org/abstract.cfm?URI=ol-20-11-1337 .
    [CrossRef] [PubMed]
  7. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22, 64–66 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-1-64 .
    [CrossRef] [PubMed]
  8. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
    [CrossRef]
  9. G. Häusler and M. W. Lindner, ““Coherence radar” and “spectral radar”—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
    [CrossRef]
  10. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
    [CrossRef] [PubMed]
  11. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-12-3-367 .
    [CrossRef] [PubMed]
  12. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color doppler fourier domain optical coherence tomography,” Opt. Express 11, 3116–3121 (2003), http://www.opticsinfobase.org/abstract.cfm?uri=oe-11-23-3116 .
    [CrossRef] [PubMed]
  13. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11, 3490–3497 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-11-25-3490 .
    [CrossRef] [PubMed]
  14. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by fourier-domain color doppler optical coherence tomography,” Opt. Lett. 29, 171–173 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-2-171 .
    [CrossRef] [PubMed]
  15. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25, 1358–1360 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-18-1358 .
    [CrossRef]
  16. D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express 2, 1504–1513 (2011), http://www.opticsinfobase.org/abstract.cfm?uri=boe-2-6-1504 .
    [CrossRef] [PubMed]
  17. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time domain optical coherence tomography,” Opt. Express 16, 6008–6025 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6008 .
    [CrossRef] [PubMed]
  18. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-2-114 .
    [CrossRef]
  19. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7821 .
    [CrossRef] [PubMed]
  20. Y. Ikuno and Y. Tano, “Retinal and choroidal biometry in highly myopic eyes with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 50, 3876–3880 (2009).
    [CrossRef] [PubMed]
  21. Y. Imamura, T. Fujiwara, R. Margolis, and R. F. Spaide, “Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy,” Retina 29, 1469–1473 (2009).
    [CrossRef] [PubMed]
  22. U. Chakravarthy, J. Evans, and P. J. Rosenfeld, “Age related macular degeneration,” Br. Med. J. 340 (2010).
  23. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express 13, 3252–3258 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-9-3252 .
    [CrossRef] [PubMed]
  24. D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophthalmol. Vis. Sci. 49, 4545–4552 (2008).
    [CrossRef] [PubMed]
  25. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography andscattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-10-6121 .
    [CrossRef] [PubMed]
  26. B. Povazay, B. Hermann, B. Hofer, V. Kají, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50, 1856–1863 (2009).
    [CrossRef]
  27. V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
    [CrossRef] [PubMed]
  28. Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, “Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 50, 405–413 (2009).
    [CrossRef]
  29. S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2977 .
    [CrossRef] [PubMed]
  30. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18, 20029–20048 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-19-20029 .
    [CrossRef] [PubMed]
  31. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million a-scans and 4.5 Gvoxels per second,” Opt. Express 18, 14685–14704 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-14-14685 .
    [CrossRef] [PubMed]
  32. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050nm fourier domain mode-locked laser,” Opt. Express 19, 3044–3062 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-4-3044 .
    [CrossRef] [PubMed]
  33. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13, 5483–5493 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-14-5483 .
    [CrossRef] [PubMed]
  34. J. Zhang and Z. Chen, “In vivo blood flow imaging by a swept laser source based fourier domain optical doppler tomography,” Opt. Express 13, 7449–7457 (2005), http://www.opticsinfobase.org/abstract.cfm?uri=oe-13-19-7449 .
    [CrossRef] [PubMed]
  35. B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/fourier domain OCT,” Biomed. Opt. Express 2, 1539–1552 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=boe-2-6-1539 .
    [CrossRef] [PubMed]
  36. B. Braaf, K. A. Vermeer, V. A. D. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-μm for the measurement of blood flow in the human choroid,” Opt. Express 19, 20886–20903 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-21-20886 .
    [CrossRef] [PubMed]
  37. S. Moon, S.-W. Lee, and Z. Chen, “Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography,” Opt. Express 18, 24395–24404 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-24-24395 .
    [CrossRef] [PubMed]
  38. C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. 32, 458–464 (1985).
  39. V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical doppler tomography using the kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
    [CrossRef]
  40. B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm,” Opt. Express 13, 3931–3944 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-11-3931 .
    [CrossRef] [PubMed]
  41. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
    [CrossRef] [PubMed]
  42. A. Tsujikawa, M. Sasahara, A. Otani, N. Gotoh, T. Kameda, D. Iwama, Y. Yodoi, H. Tamura, M. Mandai, and N. Yoshimura, “Pigment epithelial detachment in polypoidal choroidal vasculopathy” Am. J. Ophthalmol. 143, 102–111 (2007).
    [CrossRef]
  43. M. Miura, S. Makita, T. Iwasaki, and Y. Yasuno, “Three-dimensional visualization of ocular vascular pathology by optical coherence angiography in vivo,” Invest. Ophthalmol. Vis. Sci. 52, 2689–2695 (2011).
    [CrossRef]

2011 (5)

D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express 2, 1504–1513 (2011), http://www.opticsinfobase.org/abstract.cfm?uri=boe-2-6-1504 .
[CrossRef] [PubMed]

B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/fourier domain OCT,” Biomed. Opt. Express 2, 1539–1552 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=boe-2-6-1539 .
[CrossRef] [PubMed]

B. Braaf, K. A. Vermeer, V. A. D. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-μm for the measurement of blood flow in the human choroid,” Opt. Express 19, 20886–20903 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-21-20886 .
[CrossRef] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050nm fourier domain mode-locked laser,” Opt. Express 19, 3044–3062 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-4-3044 .
[CrossRef] [PubMed]

M. Miura, S. Makita, T. Iwasaki, and Y. Yasuno, “Three-dimensional visualization of ocular vascular pathology by optical coherence angiography in vivo,” Invest. Ophthalmol. Vis. Sci. 52, 2689–2695 (2011).
[CrossRef]

2010 (4)

2009 (5)

Y. Ikuno and Y. Tano, “Retinal and choroidal biometry in highly myopic eyes with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 50, 3876–3880 (2009).
[CrossRef] [PubMed]

Y. Imamura, T. Fujiwara, R. Margolis, and R. F. Spaide, “Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy,” Retina 29, 1469–1473 (2009).
[CrossRef] [PubMed]

B. Povazay, B. Hermann, B. Hofer, V. Kají, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50, 1856–1863 (2009).
[CrossRef]

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, “Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 50, 405–413 (2009).
[CrossRef]

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

2008 (3)

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef] [PubMed]

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophthalmol. Vis. Sci. 49, 4545–4552 (2008).
[CrossRef] [PubMed]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time domain optical coherence tomography,” Opt. Express 16, 6008–6025 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6008 .
[CrossRef] [PubMed]

2007 (2)

2006 (1)

2005 (4)

2004 (3)

2003 (2)

2002 (3)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef] [PubMed]

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye. Res. 21, 359–393 (2002).
[CrossRef] [PubMed]

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical doppler tomography using the kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

2000 (2)

1998 (1)

G. Häusler and M. W. Lindner, ““Coherence radar” and “spectral radar”—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

1997 (2)

1995 (2)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by optical doppler tomography,” Opt. Lett. 20, 1337–1339 (1995), http://www.opticsinfobase.org/abstract.cfm?URI=ol-20-11-1337 .
[CrossRef] [PubMed]

1994 (1)

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101, 529–533 (1994).
[PubMed]

1992 (1)

V. Patel, S. Rassam, R. Newsom, J. Wiek, and E. Kohner, “Retinal blood flow in diabetic retinopathy,” Br. Med. J. 305, 678–683 (1992).
[CrossRef]

1991 (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito and a. et, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1985 (1)

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. 32, 458–464 (1985).

Adler, D. C.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef] [PubMed]

Akiba, M.

Bajraszewski, T.

Barry, S.

Bartlett, L. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Baumann, B.

Berisha, F.

Biedermann, B. R.

Bouma, B.

Bouma, B. E.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-12-3-367 .
[CrossRef] [PubMed]

Braaf, B.

Bridgford, T.

B. Povazay, B. Hermann, B. Hofer, V. Kají, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50, 1856–1863 (2009).
[CrossRef]

Burnes, D. L.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophthalmol. Vis. Sci. 49, 4545–4552 (2008).
[CrossRef] [PubMed]

Cable, A. E.

Cense, B.

Chakravarthy, U.

U. Chakravarthy, J. Evans, and P. J. Rosenfeld, “Age related macular degeneration,” Br. Med. J. 340 (2010).

Chang, S.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophthalmol. Vis. Sci. 49, 4545–4552 (2008).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito and a. et, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chavez-Pirson, A.

Chen, T.

Chen, T. C.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophthalmol. Vis. Sci. 49, 4545–4552 (2008).
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-12-3-367 .
[CrossRef] [PubMed]

Chen, Y.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef] [PubMed]

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophthalmol. Vis. Sci. 49, 4545–4552 (2008).
[CrossRef] [PubMed]

Chen, Z.

S. Moon, S.-W. Lee, and Z. Chen, “Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography,” Opt. Express 18, 24395–24404 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-24-24395 .
[CrossRef] [PubMed]

J. Zhang and Z. Chen, “In vivo blood flow imaging by a swept laser source based fourier domain optical doppler tomography,” Opt. Express 13, 7449–7457 (2005), http://www.opticsinfobase.org/abstract.cfm?uri=oe-13-19-7449 .
[CrossRef] [PubMed]

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical doppler tomography using the kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-2-114 .
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25, 1358–1360 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-18-1358 .
[CrossRef]

Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22, 64–66 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-1-64 .
[CrossRef] [PubMed]

Cobbold, R. S. C.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical doppler tomography using the kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

Costa, V. P.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye. Res. 21, 359–393 (2002).
[CrossRef] [PubMed]

Dave, D.

de Boer, J.

de Boer, J. F.

B. Braaf, K. A. Vermeer, V. A. D. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-μm for the measurement of blood flow in the human choroid,” Opt. Express 19, 20886–20903 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-21-20886 .
[CrossRef] [PubMed]

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophthalmol. Vis. Sci. 49, 4545–4552 (2008).
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-12-3-367 .
[CrossRef] [PubMed]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-2-114 .
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25, 1358–1360 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-18-1358 .
[CrossRef]

de Bruin, D. M.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophthalmol. Vis. Sci. 49, 4545–4552 (2008).
[CrossRef] [PubMed]

Drexler, W.

Duker, J. S.

Eigenwillig, C. M.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Esmaili, D. D.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophthalmol. Vis. Sci. 49, 4545–4552 (2008).
[CrossRef] [PubMed]

Evans, J.

U. Chakravarthy, J. Evans, and P. J. Rosenfeld, “Age related macular degeneration,” Br. Med. J. 340 (2010).

Fercher, A. F.

Fingler, J.

Flammer, J.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye. Res. 21, 359–393 (2002).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito and a. et, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fraser, S. E.

Friedman, E.

E. Friedman, “A hemodynamic model of the pathogenesis of age-related macular degeneration,” Am. J. Ophthalmol. 124, 677–682 (1997).
[PubMed]

Fujimoto, J. G.

Fujiwara, T.

Y. Imamura, T. Fujiwara, R. Margolis, and R. F. Spaide, “Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy,” Retina 29, 1469–1473 (2009).
[CrossRef] [PubMed]

Fukumura, D.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Gorczynska, I.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef] [PubMed]

Gordon, M. L.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical doppler tomography using the kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

Gotoh, N.

A. Tsujikawa, M. Sasahara, A. Otani, N. Gotoh, T. Kameda, D. Iwama, Y. Yodoi, H. Tamura, M. Mandai, and N. Yoshimura, “Pigment epithelial detachment in polypoidal choroidal vasculopathy” Am. J. Ophthalmol. 143, 102–111 (2007).
[CrossRef]

Gragoudas, E. S.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101, 529–533 (1994).
[PubMed]

Gregory, K.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito and a. et, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Guyer, D. R.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101, 529–533 (1994).
[PubMed]

Häusler, G.

G. Häusler and M. W. Lindner, ““Coherence radar” and “spectral radar”—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Hee, M.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito and a. et, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

Hitzenberger, C. K.

Hofer, B.

B. Povazay, B. Hermann, B. Hofer, V. Kají, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50, 1856–1863 (2009).
[CrossRef]

Hong, Y.

Hope-Ross, M.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101, 529–533 (1994).
[PubMed]

Hornegger, J.

Huang, D.

Huber, R.

Ikuno, Y.

Y. Ikuno and Y. Tano, “Retinal and choroidal biometry in highly myopic eyes with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 50, 3876–3880 (2009).
[CrossRef] [PubMed]

Imamura, Y.

Y. Imamura, T. Fujiwara, R. Margolis, and R. F. Spaide, “Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy,” Retina 29, 1469–1473 (2009).
[CrossRef] [PubMed]

Iwama, D.

A. Tsujikawa, M. Sasahara, A. Otani, N. Gotoh, T. Kameda, D. Iwama, Y. Yodoi, H. Tamura, M. Mandai, and N. Yoshimura, “Pigment epithelial detachment in polypoidal choroidal vasculopathy” Am. J. Ophthalmol. 143, 102–111 (2007).
[CrossRef]

Iwasaki, T.

M. Miura, S. Makita, T. Iwasaki, and Y. Yasuno, “Three-dimensional visualization of ocular vascular pathology by optical coherence angiography in vivo,” Invest. Ophthalmol. Vis. Sci. 52, 2689–2695 (2011).
[CrossRef]

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, “Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 50, 405–413 (2009).
[CrossRef]

Jain, R. K.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Kají, V.

B. Povazay, B. Hermann, B. Hofer, V. Kají, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50, 1856–1863 (2009).
[CrossRef]

Kameda, T.

A. Tsujikawa, M. Sasahara, A. Otani, N. Gotoh, T. Kameda, D. Iwama, Y. Yodoi, H. Tamura, M. Mandai, and N. Yoshimura, “Pigment epithelial detachment in polypoidal choroidal vasculopathy” Am. J. Ophthalmol. 143, 102–111 (2007).
[CrossRef]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Kasai, C.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. 32, 458–464 (1985).

Kawana, K.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, “Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 50, 405–413 (2009).
[CrossRef]

Kim, D. Y.

Klein, T.

Kohner, E.

V. Patel, S. Rassam, R. Newsom, J. Wiek, and E. Kohner, “Retinal blood flow in diabetic retinopathy,” Br. Med. J. 305, 678–683 (1992).
[CrossRef]

Kowalczyk, A.

Koyano, A.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. 32, 458–464 (1985).

Kraus, M. F.

Krieglstein, G. K.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye. Res. 21, 359–393 (2002).
[CrossRef] [PubMed]

Krupsky, S.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101, 529–533 (1994).
[PubMed]

Lanning, R. M.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Lee, S.-W.

Leitgeb, R.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef] [PubMed]

Leitgeb, R. A.

Lin, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito and a. et, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Lindner, M. W.

G. Häusler and M. W. Lindner, ““Coherence radar” and “spectral radar”—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Liu, J. J.

Loewenstein, J.

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophthalmol. Vis. Sci. 49, 4545–4552 (2008).
[CrossRef] [PubMed]

Makita, S.

M. Miura, S. Makita, T. Iwasaki, and Y. Yasuno, “Three-dimensional visualization of ocular vascular pathology by optical coherence angiography in vivo,” Invest. Ophthalmol. Vis. Sci. 52, 2689–2695 (2011).
[CrossRef]

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, “Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 50, 405–413 (2009).
[CrossRef]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography andscattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-10-6121 .
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7821 .
[CrossRef] [PubMed]

Mandai, M.

A. Tsujikawa, M. Sasahara, A. Otani, N. Gotoh, T. Kameda, D. Iwama, Y. Yodoi, H. Tamura, M. Mandai, and N. Yoshimura, “Pigment epithelial detachment in polypoidal choroidal vasculopathy” Am. J. Ophthalmol. 143, 102–111 (2007).
[CrossRef]

Margolis, R.

Y. Imamura, T. Fujiwara, R. Margolis, and R. F. Spaide, “Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy,” Retina 29, 1469–1473 (2009).
[CrossRef] [PubMed]

Milner, T. E.

Miura, M.

M. Miura, S. Makita, T. Iwasaki, and Y. Yasuno, “Three-dimensional visualization of ocular vascular pathology by optical coherence angiography in vivo,” Invest. Ophthalmol. Vis. Sci. 52, 2689–2695 (2011).
[CrossRef]

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, “Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 50, 405–413 (2009).
[CrossRef]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography andscattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-10-6121 .
[CrossRef] [PubMed]

Mok, A.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical doppler tomography using the kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

Moon, S.

Mujat, M.

Munn, L. L.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Namekawa, K.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. 32, 458–464 (1985).

Nassif, N.

Nassif, N. A.

Nelson, J. S.

Newsom, R.

V. Patel, S. Rassam, R. Newsom, J. Wiek, and E. Kohner, “Retinal blood flow in diabetic retinopathy,” Br. Med. J. 305, 678–683 (1992).
[CrossRef]

Okamoto, F.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, “Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 50, 405–413 (2009).
[CrossRef]

Omoto, R.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. 32, 458–464 (1985).

Orgül, S.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye. Res. 21, 359–393 (2002).
[CrossRef] [PubMed]

Orlock, D. A.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101, 529–533 (1994).
[PubMed]

Orzalesi, N.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye. Res. 21, 359–393 (2002).
[CrossRef] [PubMed]

Oshika, T.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, “Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 50, 405–413 (2009).
[CrossRef]

Otani, A.

A. Tsujikawa, M. Sasahara, A. Otani, N. Gotoh, T. Kameda, D. Iwama, Y. Yodoi, H. Tamura, M. Mandai, and N. Yoshimura, “Pigment epithelial detachment in polypoidal choroidal vasculopathy” Am. J. Ophthalmol. 143, 102–111 (2007).
[CrossRef]

Padera, T. P.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Park, B.

Park, B. H.

Patel, V.

V. Patel, S. Rassam, R. Newsom, J. Wiek, and E. Kohner, “Retinal blood flow in diabetic retinopathy,” Br. Med. J. 305, 678–683 (1992).
[CrossRef]

Pierce, M.

Pierce, M. C.

Potsaid, B.

Povazay, B.

B. Povazay, B. Hermann, B. Hofer, V. Kají, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50, 1856–1863 (2009).
[CrossRef]

Považay, B.

Puliafito, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito and a. et, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Puliafito, C. A.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101, 529–533 (1994).
[PubMed]

Rassam, S.

V. Patel, S. Rassam, R. Newsom, J. Wiek, and E. Kohner, “Retinal blood flow in diabetic retinopathy,” Br. Med. J. 305, 678–683 (1992).
[CrossRef]

Renard, J.-P.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye. Res. 21, 359–393 (2002).
[CrossRef] [PubMed]

Rosenfeld, P. J.

U. Chakravarthy, J. Evans, and P. J. Rosenfeld, “Age related macular degeneration,” Br. Med. J. 340 (2010).

Sasahara, M.

A. Tsujikawa, M. Sasahara, A. Otani, N. Gotoh, T. Kameda, D. Iwama, Y. Yodoi, H. Tamura, M. Mandai, and N. Yoshimura, “Pigment epithelial detachment in polypoidal choroidal vasculopathy” Am. J. Ophthalmol. 143, 102–111 (2007).
[CrossRef]

Sato, M.

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, “Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 50, 405–413 (2009).
[CrossRef]

Sattmann, H.

Saxer, C.

Schmetterer, L.

Schuman, J.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito and a. et, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Schuman, J. S.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18, 20029–20048 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-19-20029 .
[CrossRef] [PubMed]

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef] [PubMed]

Schwartz, D. M.

Serra, L. M.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye. Res. 21, 359–393 (2002).
[CrossRef] [PubMed]

Shen, Q.

Sicam, V. A. D.

Simpson, E.

B. Povazay, B. Hermann, B. Hofer, V. Kají, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50, 1856–1863 (2009).
[CrossRef]

Slakter, J. S.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101, 529–533 (1994).
[PubMed]

Sorenson, J. A.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101, 529–533 (1994).
[PubMed]

Spaide, R. F.

Y. Imamura, T. Fujiwara, R. Margolis, and R. F. Spaide, “Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy,” Retina 29, 1469–1473 (2009).
[CrossRef] [PubMed]

Srinivasan, V. J.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef] [PubMed]

Stefánsson, E.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye. Res. 21, 359–393 (2002).
[CrossRef] [PubMed]

Stinson, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito and a. et, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Stylianopoulos, T.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Swanson, E.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito and a. et, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Szkulmowska, A.

Szkulmowski, M.

Tamura, H.

A. Tsujikawa, M. Sasahara, A. Otani, N. Gotoh, T. Kameda, D. Iwama, Y. Yodoi, H. Tamura, M. Mandai, and N. Yoshimura, “Pigment epithelial detachment in polypoidal choroidal vasculopathy” Am. J. Ophthalmol. 143, 102–111 (2007).
[CrossRef]

Tano, Y.

Y. Ikuno and Y. Tano, “Retinal and choroidal biometry in highly myopic eyes with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 50, 3876–3880 (2009).
[CrossRef] [PubMed]

Tearney, G.

Tearney, G. J.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-12-3-367 .
[CrossRef] [PubMed]

Tsujikawa, A.

A. Tsujikawa, M. Sasahara, A. Otani, N. Gotoh, T. Kameda, D. Iwama, Y. Yodoi, H. Tamura, M. Mandai, and N. Yoshimura, “Pigment epithelial detachment in polypoidal choroidal vasculopathy” Am. J. Ophthalmol. 143, 102–111 (2007).
[CrossRef]

Tyrrell, J. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Unterhuber, A.

Vakoc, B.

Vakoc, B. J.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

van Meurs, J. C.

van Zeeburg, E.

Vermeer, K. A.

Vitkin, I. A.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical doppler tomography using the kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

Wang, X. J.

Werner, J. S.

White, B.

Wiek, J.

V. Patel, S. Rassam, R. Newsom, J. Wiek, and E. Kohner, “Retinal blood flow in diabetic retinopathy,” Br. Med. J. 305, 678–683 (1992).
[CrossRef]

Wieser, W.

Wilson, B. C.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical doppler tomography using the kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

Wojtkowski, M.

Xiang, S.

Yamanari, M.

Yang, V. X. D.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical doppler tomography using the kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

Yannuzzi, L. A.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101, 529–533 (1994).
[PubMed]

Yasuno, Y.

M. Miura, S. Makita, T. Iwasaki, and Y. Yasuno, “Three-dimensional visualization of ocular vascular pathology by optical coherence angiography in vivo,” Invest. Ophthalmol. Vis. Sci. 52, 2689–2695 (2011).
[CrossRef]

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, “Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 50, 405–413 (2009).
[CrossRef]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography andscattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-10-6121 .
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7821 .
[CrossRef] [PubMed]

Yatagai, T.

Yodoi, Y.

A. Tsujikawa, M. Sasahara, A. Otani, N. Gotoh, T. Kameda, D. Iwama, Y. Yodoi, H. Tamura, M. Mandai, and N. Yoshimura, “Pigment epithelial detachment in polypoidal choroidal vasculopathy” Am. J. Ophthalmol. 143, 102–111 (2007).
[CrossRef]

Yoshimura, N.

A. Tsujikawa, M. Sasahara, A. Otani, N. Gotoh, T. Kameda, D. Iwama, Y. Yodoi, H. Tamura, M. Mandai, and N. Yoshimura, “Pigment epithelial detachment in polypoidal choroidal vasculopathy” Am. J. Ophthalmol. 143, 102–111 (2007).
[CrossRef]

Yun, S.

Yun, S. H.

Yun, S.-H.

Zawadzki, R. J.

Zhang, J.

Zhao, Y.

Am. J. Ophthalmol. (2)

E. Friedman, “A hemodynamic model of the pathogenesis of age-related macular degeneration,” Am. J. Ophthalmol. 124, 677–682 (1997).
[PubMed]

A. Tsujikawa, M. Sasahara, A. Otani, N. Gotoh, T. Kameda, D. Iwama, Y. Yodoi, H. Tamura, M. Mandai, and N. Yoshimura, “Pigment epithelial detachment in polypoidal choroidal vasculopathy” Am. J. Ophthalmol. 143, 102–111 (2007).
[CrossRef]

Biomed. Opt. Express (2)

Br. Med. J. (2)

U. Chakravarthy, J. Evans, and P. J. Rosenfeld, “Age related macular degeneration,” Br. Med. J. 340 (2010).

V. Patel, S. Rassam, R. Newsom, J. Wiek, and E. Kohner, “Retinal blood flow in diabetic retinopathy,” Br. Med. J. 305, 678–683 (1992).
[CrossRef]

IEEE Trans. Sonics Ultrason. (1)

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. 32, 458–464 (1985).

Invest. Ophthalmol. Vis. Sci. (6)

D. M. de Bruin, D. L. Burnes, J. Loewenstein, Y. Chen, S. Chang, T. C. Chen, D. D. Esmaili, and J. F. de Boer, “In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm,” Invest. Ophthalmol. Vis. Sci. 49, 4545–4552 (2008).
[CrossRef] [PubMed]

B. Povazay, B. Hermann, B. Hofer, V. Kají, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50, 1856–1863 (2009).
[CrossRef]

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef] [PubMed]

Y. Yasuno, M. Miura, K. Kawana, S. Makita, M. Sato, F. Okamoto, M. Yamanari, T. Iwasaki, T. Yatagai, and T. Oshika, “Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 50, 405–413 (2009).
[CrossRef]

Y. Ikuno and Y. Tano, “Retinal and choroidal biometry in highly myopic eyes with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 50, 3876–3880 (2009).
[CrossRef] [PubMed]

M. Miura, S. Makita, T. Iwasaki, and Y. Yasuno, “Three-dimensional visualization of ocular vascular pathology by optical coherence angiography in vivo,” Invest. Ophthalmol. Vis. Sci. 52, 2689–2695 (2011).
[CrossRef]

J. Biomed. Opt. (2)

G. Häusler and M. W. Lindner, ““Coherence radar” and “spectral radar”—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[CrossRef] [PubMed]

Nat. Med. (1)

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Ophthalmology (1)

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101, 529–533 (1994).
[PubMed]

Opt. Commun. (2)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical doppler tomography using the kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002).
[CrossRef]

Opt. Express (16)

B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm,” Opt. Express 13, 3931–3944 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-11-3931 .
[CrossRef] [PubMed]

B. Braaf, K. A. Vermeer, V. A. D. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-μm for the measurement of blood flow in the human choroid,” Opt. Express 19, 20886–20903 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-21-20886 .
[CrossRef] [PubMed]

S. Moon, S.-W. Lee, and Z. Chen, “Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography,” Opt. Express 18, 24395–24404 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-24-24395 .
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography andscattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-10-6121 .
[CrossRef] [PubMed]

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express 13, 3252–3258 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-9-3252 .
[CrossRef] [PubMed]

S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2977 .
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18, 20029–20048 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-19-20029 .
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million a-scans and 4.5 Gvoxels per second,” Opt. Express 18, 14685–14704 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-14-14685 .
[CrossRef] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050nm fourier domain mode-locked laser,” Opt. Express 19, 3044–3062 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-4-3044 .
[CrossRef] [PubMed]

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13, 5483–5493 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-14-5483 .
[CrossRef] [PubMed]

J. Zhang and Z. Chen, “In vivo blood flow imaging by a swept laser source based fourier domain optical doppler tomography,” Opt. Express 13, 7449–7457 (2005), http://www.opticsinfobase.org/abstract.cfm?uri=oe-13-19-7449 .
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-12-3-367 .
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color doppler fourier domain optical coherence tomography,” Opt. Express 11, 3116–3121 (2003), http://www.opticsinfobase.org/abstract.cfm?uri=oe-11-23-3116 .
[CrossRef] [PubMed]

B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11, 3490–3497 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-11-25-3490 .
[CrossRef] [PubMed]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time domain optical coherence tomography,” Opt. Express 16, 6008–6025 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6008 .
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7821 .
[CrossRef] [PubMed]

Opt. Lett. (5)

Prog. Retin. Eye. Res. (1)

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye. Res. 21, 359–393 (2002).
[CrossRef] [PubMed]

Retina (1)

Y. Imamura, T. Fujiwara, R. Margolis, and R. F. Spaide, “Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy,” Retina 29, 1469–1473 (2009).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, and C. Puliafito and a. et, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Supplementary Material (4)

» Media 1: MOV (3259 KB)     
» Media 2: MOV (3228 KB)     
» Media 3: MOV (2155 KB)     
» Media 4: MOV (2175 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic of SS-OCT system. BPD: balanced photodetector, LPF: low-pass filter, DCG: dummy clock generator, DAQ: data acquisition board, FG: function generator. The uncommon configuration of the 50/50 coupler is due to the characteristics of a filter coupler which splits the beam into two opposite ports.

Fig. 2
Fig. 2

Phase stability measured at several depth position with (○) and without (×) phase-1 stabilization algorithm. The green line represents theoretical prediction (see Section 4.1).

Fig. 3
Fig. 3

Bidirectional Doppler phase images without phase stabilization (a), with phase-1 stabilization (b), with phase-1 and phase-2 stabilizations (c), and with phase-1 and phase-2 and Kasai filter (d).

Fig. 4
Fig. 4

Histogram of Doppler phase shift in static tissue regions indicated by yellow boxes in Fig. 3. Panes (a)–(d) correspond to Figs. 3(a)–(d), respectively.

Fig. 5
Fig. 5

OCT intensity images (a) and (c) and bidirectional Doppler images (b) and (d) of a healthy human retina. A horizontal 6-mm regeion was scanned with 2048 A-lines for single B-scan. The red horizontal lines indicate the zero delay, and the region between the red and black horizontal lines indicate the region which has been utilized for phase-1 stabilization. The bidirectional Doppler images were taken in the fast Doppler mode. Fly-through movies are available for (a), (b) ( Media 1, 3.18 MB) and (c), (d) ( Media 2, 3.15 MB).

Fig. 6
Fig. 6

Integrated volume rendering of OCT intensity and bidirectional flow in healthy retina. Video files are available both for macula ( Media 3, 2.10 MB) and ONH ( Media 4, 2.12 MB).

Fig. 7
Fig. 7

Representative images taken for a feature-visibility study. The scanning range was 3 mm (horizontal) × 3mm (vertical) corresponding 1024 × 256 A-lines. Cases-1 and-3 are of ONH and case-2 is of macula. (a), (d), and (g) are en face projections of OCT intensity; (b), (e), and (h) are intensity B-scans; and (c), (f), and (i) are bidirectional flow images obtained in the fast Doppler mode. The red circles in (b), (e), and (h) indicate the same locations as the yellow circles in (c), (f), and (i). The red lines in (a), (d) and (g) represent the location corresponding B-scans.

Fig. 8
Fig. 8

OCT intensity (a) and power Doppler (b) images taken from a normal subject in slow Doppler mode. A vertical 6-mm region was scanned with 2048 B-scans. The arrows indicate retinal vessels.

Fig. 9
Fig. 9

En face vasculature images obtained by fast (a) and slow (b) Doppler modes. The sizes of the datasets for fast and slow Doppler modes are 2022 × 255 A-lines in 5.92 mm × 5.98 mm (fast Doppler mode) and 234 × 2045 A-lines in 5.48 mm × 5.99 mm (slow Doppler mode).

Fig. 10
Fig. 10

Retinal (a) and choroidal (b) optical coherence angiograms of a normal eye. The angiograms were created as projections of the power Doppler signal obtained in the slow Doppler mode.

Fig. 11
Fig. 11

OCT and OCA images obtained from a subject of PCV. (a)–(d) were obtained from the fast Doppler measurement. (a) and (b) are the B-scan images of the OCT intensity and bidirectional Doppler, respectively. (c) and (d) are en face projections of the OCT intensity and power Doppler (OCA). (e)–(g) were obtained from a slow Doppler scan. (e) and (f) are en face projections of intensity and power Doppler, respectively. (g) shows composite B-scans in which a gradual-red color coded power Doppler signal is overlaid onto the OCT intensity signal. The red-arrow-pairs in (c) and (d) indicate the location of (a) and (b), and the red-arrow-pairs in (e) and (f) indicate the location of (g). The sizes of the datasets are 2023 × 255 A-lines in 5.93 mm × 5.98 mm for the fast Doppler mode ((c) and (d)), and 234 × 2046 A-lines in 5.48 mm × 5.99 mm for the slow Doppler mode ((e) and (f)).

Fig. 12
Fig. 12

Comparison of ICGA- (a) and OCA-obtained slow Doppler mode images (b). These images were obtained from the same subject as in Fig. 11. The horizontal transverse eye motion was manually corrected in (b).

Fig. 13
Fig. 13

Bidirectional Doppler images obtained only with phase-2 stabilization (a) and with phase-1 and phase-2 stabilizations (b). The yellow arrows in (a) indicate A-lines where phase artifacts exist. The arrows in (b) indicate the identical locations to those in (a).

Fig. 14
Fig. 14

Bidirectional Doppler images stabilized by phase-1 stabilization followed by nonstandard phase-2 stabilization which uses an OCT intensity as a weight (a) and by phase-1 stabilization followed by standard phase-2 stabilization. The arrows indicate phase artifacts occurred by the imperfection of the phase-2 stabilization.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

S 2 ( j ) = S 2 ( j ) * δ ( j β ) ,
S 2 ^ ( ζ ) = S 2 ^ ( ζ ) exp ( i 2 π ζ β / N )
S 1 ( j ) = | E r ( j ) | 2 + | E p 1 ( j ) | 2 + E r ( j ) E p 1 * ( j ) + E r * ( j ) E p 1 ( j )
S 1 ^ ( ζ ) | E r ( j ) ^ | 2 .
S 2 ( j ) = { | E r ( j ) | 2 + | E p 2 ( j ) | 2 + E r ( j ) E p 2 * ( j ) + E r * ( j ) E p 2 ( j ) } * δ ( j β ) ,
S 2 ^ ( ζ ) | E r ( j ) ^ | 2 ( ζ ) exp ( i 2 π ζ β / N ) .
S 2 ^ ( ζ ) S 1 * ^ ( ζ ) = I ( ζ ) exp ( i 2 π ζ β / N ) ,
R 1 2 ζ I ( ζ ) [ 2 π ζ β / N φ ( ζ ) ] 2 ,
Δ φ ( ζ ) = 4 π τ λ c n v z ( ζ ) + 4 π τ λ c v b 2 π ζ β / N ,
R 2 2 = ζ W m ( ζ ) [ Δ φ ( ζ ) ( a m ζ + b m ) ] 2
W 0 ( ζ ) = { I ( ζ ) : I ( ζ ) > ɛ 2 0 : otherwise
W m ( ζ ) = { 0 : | Δ φ m ( ζ ) ( a i 1 ζ + b i 1 ) | > π / ( 2 m ) W i 1 ( ζ ) : otherwise
λ c σ φ 4 π n τ | v z | λ c 4 n τ
d φ = i ζ i d φ i i ζ i 2 ζ
σ 2 = | z | i z i 2 σ .

Metrics