Abstract

A framework is proposed for infrared (IR) absorption microscopy in the far-field with a spatial resolution below the diffraction limit. The sub-diffraction resolution is achieved by pumping a transient contrast in the population of a selected vibrational mode with IR pulses that exhibit alternating central minima and maxima, and by probing the corresponding absorbance at the same wavelength with adequately delayed Gaussian pulses. Simulations have been carried out on the basis of empirical parameters emulating patterned thin films of octadecyltrichlorosilane and a resolution of 250 nm was found when probing the CH2 stretches at 3.5 μm with pump energies less than ten times the vibrational saturation threshold.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem.62(1), 507–530 (2011).
    [CrossRef] [PubMed]
  2. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett.80(9), 1505–1507 (2002).
    [CrossRef]
  3. M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Background free CARS imaging by phase sensitive heterodyne CARS,” Opt. Express16(20), 15863–15869 (2008).
    [CrossRef] [PubMed]
  4. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A.102(46), 16807–16812 (2005).
    [CrossRef] [PubMed]
  5. M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express18(3), 2380–2388 (2010).
    [CrossRef] [PubMed]
  6. I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, “Non-scanning CARS microscopy using wide-field geometry,” Proc. SPIE6442, 64420D, 64420D-7 (2007).
    [CrossRef]
  7. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
    [CrossRef] [PubMed]
  8. G. Romero, E. Rojas, I. Estrela-Lopis, E. Donath, and S. E. Moya, “Spontaneous confocal Raman microscopy: a tool to study the uptake of nanoparticles and carbon nanotubes into cells,” Nanoscale Res. Lett.6(1), 429 (2011).
    [CrossRef] [PubMed]
  9. H. Kim, C. A. Michaels, G. W. Bryant, and S. J. Stranick, “Comparison of the sensitivity and image contrast in spontaneous Raman and coherent Stokes Raman scattering microscopy of geometry-controlled samples,” J. Biomed. Opt.16(2), 021107 (2011).
    [CrossRef] [PubMed]
  10. G. L. Carr, “Resolution limits for infrared microspectroscopy explored with synchrotron radiation,” Rev. Sci. Instrum.72(3), 1613–1619 (2001).
    [CrossRef]
  11. D. McNaughton, “Synchrotron infrared spectroscopy in biology and biochemistry,” Aust. Biochem.36, 55–58 (2005).
  12. H.-Y. N. Holman, R. Miles, Z. Hao, E. Wozei, L. M. Anderson, and H. Yang, “Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy,” Anal. Chem.81(20), 8564–8570 (2009).
    [CrossRef] [PubMed]
  13. E. Stavitski, M. H. F. Kox, I. Swart, F. M. F. de Groot, and B. M. Weckhuysen, “In situ synchrotron-based IR microspectroscopy to study catalytic reactions in zeolite crystals,” Angew. Chem. Int. Ed. Engl.47(19), 3543–3547 (2008).
    [CrossRef] [PubMed]
  14. P. Dumas, G. D. Sockalingum, and J. Sulé-Suso, “Adding synchrotron radiation to infrared microspectroscopy: what’s new in biomedical applications?” Trends Biotechnol.25(1), 40–44 (2007).
    [CrossRef] [PubMed]
  15. E. Levenson, P. Lerch, and M. C. Martin, “Spatial resolution limits for synchrotron-based infrared spectromicroscopy,” Infra. Phys. Tech.51(5), 413–416 (2008).
    [CrossRef]
  16. P. Dumas and L. Miller, “The use of synchrotron infrared microspectroscopy in biological and biomedical investigations,” Vib. Spectrosc.32(1), 3–21 (2003).
    [CrossRef]
  17. H.-Y. N. Holman, H. A. Bechtel, Z. Hao, and M. C. Martin, “Synchrotron IR spectromicroscopy: chemistry of living cells,” Anal. Chem.82(21), 8757–8765 (2010).
    [CrossRef] [PubMed]
  18. G. Ellis, G. Santoro, M. A. Gómez, and C. Marco, “Synchrotron IR microspectroscopy: opportunities in polymer science,” IOP Conf. Ser.: Mater. Sci. Eng. 14, 012019 (2010).
  19. M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods8(5), 413–416 (2011).
    [CrossRef] [PubMed]
  20. F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356 (2011).
    [CrossRef] [PubMed]
  21. F. Lu and M. A. Belkin, “Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers,” Opt. Express19(21), 19942–19947 (2011).
    [CrossRef] [PubMed]
  22. B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature399(6732), 134–137 (1999).
    [CrossRef]
  23. S. W. Hell, M. Dyba, and S. Jakobs, “Concepts for nanoscale resolution in fluorescence microscopy,” Curr. Opin. Neurobiol.14(5), 599–609 (2004).
    [CrossRef] [PubMed]
  24. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19(11), 780–782 (1994).
    [CrossRef] [PubMed]
  25. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210 (2000).
    [CrossRef] [PubMed]
  26. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
    [CrossRef]
  27. D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc.236(1), 35–43 (2009).
    [CrossRef] [PubMed]
  28. E. Rittweger, D. Wildanger, and S. W. Hell, “Far-field fluorescence nanoscopy of diamond color centers by ground state depletion,” Europhys. Lett.86(1), 14001 (2009).
    [CrossRef]
  29. S. W. Hell and M. Kroug, “Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit,” Appl. Phys. B60(5), 495–497 (1995).
    [CrossRef]
  30. S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett.98(21), 218103 (2007).
    [CrossRef] [PubMed]
  31. J. Kwon, Y. Lim, J. Jung, and S. K. Kim, “New sub-diffraction-limit microscopy technique: dual-point illumination AND-gate microscopy on nanodiamonds (DIAMOND),” Opt. Express20(12), 13347–13356 (2012).
    [CrossRef] [PubMed]
  32. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A.102(37), 13081–13086 (2005).
    [CrossRef] [PubMed]
  33. E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143 (2012).
    [CrossRef] [PubMed]
  34. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
    [CrossRef] [PubMed]
  35. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science319(5864), 810–813 (2008).
    [CrossRef] [PubMed]
  36. W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express17(25), 22632–22638 (2009).
    [CrossRef] [PubMed]
  37. W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A81(1), 012507 (2010).
    [CrossRef]
  38. M. Fushitani, “Applications of pump-probe spectroscopy,” Annu. Rep. Prog. Chem. C104, 272–297 (2008).
    [CrossRef]
  39. J. Cabanillas-Gonzalez, G. Grancini, and G. Lanzani, “Pump-probe spectroscopy in organic semiconductors: monitoring fundamental processes of relevance in optoelectronics,” Adv. Mater. (Deerfield Beach Fla.)23(46), 5468–5485 (2011).
    [CrossRef] [PubMed]
  40. L. Carroll, P. Friedli, P. Lerch, J. Schneider, D. Treyer, S. Hunziker, S. Stutz, and H. Sigg, “Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump,” Rev. Sci. Instrum.82(6), 063101 (2011).
    [CrossRef] [PubMed]
  41. T. Watanabe, M. Fujii, Y. Watanabe, N. Toyama, and Y. Iketaki, “Generation of a doughnut-shaped beam using a spiral phase plate,” Rev. Sci. Instrum.75(12), 5131–5135 (2004).
    [CrossRef]
  42. D. Wildanger, J. Bückers, V. Westphal, S. W. Hell, and L. Kastrup, “A STED microscope aligned by design,” Opt. Express17(18), 16100–16110 (2009).
    [CrossRef] [PubMed]
  43. J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express15(6), 3361–3371 (2007).
    [CrossRef] [PubMed]
  44. X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt.12(11), 115707 (2010).
    [CrossRef]
  45. D. A. Guzonas, M. L. Hair, and C. P. Tripp, “Infrared spectra of monolayers adsorbed on mica,” Appl. Spectros.44(2), 290–293 (1990).
    [CrossRef]
  46. A. L. Harris, L. Rothberg, L. Dhar, N. J. Levinos, and L. H. Dubois, “Vibrational energy relaxation of a polyatomic adsorbate on a metal surface: methyl thiolate (CH3S) on Ag(111),” J. Chem. Phys.94(4), 2438 (1991).
    [CrossRef]
  47. H. J. Bakker, P. C. M. Planken, and A. Lagendijk, “Ultrafast vibrational dynamics of small organic molecules in solution,” J. Chem. Phys.94(9), 6007–6013 (1991).
    [CrossRef]
  48. R. P. Chin, X. Blase, Y. R. Shen, and S. G. Louie, “Anharmonicity and lifetime of the CH stretch mode on diamond H/C(111)-(1×1),” Euro Phys. Lett.30(7), 399–404 (1995).
    [CrossRef]
  49. J. Löbau and A. Laubereau, “Surface studies using non-linear spectroscopy with tunable picosecond pulses,” Proc. SPIE3683, 96–107 (1998).
    [CrossRef]
  50. G. Seifert, M. Bartel, and H. Graener, “Relaxation of the CH2 stretching modes of liquid dihalomethanes,” Open Phys. Chem. J.2(1), 22–28 (2008).
    [CrossRef]
  51. W. Kaiser, A. Fendt, W. Kranitzky, and A. Laubereau, “Infrared picosecond pulses and applications,” Philos. Trans. Roy. Soc. A298(1439), 267–271 (1980).
    [CrossRef]
  52. L. K. Iwaki and D. D. Dlott, “Ultrafast vibrational energy redistribution within C-H and O-H stretching modes of liquid methanol,” Chem. Phys. Lett.321(5-6), 419–425 (2000).
    [CrossRef]
  53. M. Saß, M. Lettenberger, and A. Laubereau, “Orientation and vibrational relaxation of acetonitrile at a liquid:solid interface, observed by sum-frequency spectroscopy,” Chem. Phys. Lett.356(3-4), 284–290 (2002).
    [CrossRef]
  54. H. J. Bakker, P. C. M. Planken, and A. Lagendijk, “Ultrafast vibrational dynamics of small organic molecules in solution,” J. Chem. Phys.94(9), 6007–6013 (1991).
    [CrossRef]
  55. I. Hartl and W. Zinth, “A novel spectrometer system for the investigation of vibrational energy relaxation with sub-picosecond time resolution,” Opt. Commun.160(1-3), 184–190 (1999).
    [CrossRef]
  56. W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer-Verlag Berlin Heidelberg New York, 2003).
  57. J. R. Moffitt, C. Osseforth, and J. Michaelis, “Time-gating improves the spatial resolution of STED microscopy,” Opt. Express19(5), 4242–4254 (2011).
    [CrossRef] [PubMed]
  58. G. L. Carr and G. P. Williams, “Infrared microspectroscopy with synchrotron radiation,” Proc. SPIE3153, 51–58 (1997).
  59. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
    [CrossRef] [PubMed]
  60. H.-Y. N. Holman, M. C. Martin, and W. R. McKinney, “Synchrotron-based FTIR spectromicroscopy: cytotoxicity and heating considerations,” J. Biol. Phys.29(2/3), 275–286 (2003).
    [CrossRef]
  61. M. C. Martin, N. M. Tsvetkova, J. H. Crowe, and W. R. McKinney, “Negligible sample heating from synchrotron infrared beam,” Appl. Spectrosc.55(2), 111–113 (2001).
    [CrossRef]
  62. H. Lee, “Picosecond mid-IR laser induced surface damage on gallium phosphate (GaP) and calcium fluoride (CaF2),” J. Mech. Sci. Technol.21(7), 1077–1082 (2007).
    [CrossRef]
  63. Y. M. Oh, S. H. Lee, S. Park, and J. S. Lee, “A numerical study on ultra-short pulse laser-induced damage on dielectrics using the Fokker–Planck equation,” Int. J. Heat Mass Transfer49(7-8), 1493–1500 (2006).
    [CrossRef]
  64. K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, “Chemical imaging of interfaces by sum-frequency generation microscopy: application to patterned self-assembled monolayers,” Appl. Phys. Lett.83(18), 3830–3832 (2003).
    [CrossRef]
  65. M. Smits, A. Ghosh, J. Bredenbeck, S. Yamamoto, M. Müller, and M. Bonn, “Ultrafast energy flow in model biological membranes,” New J. Phys.9(10), 390 (2007).
    [CrossRef]
  66. M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med.39(3), 230–236 (2007).
    [CrossRef] [PubMed]
  67. J. T. Walsh and T. F. Deutsch, “Pulsed CO2 laser tissue ablation: measurement of the ablation rate,” Lasers Surg. Med.8(3), 264–275 (1988).
    [CrossRef] [PubMed]

2012 (2)

J. Kwon, Y. Lim, J. Jung, and S. K. Kim, “New sub-diffraction-limit microscopy technique: dual-point illumination AND-gate microscopy on nanodiamonds (DIAMOND),” Opt. Express20(12), 13347–13356 (2012).
[CrossRef] [PubMed]

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143 (2012).
[CrossRef] [PubMed]

2011 (9)

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem.62(1), 507–530 (2011).
[CrossRef] [PubMed]

G. Romero, E. Rojas, I. Estrela-Lopis, E. Donath, and S. E. Moya, “Spontaneous confocal Raman microscopy: a tool to study the uptake of nanoparticles and carbon nanotubes into cells,” Nanoscale Res. Lett.6(1), 429 (2011).
[CrossRef] [PubMed]

H. Kim, C. A. Michaels, G. W. Bryant, and S. J. Stranick, “Comparison of the sensitivity and image contrast in spontaneous Raman and coherent Stokes Raman scattering microscopy of geometry-controlled samples,” J. Biomed. Opt.16(2), 021107 (2011).
[CrossRef] [PubMed]

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods8(5), 413–416 (2011).
[CrossRef] [PubMed]

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356 (2011).
[CrossRef] [PubMed]

F. Lu and M. A. Belkin, “Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers,” Opt. Express19(21), 19942–19947 (2011).
[CrossRef] [PubMed]

J. Cabanillas-Gonzalez, G. Grancini, and G. Lanzani, “Pump-probe spectroscopy in organic semiconductors: monitoring fundamental processes of relevance in optoelectronics,” Adv. Mater. (Deerfield Beach Fla.)23(46), 5468–5485 (2011).
[CrossRef] [PubMed]

L. Carroll, P. Friedli, P. Lerch, J. Schneider, D. Treyer, S. Hunziker, S. Stutz, and H. Sigg, “Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump,” Rev. Sci. Instrum.82(6), 063101 (2011).
[CrossRef] [PubMed]

J. R. Moffitt, C. Osseforth, and J. Michaelis, “Time-gating improves the spatial resolution of STED microscopy,” Opt. Express19(5), 4242–4254 (2011).
[CrossRef] [PubMed]

2010 (4)

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A81(1), 012507 (2010).
[CrossRef]

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt.12(11), 115707 (2010).
[CrossRef]

M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express18(3), 2380–2388 (2010).
[CrossRef] [PubMed]

H.-Y. N. Holman, H. A. Bechtel, Z. Hao, and M. C. Martin, “Synchrotron IR spectromicroscopy: chemistry of living cells,” Anal. Chem.82(21), 8757–8765 (2010).
[CrossRef] [PubMed]

2009 (6)

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc.236(1), 35–43 (2009).
[CrossRef] [PubMed]

E. Rittweger, D. Wildanger, and S. W. Hell, “Far-field fluorescence nanoscopy of diamond color centers by ground state depletion,” Europhys. Lett.86(1), 14001 (2009).
[CrossRef]

H.-Y. N. Holman, R. Miles, Z. Hao, E. Wozei, L. M. Anderson, and H. Yang, “Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy,” Anal. Chem.81(20), 8564–8570 (2009).
[CrossRef] [PubMed]

D. Wildanger, J. Bückers, V. Westphal, S. W. Hell, and L. Kastrup, “A STED microscope aligned by design,” Opt. Express17(18), 16100–16110 (2009).
[CrossRef] [PubMed]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express17(25), 22632–22638 (2009).
[CrossRef] [PubMed]

2008 (7)

G. Seifert, M. Bartel, and H. Graener, “Relaxation of the CH2 stretching modes of liquid dihalomethanes,” Open Phys. Chem. J.2(1), 22–28 (2008).
[CrossRef]

M. Fushitani, “Applications of pump-probe spectroscopy,” Annu. Rep. Prog. Chem. C104, 272–297 (2008).
[CrossRef]

E. Stavitski, M. H. F. Kox, I. Swart, F. M. F. de Groot, and B. M. Weckhuysen, “In situ synchrotron-based IR microspectroscopy to study catalytic reactions in zeolite crystals,” Angew. Chem. Int. Ed. Engl.47(19), 3543–3547 (2008).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Background free CARS imaging by phase sensitive heterodyne CARS,” Opt. Express16(20), 15863–15869 (2008).
[CrossRef] [PubMed]

E. Levenson, P. Lerch, and M. C. Martin, “Spatial resolution limits for synchrotron-based infrared spectromicroscopy,” Infra. Phys. Tech.51(5), 413–416 (2008).
[CrossRef]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science319(5864), 810–813 (2008).
[CrossRef] [PubMed]

2007 (7)

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett.98(21), 218103 (2007).
[CrossRef] [PubMed]

I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, “Non-scanning CARS microscopy using wide-field geometry,” Proc. SPIE6442, 64420D, 64420D-7 (2007).
[CrossRef]

P. Dumas, G. D. Sockalingum, and J. Sulé-Suso, “Adding synchrotron radiation to infrared microspectroscopy: what’s new in biomedical applications?” Trends Biotechnol.25(1), 40–44 (2007).
[CrossRef] [PubMed]

J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express15(6), 3361–3371 (2007).
[CrossRef] [PubMed]

H. Lee, “Picosecond mid-IR laser induced surface damage on gallium phosphate (GaP) and calcium fluoride (CaF2),” J. Mech. Sci. Technol.21(7), 1077–1082 (2007).
[CrossRef]

M. Smits, A. Ghosh, J. Bredenbeck, S. Yamamoto, M. Müller, and M. Bonn, “Ultrafast energy flow in model biological membranes,” New J. Phys.9(10), 390 (2007).
[CrossRef]

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med.39(3), 230–236 (2007).
[CrossRef] [PubMed]

2006 (2)

Y. M. Oh, S. H. Lee, S. Park, and J. S. Lee, “A numerical study on ultra-short pulse laser-induced damage on dielectrics using the Fokker–Planck equation,” Int. J. Heat Mass Transfer49(7-8), 1493–1500 (2006).
[CrossRef]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

2005 (3)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A.102(37), 13081–13086 (2005).
[CrossRef] [PubMed]

D. McNaughton, “Synchrotron infrared spectroscopy in biology and biochemistry,” Aust. Biochem.36, 55–58 (2005).

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A.102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

2004 (2)

S. W. Hell, M. Dyba, and S. Jakobs, “Concepts for nanoscale resolution in fluorescence microscopy,” Curr. Opin. Neurobiol.14(5), 599–609 (2004).
[CrossRef] [PubMed]

T. Watanabe, M. Fujii, Y. Watanabe, N. Toyama, and Y. Iketaki, “Generation of a doughnut-shaped beam using a spiral phase plate,” Rev. Sci. Instrum.75(12), 5131–5135 (2004).
[CrossRef]

2003 (3)

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, “Chemical imaging of interfaces by sum-frequency generation microscopy: application to patterned self-assembled monolayers,” Appl. Phys. Lett.83(18), 3830–3832 (2003).
[CrossRef]

H.-Y. N. Holman, M. C. Martin, and W. R. McKinney, “Synchrotron-based FTIR spectromicroscopy: cytotoxicity and heating considerations,” J. Biol. Phys.29(2/3), 275–286 (2003).
[CrossRef]

P. Dumas and L. Miller, “The use of synchrotron infrared microspectroscopy in biological and biomedical investigations,” Vib. Spectrosc.32(1), 3–21 (2003).
[CrossRef]

2002 (2)

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett.80(9), 1505–1507 (2002).
[CrossRef]

M. Saß, M. Lettenberger, and A. Laubereau, “Orientation and vibrational relaxation of acetonitrile at a liquid:solid interface, observed by sum-frequency spectroscopy,” Chem. Phys. Lett.356(3-4), 284–290 (2002).
[CrossRef]

2001 (2)

M. C. Martin, N. M. Tsvetkova, J. H. Crowe, and W. R. McKinney, “Negligible sample heating from synchrotron infrared beam,” Appl. Spectrosc.55(2), 111–113 (2001).
[CrossRef]

G. L. Carr, “Resolution limits for infrared microspectroscopy explored with synchrotron radiation,” Rev. Sci. Instrum.72(3), 1613–1619 (2001).
[CrossRef]

2000 (3)

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
[CrossRef] [PubMed]

L. K. Iwaki and D. D. Dlott, “Ultrafast vibrational energy redistribution within C-H and O-H stretching modes of liquid methanol,” Chem. Phys. Lett.321(5-6), 419–425 (2000).
[CrossRef]

1999 (2)

I. Hartl and W. Zinth, “A novel spectrometer system for the investigation of vibrational energy relaxation with sub-picosecond time resolution,” Opt. Commun.160(1-3), 184–190 (1999).
[CrossRef]

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature399(6732), 134–137 (1999).
[CrossRef]

1998 (1)

J. Löbau and A. Laubereau, “Surface studies using non-linear spectroscopy with tunable picosecond pulses,” Proc. SPIE3683, 96–107 (1998).
[CrossRef]

1997 (1)

G. L. Carr and G. P. Williams, “Infrared microspectroscopy with synchrotron radiation,” Proc. SPIE3153, 51–58 (1997).

1995 (2)

R. P. Chin, X. Blase, Y. R. Shen, and S. G. Louie, “Anharmonicity and lifetime of the CH stretch mode on diamond H/C(111)-(1×1),” Euro Phys. Lett.30(7), 399–404 (1995).
[CrossRef]

S. W. Hell and M. Kroug, “Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit,” Appl. Phys. B60(5), 495–497 (1995).
[CrossRef]

1994 (1)

1991 (3)

A. L. Harris, L. Rothberg, L. Dhar, N. J. Levinos, and L. H. Dubois, “Vibrational energy relaxation of a polyatomic adsorbate on a metal surface: methyl thiolate (CH3S) on Ag(111),” J. Chem. Phys.94(4), 2438 (1991).
[CrossRef]

H. J. Bakker, P. C. M. Planken, and A. Lagendijk, “Ultrafast vibrational dynamics of small organic molecules in solution,” J. Chem. Phys.94(9), 6007–6013 (1991).
[CrossRef]

H. J. Bakker, P. C. M. Planken, and A. Lagendijk, “Ultrafast vibrational dynamics of small organic molecules in solution,” J. Chem. Phys.94(9), 6007–6013 (1991).
[CrossRef]

1990 (1)

D. A. Guzonas, M. L. Hair, and C. P. Tripp, “Infrared spectra of monolayers adsorbed on mica,” Appl. Spectros.44(2), 290–293 (1990).
[CrossRef]

1988 (1)

J. T. Walsh and T. F. Deutsch, “Pulsed CO2 laser tissue ablation: measurement of the ablation rate,” Lasers Surg. Med.8(3), 264–275 (1988).
[CrossRef] [PubMed]

1980 (1)

W. Kaiser, A. Fendt, W. Kranitzky, and A. Laubereau, “Infrared picosecond pulses and applications,” Philos. Trans. Roy. Soc. A298(1439), 267–271 (1980).
[CrossRef]

Anderson, L. M.

H.-Y. N. Holman, R. Miles, Z. Hao, E. Wozei, L. M. Anderson, and H. Yang, “Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy,” Anal. Chem.81(20), 8564–8570 (2009).
[CrossRef] [PubMed]

Bakker, H. J.

H. J. Bakker, P. C. M. Planken, and A. Lagendijk, “Ultrafast vibrational dynamics of small organic molecules in solution,” J. Chem. Phys.94(9), 6007–6013 (1991).
[CrossRef]

H. J. Bakker, P. C. M. Planken, and A. Lagendijk, “Ultrafast vibrational dynamics of small organic molecules in solution,” J. Chem. Phys.94(9), 6007–6013 (1991).
[CrossRef]

Balu, M.

Bartel, M.

G. Seifert, M. Bartel, and H. Graener, “Relaxation of the CH2 stretching modes of liquid dihalomethanes,” Open Phys. Chem. J.2(1), 22–28 (2008).
[CrossRef]

Bates, M.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science319(5864), 810–813 (2008).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

Bechtel, H. A.

H.-Y. N. Holman, H. A. Bechtel, Z. Hao, and M. C. Martin, “Synchrotron IR spectromicroscopy: chemistry of living cells,” Anal. Chem.82(21), 8757–8765 (2010).
[CrossRef] [PubMed]

Beeker, W. P.

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A81(1), 012507 (2010).
[CrossRef]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express17(25), 22632–22638 (2009).
[CrossRef] [PubMed]

Belkin, M. A.

Bhargava, R.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods8(5), 413–416 (2011).
[CrossRef] [PubMed]

Bittner, A. M.

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, “Chemical imaging of interfaces by sum-frequency generation microscopy: application to patterned self-assembled monolayers,” Appl. Phys. Lett.83(18), 3830–3832 (2003).
[CrossRef]

Blase, X.

R. P. Chin, X. Blase, Y. R. Shen, and S. G. Louie, “Anharmonicity and lifetime of the CH stretch mode on diamond H/C(111)-(1×1),” Euro Phys. Lett.30(7), 399–404 (1995).
[CrossRef]

Boller, K.-J.

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A81(1), 012507 (2010).
[CrossRef]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express17(25), 22632–22638 (2009).
[CrossRef] [PubMed]

Bonn, M.

M. Smits, A. Ghosh, J. Bredenbeck, S. Yamamoto, M. Müller, and M. Bonn, “Ultrafast energy flow in model biological membranes,” New J. Phys.9(10), 390 (2007).
[CrossRef]

Book, L. D.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett.80(9), 1505–1507 (2002).
[CrossRef]

Bredenbeck, J.

M. Smits, A. Ghosh, J. Bredenbeck, S. Yamamoto, M. Müller, and M. Bonn, “Ultrafast energy flow in model biological membranes,” New J. Phys.9(10), 390 (2007).
[CrossRef]

Bretschneider, S.

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett.98(21), 218103 (2007).
[CrossRef] [PubMed]

Bryant, G. W.

H. Kim, C. A. Michaels, G. W. Bryant, and S. J. Stranick, “Comparison of the sensitivity and image contrast in spontaneous Raman and coherent Stokes Raman scattering microscopy of geometry-controlled samples,” J. Biomed. Opt.16(2), 021107 (2011).
[CrossRef] [PubMed]

Bückers, J.

Cabanillas-Gonzalez, J.

J. Cabanillas-Gonzalez, G. Grancini, and G. Lanzani, “Pump-probe spectroscopy in organic semiconductors: monitoring fundamental processes of relevance in optoelectronics,” Adv. Mater. (Deerfield Beach Fla.)23(46), 5468–5485 (2011).
[CrossRef] [PubMed]

Carr, G. L.

G. L. Carr, “Resolution limits for infrared microspectroscopy explored with synchrotron radiation,” Rev. Sci. Instrum.72(3), 1613–1619 (2001).
[CrossRef]

G. L. Carr and G. P. Williams, “Infrared microspectroscopy with synchrotron radiation,” Proc. SPIE3153, 51–58 (1997).

Carroll, L.

L. Carroll, P. Friedli, P. Lerch, J. Schneider, D. Treyer, S. Hunziker, S. Stutz, and H. Sigg, “Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump,” Rev. Sci. Instrum.82(6), 063101 (2011).
[CrossRef] [PubMed]

Chen, Z.

Chin, R. P.

R. P. Chin, X. Blase, Y. R. Shen, and S. G. Louie, “Anharmonicity and lifetime of the CH stretch mode on diamond H/C(111)-(1×1),” Euro Phys. Lett.30(7), 399–404 (1995).
[CrossRef]

Cleff, C.

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A81(1), 012507 (2010).
[CrossRef]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express17(25), 22632–22638 (2009).
[CrossRef] [PubMed]

Cohn, K.

I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, “Non-scanning CARS microscopy using wide-field geometry,” Proc. SPIE6442, 64420D, 64420D-7 (2007).
[CrossRef]

Côté, D.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A.102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

Crowe, J. H.

Davidson, M. W.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143 (2012).
[CrossRef] [PubMed]

de Groot, F. M. F.

E. Stavitski, M. H. F. Kox, I. Swart, F. M. F. de Groot, and B. M. Weckhuysen, “In situ synchrotron-based IR microspectroscopy to study catalytic reactions in zeolite crystals,” Angew. Chem. Int. Ed. Engl.47(19), 3543–3547 (2008).
[CrossRef] [PubMed]

Deutsch, T. F.

J. T. Walsh and T. F. Deutsch, “Pulsed CO2 laser tissue ablation: measurement of the ablation rate,” Lasers Surg. Med.8(3), 264–275 (1988).
[CrossRef] [PubMed]

Dhar, L.

A. L. Harris, L. Rothberg, L. Dhar, N. J. Levinos, and L. H. Dubois, “Vibrational energy relaxation of a polyatomic adsorbate on a metal surface: methyl thiolate (CH3S) on Ag(111),” J. Chem. Phys.94(4), 2438 (1991).
[CrossRef]

Dlott, D. D.

L. K. Iwaki and D. D. Dlott, “Ultrafast vibrational energy redistribution within C-H and O-H stretching modes of liquid methanol,” Chem. Phys. Lett.321(5-6), 419–425 (2000).
[CrossRef]

Donath, E.

G. Romero, E. Rojas, I. Estrela-Lopis, E. Donath, and S. E. Moya, “Spontaneous confocal Raman microscopy: a tool to study the uptake of nanoparticles and carbon nanotubes into cells,” Nanoscale Res. Lett.6(1), 429 (2011).
[CrossRef] [PubMed]

Dubois, L. H.

A. L. Harris, L. Rothberg, L. Dhar, N. J. Levinos, and L. H. Dubois, “Vibrational energy relaxation of a polyatomic adsorbate on a metal surface: methyl thiolate (CH3S) on Ag(111),” J. Chem. Phys.94(4), 2438 (1991).
[CrossRef]

Dumas, P.

P. Dumas, G. D. Sockalingum, and J. Sulé-Suso, “Adding synchrotron radiation to infrared microspectroscopy: what’s new in biomedical applications?” Trends Biotechnol.25(1), 40–44 (2007).
[CrossRef] [PubMed]

P. Dumas and L. Miller, “The use of synchrotron infrared microspectroscopy in biological and biomedical investigations,” Vib. Spectrosc.32(1), 3–21 (2003).
[CrossRef]

Dyba, M.

S. W. Hell, M. Dyba, and S. Jakobs, “Concepts for nanoscale resolution in fluorescence microscopy,” Curr. Opin. Neurobiol.14(5), 599–609 (2004).
[CrossRef] [PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

Eggeling, C.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett.98(21), 218103 (2007).
[CrossRef] [PubMed]

Egner, A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

Estrela-Lopis, I.

G. Romero, E. Rojas, I. Estrela-Lopis, E. Donath, and S. E. Moya, “Spontaneous confocal Raman microscopy: a tool to study the uptake of nanoparticles and carbon nanotubes into cells,” Nanoscale Res. Lett.6(1), 429 (2011).
[CrossRef] [PubMed]

Evans, C. L.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A.102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

Fallnich, C.

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A81(1), 012507 (2010).
[CrossRef]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express17(25), 22632–22638 (2009).
[CrossRef] [PubMed]

Fendt, A.

W. Kaiser, A. Fendt, W. Kranitzky, and A. Laubereau, “Infrared picosecond pulses and applications,” Philos. Trans. Roy. Soc. A298(1439), 267–271 (1980).
[CrossRef]

Freudiger, C. W.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem.62(1), 507–530 (2011).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Friedli, P.

L. Carroll, P. Friedli, P. Lerch, J. Schneider, D. Treyer, S. Hunziker, S. Stutz, and H. Sigg, “Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump,” Rev. Sci. Instrum.82(6), 063101 (2011).
[CrossRef] [PubMed]

Fujii, M.

T. Watanabe, M. Fujii, Y. Watanabe, N. Toyama, and Y. Iketaki, “Generation of a doughnut-shaped beam using a spiral phase plate,” Rev. Sci. Instrum.75(12), 5131–5135 (2004).
[CrossRef]

Fushitani, M.

M. Fushitani, “Applications of pump-probe spectroscopy,” Annu. Rep. Prog. Chem. C104, 272–297 (2008).
[CrossRef]

Ghosh, A.

M. Smits, A. Ghosh, J. Bredenbeck, S. Yamamoto, M. Müller, and M. Bonn, “Ultrafast energy flow in model biological membranes,” New J. Phys.9(10), 390 (2007).
[CrossRef]

Graener, H.

G. Seifert, M. Bartel, and H. Graener, “Relaxation of the CH2 stretching modes of liquid dihalomethanes,” Open Phys. Chem. J.2(1), 22–28 (2008).
[CrossRef]

Grancini, G.

J. Cabanillas-Gonzalez, G. Grancini, and G. Lanzani, “Pump-probe spectroscopy in organic semiconductors: monitoring fundamental processes of relevance in optoelectronics,” Adv. Mater. (Deerfield Beach Fla.)23(46), 5468–5485 (2011).
[CrossRef] [PubMed]

Groß, P.

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A81(1), 012507 (2010).
[CrossRef]

Gross, P.

Gustafsson, M. G. L.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143 (2012).
[CrossRef] [PubMed]

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A.102(37), 13081–13086 (2005).
[CrossRef] [PubMed]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
[CrossRef] [PubMed]

Guzonas, D. A.

D. A. Guzonas, M. L. Hair, and C. P. Tripp, “Infrared spectra of monolayers adsorbed on mica,” Appl. Spectros.44(2), 290–293 (1990).
[CrossRef]

Hair, M. L.

D. A. Guzonas, M. L. Hair, and C. P. Tripp, “Infrared spectra of monolayers adsorbed on mica,” Appl. Spectros.44(2), 290–293 (1990).
[CrossRef]

Han, K. Y.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

Hao, X.

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt.12(11), 115707 (2010).
[CrossRef]

Hao, Z.

H.-Y. N. Holman, H. A. Bechtel, Z. Hao, and M. C. Martin, “Synchrotron IR spectromicroscopy: chemistry of living cells,” Anal. Chem.82(21), 8757–8765 (2010).
[CrossRef] [PubMed]

H.-Y. N. Holman, R. Miles, Z. Hao, E. Wozei, L. M. Anderson, and H. Yang, “Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy,” Anal. Chem.81(20), 8564–8570 (2009).
[CrossRef] [PubMed]

Harris, A. L.

A. L. Harris, L. Rothberg, L. Dhar, N. J. Levinos, and L. H. Dubois, “Vibrational energy relaxation of a polyatomic adsorbate on a metal surface: methyl thiolate (CH3S) on Ag(111),” J. Chem. Phys.94(4), 2438 (1991).
[CrossRef]

Hartl, I.

I. Hartl and W. Zinth, “A novel spectrometer system for the investigation of vibrational energy relaxation with sub-picosecond time resolution,” Opt. Commun.160(1-3), 184–190 (1999).
[CrossRef]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Hell, S. W.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc.236(1), 35–43 (2009).
[CrossRef] [PubMed]

E. Rittweger, D. Wildanger, and S. W. Hell, “Far-field fluorescence nanoscopy of diamond color centers by ground state depletion,” Europhys. Lett.86(1), 14001 (2009).
[CrossRef]

D. Wildanger, J. Bückers, V. Westphal, S. W. Hell, and L. Kastrup, “A STED microscope aligned by design,” Opt. Express17(18), 16100–16110 (2009).
[CrossRef] [PubMed]

J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express15(6), 3361–3371 (2007).
[CrossRef] [PubMed]

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett.98(21), 218103 (2007).
[CrossRef] [PubMed]

S. W. Hell, M. Dyba, and S. Jakobs, “Concepts for nanoscale resolution in fluorescence microscopy,” Curr. Opin. Neurobiol.14(5), 599–609 (2004).
[CrossRef] [PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

S. W. Hell and M. Kroug, “Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit,” Appl. Phys. B60(5), 495–497 (1995).
[CrossRef]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19(11), 780–782 (1994).
[CrossRef] [PubMed]

Herek, J. L.

Hillenbrand, R.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356 (2011).
[CrossRef] [PubMed]

Hirschmugl, C. J.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods8(5), 413–416 (2011).
[CrossRef] [PubMed]

Hoffmann, D. M. P.

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, “Chemical imaging of interfaces by sum-frequency generation microscopy: application to patterned self-assembled monolayers,” Appl. Phys. Lett.83(18), 3830–3832 (2003).
[CrossRef]

Holman, H.-Y. N.

H.-Y. N. Holman, H. A. Bechtel, Z. Hao, and M. C. Martin, “Synchrotron IR spectromicroscopy: chemistry of living cells,” Anal. Chem.82(21), 8757–8765 (2010).
[CrossRef] [PubMed]

H.-Y. N. Holman, R. Miles, Z. Hao, E. Wozei, L. M. Anderson, and H. Yang, “Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy,” Anal. Chem.81(20), 8564–8570 (2009).
[CrossRef] [PubMed]

H.-Y. N. Holman, M. C. Martin, and W. R. McKinney, “Synchrotron-based FTIR spectromicroscopy: cytotoxicity and heating considerations,” J. Biol. Phys.29(2/3), 275–286 (2003).
[CrossRef]

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Huang, B.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science319(5864), 810–813 (2008).
[CrossRef] [PubMed]

Hunziker, S.

L. Carroll, P. Friedli, P. Lerch, J. Schneider, D. Treyer, S. Hunziker, S. Stutz, and H. Sigg, “Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump,” Rev. Sci. Instrum.82(6), 063101 (2011).
[CrossRef] [PubMed]

Huth, F.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356 (2011).
[CrossRef] [PubMed]

Iketaki, Y.

T. Watanabe, M. Fujii, Y. Watanabe, N. Toyama, and Y. Iketaki, “Generation of a doughnut-shaped beam using a spiral phase plate,” Rev. Sci. Instrum.75(12), 5131–5135 (2004).
[CrossRef]

Irvine, S. E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

Iwaki, L. K.

L. K. Iwaki and D. D. Dlott, “Ultrafast vibrational energy redistribution within C-H and O-H stretching modes of liquid methanol,” Chem. Phys. Lett.321(5-6), 419–425 (2000).
[CrossRef]

Jakobs, S.

S. W. Hell, M. Dyba, and S. Jakobs, “Concepts for nanoscale resolution in fluorescence microscopy,” Curr. Opin. Neurobiol.14(5), 599–609 (2004).
[CrossRef] [PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

Jansen, E. D.

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med.39(3), 230–236 (2007).
[CrossRef] [PubMed]

Johansson, G. A.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143 (2012).
[CrossRef] [PubMed]

Joos, K. M.

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med.39(3), 230–236 (2007).
[CrossRef] [PubMed]

Jung, J.

Jurna, M.

Kaiser, W.

W. Kaiser, A. Fendt, W. Kranitzky, and A. Laubereau, “Infrared picosecond pulses and applications,” Philos. Trans. Roy. Soc. A298(1439), 267–271 (1980).
[CrossRef]

Kajdacsy-Balla, A.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods8(5), 413–416 (2011).
[CrossRef] [PubMed]

Kamps-Hughes, N.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143 (2012).
[CrossRef] [PubMed]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Kastrup, L.

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc.236(1), 35–43 (2009).
[CrossRef] [PubMed]

D. Wildanger, J. Bückers, V. Westphal, S. W. Hell, and L. Kastrup, “A STED microscope aligned by design,” Opt. Express17(18), 16100–16110 (2009).
[CrossRef] [PubMed]

Keilmann, F.

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature399(6732), 134–137 (1999).
[CrossRef]

Keller, J.

Kern, K.

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, “Chemical imaging of interfaces by sum-frequency generation microscopy: application to patterned self-assembled monolayers,” Appl. Phys. Lett.83(18), 3830–3832 (2003).
[CrossRef]

Kim, H.

H. Kim, C. A. Michaels, G. W. Bryant, and S. J. Stranick, “Comparison of the sensitivity and image contrast in spontaneous Raman and coherent Stokes Raman scattering microscopy of geometry-controlled samples,” J. Biomed. Opt.16(2), 021107 (2011).
[CrossRef] [PubMed]

Kim, S. K.

Klar, T. A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

Knoll, B.

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature399(6732), 134–137 (1999).
[CrossRef]

Korterik, J. P.

Kox, M. H. F.

E. Stavitski, M. H. F. Kox, I. Swart, F. M. F. de Groot, and B. M. Weckhuysen, “In situ synchrotron-based IR microspectroscopy to study catalytic reactions in zeolite crystals,” Angew. Chem. Int. Ed. Engl.47(19), 3543–3547 (2008).
[CrossRef] [PubMed]

Kranitzky, W.

W. Kaiser, A. Fendt, W. Kranitzky, and A. Laubereau, “Infrared picosecond pulses and applications,” Philos. Trans. Roy. Soc. A298(1439), 267–271 (1980).
[CrossRef]

Kroug, M.

S. W. Hell and M. Kroug, “Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit,” Appl. Phys. B60(5), 495–497 (1995).
[CrossRef]

Kuang, C.

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt.12(11), 115707 (2010).
[CrossRef]

Kuhnke, K.

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, “Chemical imaging of interfaces by sum-frequency generation microscopy: application to patterned self-assembled monolayers,” Appl. Phys. Lett.83(18), 3830–3832 (2003).
[CrossRef]

Kwon, J.

Lagendijk, A.

H. J. Bakker, P. C. M. Planken, and A. Lagendijk, “Ultrafast vibrational dynamics of small organic molecules in solution,” J. Chem. Phys.94(9), 6007–6013 (1991).
[CrossRef]

H. J. Bakker, P. C. M. Planken, and A. Lagendijk, “Ultrafast vibrational dynamics of small organic molecules in solution,” J. Chem. Phys.94(9), 6007–6013 (1991).
[CrossRef]

Lanzani, G.

J. Cabanillas-Gonzalez, G. Grancini, and G. Lanzani, “Pump-probe spectroscopy in organic semiconductors: monitoring fundamental processes of relevance in optoelectronics,” Adv. Mater. (Deerfield Beach Fla.)23(46), 5468–5485 (2011).
[CrossRef] [PubMed]

Laubereau, A.

M. Saß, M. Lettenberger, and A. Laubereau, “Orientation and vibrational relaxation of acetonitrile at a liquid:solid interface, observed by sum-frequency spectroscopy,” Chem. Phys. Lett.356(3-4), 284–290 (2002).
[CrossRef]

J. Löbau and A. Laubereau, “Surface studies using non-linear spectroscopy with tunable picosecond pulses,” Proc. SPIE3683, 96–107 (1998).
[CrossRef]

W. Kaiser, A. Fendt, W. Kranitzky, and A. Laubereau, “Infrared picosecond pulses and applications,” Philos. Trans. Roy. Soc. A298(1439), 267–271 (1980).
[CrossRef]

Lee, C. J.

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A81(1), 012507 (2010).
[CrossRef]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express17(25), 22632–22638 (2009).
[CrossRef] [PubMed]

Lee, H.

H. Lee, “Picosecond mid-IR laser induced surface damage on gallium phosphate (GaP) and calcium fluoride (CaF2),” J. Mech. Sci. Technol.21(7), 1077–1082 (2007).
[CrossRef]

Lee, J. S.

Y. M. Oh, S. H. Lee, S. Park, and J. S. Lee, “A numerical study on ultra-short pulse laser-induced damage on dielectrics using the Fokker–Planck equation,” Int. J. Heat Mass Transfer49(7-8), 1493–1500 (2006).
[CrossRef]

Lee, S. H.

Y. M. Oh, S. H. Lee, S. Park, and J. S. Lee, “A numerical study on ultra-short pulse laser-induced damage on dielectrics using the Fokker–Planck equation,” Int. J. Heat Mass Transfer49(7-8), 1493–1500 (2006).
[CrossRef]

Lerch, P.

L. Carroll, P. Friedli, P. Lerch, J. Schneider, D. Treyer, S. Hunziker, S. Stutz, and H. Sigg, “Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump,” Rev. Sci. Instrum.82(6), 063101 (2011).
[CrossRef] [PubMed]

E. Levenson, P. Lerch, and M. C. Martin, “Spatial resolution limits for synchrotron-based infrared spectromicroscopy,” Infra. Phys. Tech.51(5), 413–416 (2008).
[CrossRef]

Lettenberger, M.

M. Saß, M. Lettenberger, and A. Laubereau, “Orientation and vibrational relaxation of acetonitrile at a liquid:solid interface, observed by sum-frequency spectroscopy,” Chem. Phys. Lett.356(3-4), 284–290 (2002).
[CrossRef]

Levenson, E.

E. Levenson, P. Lerch, and M. C. Martin, “Spatial resolution limits for synchrotron-based infrared spectromicroscopy,” Infra. Phys. Tech.51(5), 413–416 (2008).
[CrossRef]

Levinos, N. J.

A. L. Harris, L. Rothberg, L. Dhar, N. J. Levinos, and L. H. Dubois, “Vibrational energy relaxation of a polyatomic adsorbate on a metal surface: methyl thiolate (CH3S) on Ag(111),” J. Chem. Phys.94(4), 2438 (1991).
[CrossRef]

Lim, Y.

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A.102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

Liu, G.

Liu, X.

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt.12(11), 115707 (2010).
[CrossRef]

Löbau, J.

J. Löbau and A. Laubereau, “Surface studies using non-linear spectroscopy with tunable picosecond pulses,” Proc. SPIE3683, 96–107 (1998).
[CrossRef]

Louie, S. G.

R. P. Chin, X. Blase, Y. R. Shen, and S. G. Louie, “Anharmonicity and lifetime of the CH stretch mode on diamond H/C(111)-(1×1),” Euro Phys. Lett.30(7), 399–404 (1995).
[CrossRef]

Lu, F.

Lu, S.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem.62(1), 507–530 (2011).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Macias, V.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods8(5), 413–416 (2011).
[CrossRef] [PubMed]

Mackanos, M. A.

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med.39(3), 230–236 (2007).
[CrossRef] [PubMed]

Macklin, J. J.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143 (2012).
[CrossRef] [PubMed]

Martin, M. C.

H.-Y. N. Holman, H. A. Bechtel, Z. Hao, and M. C. Martin, “Synchrotron IR spectromicroscopy: chemistry of living cells,” Anal. Chem.82(21), 8757–8765 (2010).
[CrossRef] [PubMed]

E. Levenson, P. Lerch, and M. C. Martin, “Spatial resolution limits for synchrotron-based infrared spectromicroscopy,” Infra. Phys. Tech.51(5), 413–416 (2008).
[CrossRef]

H.-Y. N. Holman, M. C. Martin, and W. R. McKinney, “Synchrotron-based FTIR spectromicroscopy: cytotoxicity and heating considerations,” J. Biol. Phys.29(2/3), 275–286 (2003).
[CrossRef]

M. C. Martin, N. M. Tsvetkova, J. H. Crowe, and W. R. McKinney, “Negligible sample heating from synchrotron infrared beam,” Appl. Spectrosc.55(2), 111–113 (2001).
[CrossRef]

Mattson, E. C.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods8(5), 413–416 (2011).
[CrossRef] [PubMed]

McKinney, W. R.

H.-Y. N. Holman, M. C. Martin, and W. R. McKinney, “Synchrotron-based FTIR spectromicroscopy: cytotoxicity and heating considerations,” J. Biol. Phys.29(2/3), 275–286 (2003).
[CrossRef]

M. C. Martin, N. M. Tsvetkova, J. H. Crowe, and W. R. McKinney, “Negligible sample heating from synchrotron infrared beam,” Appl. Spectrosc.55(2), 111–113 (2001).
[CrossRef]

McNaughton, D.

D. McNaughton, “Synchrotron infrared spectroscopy in biology and biochemistry,” Aust. Biochem.36, 55–58 (2005).

Medda, R.

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc.236(1), 35–43 (2009).
[CrossRef] [PubMed]

Michaelis, J.

Michaels, C. A.

H. Kim, C. A. Michaels, G. W. Bryant, and S. J. Stranick, “Comparison of the sensitivity and image contrast in spontaneous Raman and coherent Stokes Raman scattering microscopy of geometry-controlled samples,” J. Biomed. Opt.16(2), 021107 (2011).
[CrossRef] [PubMed]

Miles, R.

H.-Y. N. Holman, R. Miles, Z. Hao, E. Wozei, L. M. Anderson, and H. Yang, “Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy,” Anal. Chem.81(20), 8564–8570 (2009).
[CrossRef] [PubMed]

Miller, L.

P. Dumas and L. Miller, “The use of synchrotron infrared microspectroscopy in biological and biomedical investigations,” Vib. Spectrosc.32(1), 3–21 (2003).
[CrossRef]

Min, W.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem.62(1), 507–530 (2011).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Moffitt, J. R.

Moya, S. E.

G. Romero, E. Rojas, I. Estrela-Lopis, E. Donath, and S. E. Moya, “Spontaneous confocal Raman microscopy: a tool to study the uptake of nanoparticles and carbon nanotubes into cells,” Nanoscale Res. Lett.6(1), 429 (2011).
[CrossRef] [PubMed]

Müller, M.

M. Smits, A. Ghosh, J. Bredenbeck, S. Yamamoto, M. Müller, and M. Bonn, “Ultrafast energy flow in model biological membranes,” New J. Phys.9(10), 390 (2007).
[CrossRef]

Nasse, M. J.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods8(5), 413–416 (2011).
[CrossRef] [PubMed]

Ocelic, N.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356 (2011).
[CrossRef] [PubMed]

Offerhaus, H. L.

Oh, Y. M.

Y. M. Oh, S. H. Lee, S. Park, and J. S. Lee, “A numerical study on ultra-short pulse laser-induced damage on dielectrics using the Fokker–Planck equation,” Int. J. Heat Mass Transfer49(7-8), 1493–1500 (2006).
[CrossRef]

Osseforth, C.

Otto, C.

Palanker, D.

I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, “Non-scanning CARS microscopy using wide-field geometry,” Proc. SPIE6442, 64420D, 64420D-7 (2007).
[CrossRef]

Park, S.

Y. M. Oh, S. H. Lee, S. Park, and J. S. Lee, “A numerical study on ultra-short pulse laser-induced damage on dielectrics using the Fokker–Planck equation,” Int. J. Heat Mass Transfer49(7-8), 1493–1500 (2006).
[CrossRef]

Planken, P. C. M.

H. J. Bakker, P. C. M. Planken, and A. Lagendijk, “Ultrafast vibrational dynamics of small organic molecules in solution,” J. Chem. Phys.94(9), 6007–6013 (1991).
[CrossRef]

H. J. Bakker, P. C. M. Planken, and A. Lagendijk, “Ultrafast vibrational dynamics of small organic molecules in solution,” J. Chem. Phys.94(9), 6007–6013 (1991).
[CrossRef]

Potma, E. O.

M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express18(3), 2380–2388 (2010).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A.102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A.102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

Rego, E. H.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143 (2012).
[CrossRef] [PubMed]

Reininger, R.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods8(5), 413–416 (2011).
[CrossRef] [PubMed]

Rittweger, E.

E. Rittweger, D. Wildanger, and S. W. Hell, “Far-field fluorescence nanoscopy of diamond color centers by ground state depletion,” Europhys. Lett.86(1), 14001 (2009).
[CrossRef]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

Rojas, E.

G. Romero, E. Rojas, I. Estrela-Lopis, E. Donath, and S. E. Moya, “Spontaneous confocal Raman microscopy: a tool to study the uptake of nanoparticles and carbon nanotubes into cells,” Nanoscale Res. Lett.6(1), 429 (2011).
[CrossRef] [PubMed]

Romero, G.

G. Romero, E. Rojas, I. Estrela-Lopis, E. Donath, and S. E. Moya, “Spontaneous confocal Raman microscopy: a tool to study the uptake of nanoparticles and carbon nanotubes into cells,” Nanoscale Res. Lett.6(1), 429 (2011).
[CrossRef] [PubMed]

Rothberg, L.

A. L. Harris, L. Rothberg, L. Dhar, N. J. Levinos, and L. H. Dubois, “Vibrational energy relaxation of a polyatomic adsorbate on a metal surface: methyl thiolate (CH3S) on Ag(111),” J. Chem. Phys.94(4), 2438 (1991).
[CrossRef]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Saß, M.

M. Saß, M. Lettenberger, and A. Laubereau, “Orientation and vibrational relaxation of acetonitrile at a liquid:solid interface, observed by sum-frequency spectroscopy,” Chem. Phys. Lett.356(3-4), 284–290 (2002).
[CrossRef]

Schneider, J.

L. Carroll, P. Friedli, P. Lerch, J. Schneider, D. Treyer, S. Hunziker, S. Stutz, and H. Sigg, “Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump,” Rev. Sci. Instrum.82(6), 063101 (2011).
[CrossRef] [PubMed]

Schnell, M.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356 (2011).
[CrossRef] [PubMed]

Schönle, A.

Schwettman, H. A.

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med.39(3), 230–236 (2007).
[CrossRef] [PubMed]

Seifert, G.

G. Seifert, M. Bartel, and H. Graener, “Relaxation of the CH2 stretching modes of liquid dihalomethanes,” Open Phys. Chem. J.2(1), 22–28 (2008).
[CrossRef]

Shao, L.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143 (2012).
[CrossRef] [PubMed]

Shen, Y. R.

R. P. Chin, X. Blase, Y. R. Shen, and S. G. Louie, “Anharmonicity and lifetime of the CH stretch mode on diamond H/C(111)-(1×1),” Euro Phys. Lett.30(7), 399–404 (1995).
[CrossRef]

Sigg, H.

L. Carroll, P. Friedli, P. Lerch, J. Schneider, D. Treyer, S. Hunziker, S. Stutz, and H. Sigg, “Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump,” Rev. Sci. Instrum.82(6), 063101 (2011).
[CrossRef] [PubMed]

Simanovskii, D.

I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, “Non-scanning CARS microscopy using wide-field geometry,” Proc. SPIE6442, 64420D, 64420D-7 (2007).
[CrossRef]

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med.39(3), 230–236 (2007).
[CrossRef] [PubMed]

Smith, T.

I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, “Non-scanning CARS microscopy using wide-field geometry,” Proc. SPIE6442, 64420D, 64420D-7 (2007).
[CrossRef]

Smits, M.

M. Smits, A. Ghosh, J. Bredenbeck, S. Yamamoto, M. Müller, and M. Bonn, “Ultrafast energy flow in model biological membranes,” New J. Phys.9(10), 390 (2007).
[CrossRef]

Sockalingum, G. D.

P. Dumas, G. D. Sockalingum, and J. Sulé-Suso, “Adding synchrotron radiation to infrared microspectroscopy: what’s new in biomedical applications?” Trends Biotechnol.25(1), 40–44 (2007).
[CrossRef] [PubMed]

Stavitski, E.

E. Stavitski, M. H. F. Kox, I. Swart, F. M. F. de Groot, and B. M. Weckhuysen, “In situ synchrotron-based IR microspectroscopy to study catalytic reactions in zeolite crystals,” Angew. Chem. Int. Ed. Engl.47(19), 3543–3547 (2008).
[CrossRef] [PubMed]

Stranick, S. J.

H. Kim, C. A. Michaels, G. W. Bryant, and S. J. Stranick, “Comparison of the sensitivity and image contrast in spontaneous Raman and coherent Stokes Raman scattering microscopy of geometry-controlled samples,” J. Biomed. Opt.16(2), 021107 (2011).
[CrossRef] [PubMed]

Stutz, S.

L. Carroll, P. Friedli, P. Lerch, J. Schneider, D. Treyer, S. Hunziker, S. Stutz, and H. Sigg, “Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump,” Rev. Sci. Instrum.82(6), 063101 (2011).
[CrossRef] [PubMed]

Sulé-Suso, J.

P. Dumas, G. D. Sockalingum, and J. Sulé-Suso, “Adding synchrotron radiation to infrared microspectroscopy: what’s new in biomedical applications?” Trends Biotechnol.25(1), 40–44 (2007).
[CrossRef] [PubMed]

Swart, I.

E. Stavitski, M. H. F. Kox, I. Swart, F. M. F. de Groot, and B. M. Weckhuysen, “In situ synchrotron-based IR microspectroscopy to study catalytic reactions in zeolite crystals,” Angew. Chem. Int. Ed. Engl.47(19), 3543–3547 (2008).
[CrossRef] [PubMed]

Toyama, N.

T. Watanabe, M. Fujii, Y. Watanabe, N. Toyama, and Y. Iketaki, “Generation of a doughnut-shaped beam using a spiral phase plate,” Rev. Sci. Instrum.75(12), 5131–5135 (2004).
[CrossRef]

Toytman, I.

I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, “Non-scanning CARS microscopy using wide-field geometry,” Proc. SPIE6442, 64420D, 64420D-7 (2007).
[CrossRef]

Treyer, D.

L. Carroll, P. Friedli, P. Lerch, J. Schneider, D. Treyer, S. Hunziker, S. Stutz, and H. Sigg, “Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump,” Rev. Sci. Instrum.82(6), 063101 (2011).
[CrossRef] [PubMed]

Tripp, C. P.

D. A. Guzonas, M. L. Hair, and C. P. Tripp, “Infrared spectra of monolayers adsorbed on mica,” Appl. Spectros.44(2), 290–293 (1990).
[CrossRef]

Tromberg, B. J.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Tsvetkova, N. M.

Volkmer, A.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett.80(9), 1505–1507 (2002).
[CrossRef]

Walsh, J. T.

J. T. Walsh and T. F. Deutsch, “Pulsed CO2 laser tissue ablation: measurement of the ablation rate,” Lasers Surg. Med.8(3), 264–275 (1988).
[CrossRef] [PubMed]

Walsh, M. J.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods8(5), 413–416 (2011).
[CrossRef] [PubMed]

Wang, T.

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt.12(11), 115707 (2010).
[CrossRef]

Wang, W.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science319(5864), 810–813 (2008).
[CrossRef] [PubMed]

Watanabe, T.

T. Watanabe, M. Fujii, Y. Watanabe, N. Toyama, and Y. Iketaki, “Generation of a doughnut-shaped beam using a spiral phase plate,” Rev. Sci. Instrum.75(12), 5131–5135 (2004).
[CrossRef]

Watanabe, Y.

T. Watanabe, M. Fujii, Y. Watanabe, N. Toyama, and Y. Iketaki, “Generation of a doughnut-shaped beam using a spiral phase plate,” Rev. Sci. Instrum.75(12), 5131–5135 (2004).
[CrossRef]

Weckhuysen, B. M.

E. Stavitski, M. H. F. Kox, I. Swart, F. M. F. de Groot, and B. M. Weckhuysen, “In situ synchrotron-based IR microspectroscopy to study catalytic reactions in zeolite crystals,” Angew. Chem. Int. Ed. Engl.47(19), 3543–3547 (2008).
[CrossRef] [PubMed]

Westphal, V.

Wichmann, J.

Wildanger, D.

D. Wildanger, J. Bückers, V. Westphal, S. W. Hell, and L. Kastrup, “A STED microscope aligned by design,” Opt. Express17(18), 16100–16110 (2009).
[CrossRef] [PubMed]

E. Rittweger, D. Wildanger, and S. W. Hell, “Far-field fluorescence nanoscopy of diamond color centers by ground state depletion,” Europhys. Lett.86(1), 14001 (2009).
[CrossRef]

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc.236(1), 35–43 (2009).
[CrossRef] [PubMed]

Williams, G. P.

G. L. Carr and G. P. Williams, “Infrared microspectroscopy with synchrotron radiation,” Proc. SPIE3153, 51–58 (1997).

Winoto, L.

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143 (2012).
[CrossRef] [PubMed]

Wittborn, J.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356 (2011).
[CrossRef] [PubMed]

Wozei, E.

H.-Y. N. Holman, R. Miles, Z. Hao, E. Wozei, L. M. Anderson, and H. Yang, “Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy,” Anal. Chem.81(20), 8564–8570 (2009).
[CrossRef] [PubMed]

Wu, X. C.

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, “Chemical imaging of interfaces by sum-frequency generation microscopy: application to patterned self-assembled monolayers,” Appl. Phys. Lett.83(18), 3830–3832 (2003).
[CrossRef]

Xie, X. S.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem.62(1), 507–530 (2011).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A.102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett.80(9), 1505–1507 (2002).
[CrossRef]

Yamamoto, S.

M. Smits, A. Ghosh, J. Bredenbeck, S. Yamamoto, M. Müller, and M. Bonn, “Ultrafast energy flow in model biological membranes,” New J. Phys.9(10), 390 (2007).
[CrossRef]

Yang, H.

H.-Y. N. Holman, R. Miles, Z. Hao, E. Wozei, L. M. Anderson, and H. Yang, “Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy,” Anal. Chem.81(20), 8564–8570 (2009).
[CrossRef] [PubMed]

Zhuang, X.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science319(5864), 810–813 (2008).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

Zinth, W.

I. Hartl and W. Zinth, “A novel spectrometer system for the investigation of vibrational energy relaxation with sub-picosecond time resolution,” Opt. Commun.160(1-3), 184–190 (1999).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

J. Cabanillas-Gonzalez, G. Grancini, and G. Lanzani, “Pump-probe spectroscopy in organic semiconductors: monitoring fundamental processes of relevance in optoelectronics,” Adv. Mater. (Deerfield Beach Fla.)23(46), 5468–5485 (2011).
[CrossRef] [PubMed]

Anal. Chem. (2)

H.-Y. N. Holman, R. Miles, Z. Hao, E. Wozei, L. M. Anderson, and H. Yang, “Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy,” Anal. Chem.81(20), 8564–8570 (2009).
[CrossRef] [PubMed]

H.-Y. N. Holman, H. A. Bechtel, Z. Hao, and M. C. Martin, “Synchrotron IR spectromicroscopy: chemistry of living cells,” Anal. Chem.82(21), 8757–8765 (2010).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

E. Stavitski, M. H. F. Kox, I. Swart, F. M. F. de Groot, and B. M. Weckhuysen, “In situ synchrotron-based IR microspectroscopy to study catalytic reactions in zeolite crystals,” Angew. Chem. Int. Ed. Engl.47(19), 3543–3547 (2008).
[CrossRef] [PubMed]

Annu. Rep. Prog. Chem. C (1)

M. Fushitani, “Applications of pump-probe spectroscopy,” Annu. Rep. Prog. Chem. C104, 272–297 (2008).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem.62(1), 507–530 (2011).
[CrossRef] [PubMed]

Appl. Phys. B (1)

S. W. Hell and M. Kroug, “Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit,” Appl. Phys. B60(5), 495–497 (1995).
[CrossRef]

Appl. Phys. Lett. (2)

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett.80(9), 1505–1507 (2002).
[CrossRef]

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, “Chemical imaging of interfaces by sum-frequency generation microscopy: application to patterned self-assembled monolayers,” Appl. Phys. Lett.83(18), 3830–3832 (2003).
[CrossRef]

Appl. Spectros. (1)

D. A. Guzonas, M. L. Hair, and C. P. Tripp, “Infrared spectra of monolayers adsorbed on mica,” Appl. Spectros.44(2), 290–293 (1990).
[CrossRef]

Appl. Spectrosc. (1)

Aust. Biochem. (1)

D. McNaughton, “Synchrotron infrared spectroscopy in biology and biochemistry,” Aust. Biochem.36, 55–58 (2005).

Chem. Phys. Lett. (2)

L. K. Iwaki and D. D. Dlott, “Ultrafast vibrational energy redistribution within C-H and O-H stretching modes of liquid methanol,” Chem. Phys. Lett.321(5-6), 419–425 (2000).
[CrossRef]

M. Saß, M. Lettenberger, and A. Laubereau, “Orientation and vibrational relaxation of acetonitrile at a liquid:solid interface, observed by sum-frequency spectroscopy,” Chem. Phys. Lett.356(3-4), 284–290 (2002).
[CrossRef]

Curr. Opin. Neurobiol. (1)

S. W. Hell, M. Dyba, and S. Jakobs, “Concepts for nanoscale resolution in fluorescence microscopy,” Curr. Opin. Neurobiol.14(5), 599–609 (2004).
[CrossRef] [PubMed]

Euro Phys. Lett. (1)

R. P. Chin, X. Blase, Y. R. Shen, and S. G. Louie, “Anharmonicity and lifetime of the CH stretch mode on diamond H/C(111)-(1×1),” Euro Phys. Lett.30(7), 399–404 (1995).
[CrossRef]

Europhys. Lett. (1)

E. Rittweger, D. Wildanger, and S. W. Hell, “Far-field fluorescence nanoscopy of diamond color centers by ground state depletion,” Europhys. Lett.86(1), 14001 (2009).
[CrossRef]

Infra. Phys. Tech. (1)

E. Levenson, P. Lerch, and M. C. Martin, “Spatial resolution limits for synchrotron-based infrared spectromicroscopy,” Infra. Phys. Tech.51(5), 413–416 (2008).
[CrossRef]

Int. J. Heat Mass Transfer (1)

Y. M. Oh, S. H. Lee, S. Park, and J. S. Lee, “A numerical study on ultra-short pulse laser-induced damage on dielectrics using the Fokker–Planck equation,” Int. J. Heat Mass Transfer49(7-8), 1493–1500 (2006).
[CrossRef]

J. Biol. Phys. (1)

H.-Y. N. Holman, M. C. Martin, and W. R. McKinney, “Synchrotron-based FTIR spectromicroscopy: cytotoxicity and heating considerations,” J. Biol. Phys.29(2/3), 275–286 (2003).
[CrossRef]

J. Biomed. Opt. (1)

H. Kim, C. A. Michaels, G. W. Bryant, and S. J. Stranick, “Comparison of the sensitivity and image contrast in spontaneous Raman and coherent Stokes Raman scattering microscopy of geometry-controlled samples,” J. Biomed. Opt.16(2), 021107 (2011).
[CrossRef] [PubMed]

J. Chem. Phys. (3)

A. L. Harris, L. Rothberg, L. Dhar, N. J. Levinos, and L. H. Dubois, “Vibrational energy relaxation of a polyatomic adsorbate on a metal surface: methyl thiolate (CH3S) on Ag(111),” J. Chem. Phys.94(4), 2438 (1991).
[CrossRef]

H. J. Bakker, P. C. M. Planken, and A. Lagendijk, “Ultrafast vibrational dynamics of small organic molecules in solution,” J. Chem. Phys.94(9), 6007–6013 (1991).
[CrossRef]

H. J. Bakker, P. C. M. Planken, and A. Lagendijk, “Ultrafast vibrational dynamics of small organic molecules in solution,” J. Chem. Phys.94(9), 6007–6013 (1991).
[CrossRef]

J. Mech. Sci. Technol. (1)

H. Lee, “Picosecond mid-IR laser induced surface damage on gallium phosphate (GaP) and calcium fluoride (CaF2),” J. Mech. Sci. Technol.21(7), 1077–1082 (2007).
[CrossRef]

J. Microsc. (2)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
[CrossRef] [PubMed]

D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell, “A compact STED microscope providing 3D nanoscale resolution,” J. Microsc.236(1), 35–43 (2009).
[CrossRef] [PubMed]

J. Opt. (1)

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt.12(11), 115707 (2010).
[CrossRef]

Lasers Surg. Med. (2)

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med.39(3), 230–236 (2007).
[CrossRef] [PubMed]

J. T. Walsh and T. F. Deutsch, “Pulsed CO2 laser tissue ablation: measurement of the ablation rate,” Lasers Surg. Med.8(3), 264–275 (1988).
[CrossRef] [PubMed]

Nanoscale Res. Lett. (1)

G. Romero, E. Rojas, I. Estrela-Lopis, E. Donath, and S. E. Moya, “Spontaneous confocal Raman microscopy: a tool to study the uptake of nanoparticles and carbon nanotubes into cells,” Nanoscale Res. Lett.6(1), 429 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356 (2011).
[CrossRef] [PubMed]

Nat. Methods (2)

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods8(5), 413–416 (2011).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006).
[CrossRef] [PubMed]

Nat. Photonics (1)

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics3(3), 144–147 (2009).
[CrossRef]

Nature (1)

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature399(6732), 134–137 (1999).
[CrossRef]

New J. Phys. (1)

M. Smits, A. Ghosh, J. Bredenbeck, S. Yamamoto, M. Müller, and M. Bonn, “Ultrafast energy flow in model biological membranes,” New J. Phys.9(10), 390 (2007).
[CrossRef]

Open Phys. Chem. J. (1)

G. Seifert, M. Bartel, and H. Graener, “Relaxation of the CH2 stretching modes of liquid dihalomethanes,” Open Phys. Chem. J.2(1), 22–28 (2008).
[CrossRef]

Opt. Commun. (1)

I. Hartl and W. Zinth, “A novel spectrometer system for the investigation of vibrational energy relaxation with sub-picosecond time resolution,” Opt. Commun.160(1-3), 184–190 (1999).
[CrossRef]

Opt. Express (8)

D. Wildanger, J. Bückers, V. Westphal, S. W. Hell, and L. Kastrup, “A STED microscope aligned by design,” Opt. Express17(18), 16100–16110 (2009).
[CrossRef] [PubMed]

J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express15(6), 3361–3371 (2007).
[CrossRef] [PubMed]

J. R. Moffitt, C. Osseforth, and J. Michaelis, “Time-gating improves the spatial resolution of STED microscopy,” Opt. Express19(5), 4242–4254 (2011).
[CrossRef] [PubMed]

F. Lu and M. A. Belkin, “Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers,” Opt. Express19(21), 19942–19947 (2011).
[CrossRef] [PubMed]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express17(25), 22632–22638 (2009).
[CrossRef] [PubMed]

J. Kwon, Y. Lim, J. Jung, and S. K. Kim, “New sub-diffraction-limit microscopy technique: dual-point illumination AND-gate microscopy on nanodiamonds (DIAMOND),” Opt. Express20(12), 13347–13356 (2012).
[CrossRef] [PubMed]

M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express18(3), 2380–2388 (2010).
[CrossRef] [PubMed]

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Background free CARS imaging by phase sensitive heterodyne CARS,” Opt. Express16(20), 15863–15869 (2008).
[CrossRef] [PubMed]

Opt. Lett. (1)

Philos. Trans. Roy. Soc. A (1)

W. Kaiser, A. Fendt, W. Kranitzky, and A. Laubereau, “Infrared picosecond pulses and applications,” Philos. Trans. Roy. Soc. A298(1439), 267–271 (1980).
[CrossRef]

Phys. Rev. A (1)

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A81(1), 012507 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett.98(21), 218103 (2007).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (4)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A.102(37), 13081–13086 (2005).
[CrossRef] [PubMed]

E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U.S.A.109(3), E135–E143 (2012).
[CrossRef] [PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A.97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A.102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

Proc. SPIE (3)

I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, “Non-scanning CARS microscopy using wide-field geometry,” Proc. SPIE6442, 64420D, 64420D-7 (2007).
[CrossRef]

J. Löbau and A. Laubereau, “Surface studies using non-linear spectroscopy with tunable picosecond pulses,” Proc. SPIE3683, 96–107 (1998).
[CrossRef]

G. L. Carr and G. P. Williams, “Infrared microspectroscopy with synchrotron radiation,” Proc. SPIE3153, 51–58 (1997).

Rev. Sci. Instrum. (3)

L. Carroll, P. Friedli, P. Lerch, J. Schneider, D. Treyer, S. Hunziker, S. Stutz, and H. Sigg, “Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump,” Rev. Sci. Instrum.82(6), 063101 (2011).
[CrossRef] [PubMed]

T. Watanabe, M. Fujii, Y. Watanabe, N. Toyama, and Y. Iketaki, “Generation of a doughnut-shaped beam using a spiral phase plate,” Rev. Sci. Instrum.75(12), 5131–5135 (2004).
[CrossRef]

G. L. Carr, “Resolution limits for infrared microspectroscopy explored with synchrotron radiation,” Rev. Sci. Instrum.72(3), 1613–1619 (2001).
[CrossRef]

Science (2)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science319(5864), 810–813 (2008).
[CrossRef] [PubMed]

Trends Biotechnol. (1)

P. Dumas, G. D. Sockalingum, and J. Sulé-Suso, “Adding synchrotron radiation to infrared microspectroscopy: what’s new in biomedical applications?” Trends Biotechnol.25(1), 40–44 (2007).
[CrossRef] [PubMed]

Vib. Spectrosc. (1)

P. Dumas and L. Miller, “The use of synchrotron infrared microspectroscopy in biological and biomedical investigations,” Vib. Spectrosc.32(1), 3–21 (2003).
[CrossRef]

Other (2)

G. Ellis, G. Santoro, M. A. Gómez, and C. Marco, “Synchrotron IR microspectroscopy: opportunities in polymer science,” IOP Conf. Ser.: Mater. Sci. Eng. 14, 012019 (2010).

W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer-Verlag Berlin Heidelberg New York, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Illustration of the quantized IR absorption in a two-level system (left), of the saturation where the excited population is at maximum (middle), and of the pump-probe sequence where the population is saturated by a first pulse and probed by a second delayed pulse (right). (b) Description of the differential pumping scheme where the VD-IR PSF is created by alternating nodal and anti-nodal pump profiles.

Fig. 2
Fig. 2

(a) Spatial distribution (scale bar: 2.0 μm) of the intensity of Gaussian and vortex pulses computed for an energy of 1.0 nJ, a duration of 1.0 ps, and a waist of 1.6 μm (Gaussian fwhm: 1.9 μm), along with their corresponding radial profile. (b) Schematic of an octadecyltrichlorosilane layer on a dielectric IR transparent substrate. (c) Sketch of the optical path for the Gaussian probe and the alternating Gaussian and vortex pumps. BS, SPL, L, TG, D stand for beam splitter, sample, lens, time-gate, and detector.

Fig. 3
Fig. 3

Local evolution of the population N as a function of the intensity. A saturation threshold of 1.1 × 102 kW.μm−2 is determined. (inset) Evolution of N with time at the intensity peak of a Gaussian pulse centered at 0 ps with energy of 1 nJ (continuous line), 10 nJ (shortest dash), 0.10 μJ (long dash), and 1.0 μJ (longest dash).

Fig. 4
Fig. 4

(a) PSF for VD-IR microscopy for pump energies of 1 nJ (long dash), 10 nJ (short dash), 0.10 μJ (shortest dash), and 1.0 μJ (continuous line). The IR absorption microscopy PSF is also shown (longest dash) for comparison. (b) Fwhm as a function of vortex pump peak intensity for NA = 0.7 and Δt = 2.0 ps (square), for NA = 0.85 and Δt = 2.0, 6.0, 9.0, and 15 ps (circle, triangle up, triangle down, and diamond). The data are computed for energies 1 nJ, 10 nJ, 0.10 μJ, and 1.0 μJ. The horizontal dotted line marks the fwhm for the IR absorption image. (c) VD-IR maximum signal as a function of Δt , for energies of 1 nJ (triangle down), 10 nJ (triangle up), 0.10 μJ (circle), and 1.0 μJ (square). The horizontal dotted line marks the maximum signal for the IR absorption image.

Fig. 5
Fig. 5

(a) Representation of an array of nine domains of octadecyltrichlorosilane (200 × 200 nm2). (b) CH2 stretch IR image (3.5 μm) computed with a pixel of 50 × 50 nm2 and a NA of 0.85. (c) CH2 stretch VD-IR image computed for a pump energy of 0.1 μJ. Scale bar is 0.5 μm in all images. (d) IR and VD-IR magnitudes across the octadecyltrichlorosilane domains.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

dI dz = hc λ k(r) ρ(r) ΔN(r,t) I(r,t) ,
dN dt =Γ(r) N(r)k(r) ΔN(r,t) I(r,t),
IR(%)= Σ( z 0 )Σ Σ( z 0 ) ×100,
and by VDIR (%)= Σ Gauss Σ vortex Σ Gauss ×100,
h Gauss (r,t)= h Gauss 0 e r 2 / w 0 2 e (tΔt) 2 / τ 0 2 ,
h vortex (r,t)= h vortex 0 r 2 e r 2 / w 0 2 e (tΔt) 2 / τ 0 2 ,

Metrics