Abstract

We examine the excitation of plasmonic resonances in arrays of periodically arranged gold nanoparticles placed in a uniform refractive index environment. Under a proper periodicity of the nanoparticle lattice, such nanoantenna arrays are known to exhibit narrow resonances with asymmetric Fano-type spectral line shape in transmission and reflection spectra having much better resonance quality compared to the single nanoparticle case. Using numerical simulations, we first identify two distinct regimes of lattice response, associated with two-characteristic states of the spectra: Rayleigh anomaly and lattice plasmon mode. The evolution of the electric field pattern is rigorously studied for these two states revealing different configurations of optical forces: the first regime is characterized by the concentration of electric field between the nanoparticles, yielding to almost complete transparency of the array, whereas the second regime is characterized by the concentration of electric field on the nanoparticles and a strong plasmon-related absorption/scattering. We present electric field distributions for different spectral positions of Rayleigh anomaly with respect to the single nanoparticle resonance and optimize lattice parameters in order to maximize the enhancement of electric field on the nanoparticles. Finally, by employing collective plasmon excitations, we explore possibilities for electric field enhancement in the region between the nanoparticles. The presented results are of importance for the field enhanced spectroscopy as well as for plasmonic bio and chemical sensing.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier Plasmonics: Fundamentals and Applications (Springer Science + Business Media LLC, 2007).
  2. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
    [CrossRef] [PubMed]
  3. K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering: Physics and Applications, (Springer, 2006).
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  5. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and super lensing,” Nat. Photonics3(7), 388–394 (2009).
    [CrossRef]
  6. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
  7. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90(2), 027402 (2003).
    [CrossRef] [PubMed]
  8. V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
    [CrossRef] [PubMed]
  9. B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance-how it all started,” Biosens. Bioelectron.10(8), i–ix (1995).
    [CrossRef] [PubMed]
  10. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with Plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
    [CrossRef] [PubMed]
  11. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
    [CrossRef] [PubMed]
  12. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag.4(21), 396–402 (1902).
    [CrossRef]
  13. L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond.A79, 399 (1907).
  14. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's Waves),” J. Opt. Soc. Am.31(3), 213 (1941).
    [CrossRef]
  15. A. Hessel and A. A. Oliner, “A new theory of Wood's anomalies on optical gratings,” Appl. Opt.4(10), 1275 (1965).
    [CrossRef]
  16. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
    [CrossRef]
  17. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
    [CrossRef] [PubMed]
  18. D. Maystre, in Electromagnetic Surface Modes edited by A. D. Boardman (Wiley, 1982), chap.17.
  19. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
    [CrossRef]
  20. E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B62(23), 16100–16108 (2000).
    [CrossRef]
  21. N. Bonod, S. Enoch, L. Li, P. Evgeny, and M. Neviere, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express11(5), 482–490 (2003).
    [CrossRef] [PubMed]
  22. M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B67(8), 085415 (2003).
    [CrossRef]
  23. M. Sarrazin and J. P. Vigneron, “Bounded modes to the rescue of optical transmission,” Europhys. News38(3), 27–31 (2007).
    [CrossRef]
  24. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett.91(18), 183901 (2003).
    [CrossRef] [PubMed]
  25. A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B70(12), 1–15 (2004).
    [CrossRef]
  26. F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79(4), 1267–1290 (2007).
    [CrossRef]
  27. V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one dimensional periodic arrays of nanospheres,” J. Phys. B.: Mol. Opt.38(7), L115–L121 (2005).
    [CrossRef]
  28. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
    [CrossRef] [PubMed]
  29. S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys.121(24), 12606–12612 (2004).
    [CrossRef] [PubMed]
  30. S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett.403(1–3), 62–67 (2005).
    [CrossRef]
  31. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101(8), 087403 (2008).
    [CrossRef] [PubMed]
  32. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008).
    [CrossRef] [PubMed]
  33. Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
    [CrossRef]
  34. G. Vecchi, V. Giannini, and J. Gomez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80(20), 201401 (2009).
    [CrossRef]
  35. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the Fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009).
    [CrossRef] [PubMed]
  36. V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett.35(7), 956–958 (2010).
    [CrossRef] [PubMed]
  37. V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett.105(26), 266801 (2010).
    [CrossRef] [PubMed]
  38. P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
    [CrossRef] [PubMed]
  39. W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol.6(7), 423–427 (2011).
    [CrossRef] [PubMed]
  40. E. Simsek, “On the surface plasmon resonance modes of metal nanoparticle chains and arrays,” Plasmonics 4, 223{230 (2009).
  41. E. Simsek, “Full analytical model for obtaining surface plasmon resonance modes of metal nanoparticle structures embedded in layered media,” Opt. Express18(2), 1722–1733 (2010).
    [CrossRef] [PubMed]
  42. B. Auguié, X. Bendaña, W. Barnes, and F. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82(15), 155447 (2010).
    [CrossRef]
  43. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B85(24), 245411 (2012).
    [CrossRef]
  44. W. Hu and Sh. Zou, “Remarkable radiation efficiency through leakage modes in two-dimensional silver nanoparticle arrays,” J. Phys. Chem. C115(35), 17328–17333 (2011).
    [CrossRef]
  45. “FDTD method for periodic structures,” in Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), Chap. 6.
  46. P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  47. A. Taflove and S. C. Hagness, “Computational Electrodynamics: The Finite Difference Time-Domain Method,” (Artech House Publishers, 2005), Chap. 8.
  48. C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337,1072–1074 (2012).
  49. M. Kerker, “Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids,” Acc. Chem. Res.17(8), 271–277 (1984).
    [CrossRef]
  50. P. K. Aravind and H. Metiu, “The enhancement of Raman and fluorescent intensity by small surface roughness. Changes in dipole emission,” Chem. Phys. Lett.74(2), 301–305 (1980).
    [CrossRef]
  51. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
    [CrossRef] [PubMed]
  52. A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical sensors,” Opt. Commun.150(1-6), 5–8 (1998).
    [CrossRef]
  53. A. V. Kabashin, V. E. Kochergin, and P. I. Nikitin, “Surface plasmon resonance bio- and chemical sensors with phase-polarisation contrat,” Sens. Actuators B Chem.54(1-2), 51–56 (1999).
    [CrossRef]
  54. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett.75(25), 3917–3919 (1999).
    [CrossRef]

2012 (1)

B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B85(24), 245411 (2012).
[CrossRef]

2011 (3)

W. Hu and Sh. Zou, “Remarkable radiation efficiency through leakage modes in two-dimensional silver nanoparticle arrays,” J. Phys. Chem. C115(35), 17328–17333 (2011).
[CrossRef]

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
[CrossRef] [PubMed]

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol.6(7), 423–427 (2011).
[CrossRef] [PubMed]

2010 (8)

B. Auguié, X. Bendaña, W. Barnes, and F. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82(15), 155447 (2010).
[CrossRef]

E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett.105(26), 266801 (2010).
[CrossRef] [PubMed]

G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

E. Simsek, “Full analytical model for obtaining surface plasmon resonance modes of metal nanoparticle structures embedded in layered media,” Opt. Express18(2), 1722–1733 (2010).
[CrossRef] [PubMed]

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett.35(7), 956–958 (2010).
[CrossRef] [PubMed]

2009 (4)

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and super lensing,” Nat. Photonics3(7), 388–394 (2009).
[CrossRef]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gomez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80(20), 201401 (2009).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the Fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009).
[CrossRef] [PubMed]

2008 (4)

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101(8), 087403 (2008).
[CrossRef] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008).
[CrossRef] [PubMed]

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with Plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

2007 (2)

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79(4), 1267–1290 (2007).
[CrossRef]

M. Sarrazin and J. P. Vigneron, “Bounded modes to the rescue of optical transmission,” Europhys. News38(3), 27–31 (2007).
[CrossRef]

2005 (2)

S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett.403(1–3), 62–67 (2005).
[CrossRef]

V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one dimensional periodic arrays of nanospheres,” J. Phys. B.: Mol. Opt.38(7), L115–L121 (2005).
[CrossRef]

2004 (4)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys.121(24), 12606–12612 (2004).
[CrossRef] [PubMed]

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B70(12), 1–15 (2004).
[CrossRef]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

2003 (5)

N. Bonod, S. Enoch, L. Li, P. Evgeny, and M. Neviere, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express11(5), 482–490 (2003).
[CrossRef] [PubMed]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett.91(18), 183901 (2003).
[CrossRef] [PubMed]

M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B67(8), 085415 (2003).
[CrossRef]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90(2), 027402 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2000 (1)

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B62(23), 16100–16108 (2000).
[CrossRef]

1999 (2)

A. V. Kabashin, V. E. Kochergin, and P. I. Nikitin, “Surface plasmon resonance bio- and chemical sensors with phase-polarisation contrat,” Sens. Actuators B Chem.54(1-2), 51–56 (1999).
[CrossRef]

N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett.75(25), 3917–3919 (1999).
[CrossRef]

1998 (2)

A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical sensors,” Opt. Commun.150(1-6), 5–8 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

1997 (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

1995 (1)

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance-how it all started,” Biosens. Bioelectron.10(8), i–ix (1995).
[CrossRef] [PubMed]

1984 (1)

M. Kerker, “Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids,” Acc. Chem. Res.17(8), 271–277 (1984).
[CrossRef]

1980 (1)

P. K. Aravind and H. Metiu, “The enhancement of Raman and fluorescent intensity by small surface roughness. Changes in dipole emission,” Chem. Phys. Lett.74(2), 301–305 (1980).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

1965 (1)

1941 (1)

1907 (1)

L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond.A79, 399 (1907).

1902 (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag.4(21), 396–402 (1902).
[CrossRef]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with Plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Aravind, P. K.

P. K. Aravind and H. Metiu, “The enhancement of Raman and fluorescent intensity by small surface roughness. Changes in dipole emission,” Chem. Phys. Lett.74(2), 301–305 (1980).
[CrossRef]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Auguié, B.

B. Auguié, X. Bendaña, W. Barnes, and F. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82(15), 155447 (2010).
[CrossRef]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008).
[CrossRef] [PubMed]

Barnes, W.

B. Auguié, X. Bendaña, W. Barnes, and F. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82(15), 155447 (2010).
[CrossRef]

Barnes, W. L.

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bendaña, X.

B. Auguié, X. Bendaña, W. Barnes, and F. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82(15), 155447 (2010).
[CrossRef]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90(2), 027402 (2003).
[CrossRef] [PubMed]

Bonod, N.

Brongersma, S. H.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
[CrossRef] [PubMed]

Burrows, C. P.

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

Casiraghi, C.

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

Chichkov, B. N.

B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B85(24), 245411 (2012).
[CrossRef]

Chilkoti, A.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337,1072–1074 (2012).

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Christ, A.

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B70(12), 1–15 (2004).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett.91(18), 183901 (2003).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Chu, Y. Z.

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
[CrossRef]

Ciracì, C.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337,1072–1074 (2012).

Crego-Calama, M.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
[CrossRef] [PubMed]

Crozier, K. B.

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
[CrossRef]

Curto, G.

G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Enoch, S.

N. Bonod, S. Enoch, L. Li, P. Evgeny, and M. Neviere, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express11(5), 482–490 (2003).
[CrossRef] [PubMed]

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B62(23), 16100–16108 (2000).
[CrossRef]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Evgeny, P.

Evlyukhin, B.

B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B85(24), 245411 (2012).
[CrossRef]

Fano, U.

Fernández-Domínguez, A. I.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337,1072–1074 (2012).

Flach, S.

E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

García de Abajo, F.

B. Auguié, X. Bendaña, W. Barnes, and F. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82(15), 155447 (2010).
[CrossRef]

García de Abajo, F. J.

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79(4), 1267–1290 (2007).
[CrossRef]

Geim, A. K.

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Giannini, V.

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett.105(26), 266801 (2010).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the Fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gomez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80(20), 201401 (2009).
[CrossRef]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B70(12), 1–15 (2004).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett.91(18), 183901 (2003).
[CrossRef] [PubMed]

Gippius, N. A.

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B70(12), 1–15 (2004).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett.91(18), 183901 (2003).
[CrossRef] [PubMed]

Gomez Rivas, J.

G. Vecchi, V. Giannini, and J. Gomez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80(20), 201401 (2009).
[CrossRef]

Gómez Rivas, J.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
[CrossRef] [PubMed]

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett.105(26), 266801 (2010).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the Fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009).
[CrossRef] [PubMed]

Grigorenko, A. N.

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett.35(7), 956–958 (2010).
[CrossRef] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101(8), 087403 (2008).
[CrossRef] [PubMed]

Grigorenko, N.

N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett.75(25), 3917–3919 (1999).
[CrossRef]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with Plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Hessel, A.

Hill, R. T.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337,1072–1074 (2012).

Hu, W.

W. Hu and Sh. Zou, “Remarkable radiation efficiency through leakage modes in two-dimensional silver nanoparticle arrays,” J. Phys. Chem. C115(35), 17328–17333 (2011).
[CrossRef]

Hulst, N. F.

G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).

Inouye, Y.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and super lensing,” Nat. Photonics3(7), 388–394 (2009).
[CrossRef]

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Kabashin, A. V.

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett.35(7), 956–958 (2010).
[CrossRef] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett.75(25), 3917–3919 (1999).
[CrossRef]

A. V. Kabashin, V. E. Kochergin, and P. I. Nikitin, “Surface plasmon resonance bio- and chemical sensors with phase-polarisation contrat,” Sens. Actuators B Chem.54(1-2), 51–56 (1999).
[CrossRef]

A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical sensors,” Opt. Commun.150(1-6), 5–8 (1998).
[CrossRef]

Kawata, S.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and super lensing,” Nat. Photonics3(7), 388–394 (2009).
[CrossRef]

Kerker, M.

M. Kerker, “Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids,” Acc. Chem. Res.17(8), 271–277 (1984).
[CrossRef]

Kivshar, Y. S.

E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Klar, P.

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

Kochergin, V. E.

A. V. Kabashin, V. E. Kochergin, and P. I. Nikitin, “Surface plasmon resonance bio- and chemical sensors with phase-polarisation contrat,” Sens. Actuators B Chem.54(1-2), 51–56 (1999).
[CrossRef]

Kravets, V. G.

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett.35(7), 956–958 (2010).
[CrossRef] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101(8), 087403 (2008).
[CrossRef] [PubMed]

Kreuzer, M. P.

G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).

Kuhl, J.

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B70(12), 1–15 (2004).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett.91(18), 183901 (2003).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Li, L.

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance-how it all started,” Biosens. Bioelectron.10(8), i–ix (1995).
[CrossRef] [PubMed]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Lundström, I.

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance-how it all started,” Biosens. Bioelectron.10(8), i–ix (1995).
[CrossRef] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with Plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337,1072–1074 (2012).

Markel, V. A.

V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one dimensional periodic arrays of nanospheres,” J. Phys. B.: Mol. Opt.38(7), L115–L121 (2005).
[CrossRef]

Metiu, H.

P. K. Aravind and H. Metiu, “The enhancement of Raman and fluorescent intensity by small surface roughness. Changes in dipole emission,” Chem. Phys. Lett.74(2), 301–305 (1980).
[CrossRef]

Miroshnichenko, E.

E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Mock, J. J.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337,1072–1074 (2012).

Neviere, M.

N. Bonod, S. Enoch, L. Li, P. Evgeny, and M. Neviere, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express11(5), 482–490 (2003).
[CrossRef] [PubMed]

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B62(23), 16100–16108 (2000).
[CrossRef]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Nikitin, P. I.

A. V. Kabashin, V. E. Kochergin, and P. I. Nikitin, “Surface plasmon resonance bio- and chemical sensors with phase-polarisation contrat,” Sens. Actuators B Chem.54(1-2), 51–56 (1999).
[CrossRef]

N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett.75(25), 3917–3919 (1999).
[CrossRef]

A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical sensors,” Opt. Commun.150(1-6), 5–8 (1998).
[CrossRef]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance-how it all started,” Biosens. Bioelectron.10(8), i–ix (1995).
[CrossRef] [PubMed]

Odom, T. W.

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol.6(7), 423–427 (2011).
[CrossRef] [PubMed]

Offermans, P.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
[CrossRef] [PubMed]

Oliner, A. A.

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pendry, J. B.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337,1072–1074 (2012).

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Popov, E.

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B62(23), 16100–16108 (2000).
[CrossRef]

Quidant, R.

G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).

Rayleigh, L.

L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond.A79, 399 (1907).

Reinhardt, C.

B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B85(24), 245411 (2012).
[CrossRef]

Reinisch, R.

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B62(23), 16100–16108 (2000).
[CrossRef]

Rodriguez, S. R. K.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
[CrossRef] [PubMed]

Sarrazin, M.

M. Sarrazin and J. P. Vigneron, “Bounded modes to the rescue of optical transmission,” Europhys. News38(3), 27–31 (2007).
[CrossRef]

M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B67(8), 085415 (2003).
[CrossRef]

Schaafsma, M. C.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
[CrossRef] [PubMed]

Schatz, G. C.

S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett.403(1–3), 62–67 (2005).
[CrossRef]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys.121(24), 12606–12612 (2004).
[CrossRef] [PubMed]

Schedin, F.

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett.35(7), 956–958 (2010).
[CrossRef] [PubMed]

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101(8), 087403 (2008).
[CrossRef] [PubMed]

Schonbrun, E.

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with Plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Simsek, E.

Smith, D. R.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337,1072–1074 (2012).

Stockman, M. I.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90(2), 027402 (2003).
[CrossRef] [PubMed]

Taminiau, T. H.

G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Tikhodeev, S. G.

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B70(12), 1–15 (2004).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett.91(18), 183901 (2003).
[CrossRef] [PubMed]

Urzhumov, Y.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337,1072–1074 (2012).

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with Plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Vecchi, G.

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett.105(26), 266801 (2010).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the Fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gomez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80(20), 201401 (2009).
[CrossRef]

Verma, P.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and super lensing,” Nat. Photonics3(7), 388–394 (2009).
[CrossRef]

Vigneron, J. P.

M. Sarrazin and J. P. Vigneron, “Bounded modes to the rescue of optical transmission,” Europhys. News38(3), 27–31 (2007).
[CrossRef]

M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B67(8), 085415 (2003).
[CrossRef]

Vigoureux, J. M.

M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B67(8), 085415 (2003).
[CrossRef]

Volpe, G.

G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Wood, R. W.

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag.4(21), 396–402 (1902).
[CrossRef]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Yang, T.

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
[CrossRef]

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Zentgraf, T.

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B70(12), 1–15 (2004).
[CrossRef]

Zhang, Y.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
[CrossRef] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with Plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Zhou, W.

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol.6(7), 423–427 (2011).
[CrossRef] [PubMed]

Zoriniants, G.

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

Zou, S.

S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett.403(1–3), 62–67 (2005).
[CrossRef]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys.121(24), 12606–12612 (2004).
[CrossRef] [PubMed]

Zou, Sh.

W. Hu and Sh. Zou, “Remarkable radiation efficiency through leakage modes in two-dimensional silver nanoparticle arrays,” J. Phys. Chem. C115(35), 17328–17333 (2011).
[CrossRef]

Zywietz, U.

B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B85(24), 245411 (2012).
[CrossRef]

Acc. Chem. Res. (1)

M. Kerker, “Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids,” Acc. Chem. Res.17(8), 271–277 (1984).
[CrossRef]

ACS Nano (1)

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5(6), 5151–5157 (2011).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett.75(25), 3917–3919 (1999).
[CrossRef]

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
[CrossRef]

Biosens. Bioelectron. (1)

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance-how it all started,” Biosens. Bioelectron.10(8), i–ix (1995).
[CrossRef] [PubMed]

Chem. Phys. Lett. (2)

S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett.403(1–3), 62–67 (2005).
[CrossRef]

P. K. Aravind and H. Metiu, “The enhancement of Raman and fluorescent intensity by small surface roughness. Changes in dipole emission,” Chem. Phys. Lett.74(2), 301–305 (1980).
[CrossRef]

Europhys. News (1)

M. Sarrazin and J. P. Vigneron, “Bounded modes to the rescue of optical transmission,” Europhys. News38(3), 27–31 (2007).
[CrossRef]

J. Chem. Phys. (3)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys.121(24), 12606–12612 (2004).
[CrossRef] [PubMed]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Phys. B.: Mol. Opt. (1)

V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one dimensional periodic arrays of nanospheres,” J. Phys. B.: Mol. Opt.38(7), L115–L121 (2005).
[CrossRef]

J. Phys. Chem. C (1)

W. Hu and Sh. Zou, “Remarkable radiation efficiency through leakage modes in two-dimensional silver nanoparticle arrays,” J. Phys. Chem. C115(35), 17328–17333 (2011).
[CrossRef]

Nat. Mater. (3)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with Plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol.6(7), 423–427 (2011).
[CrossRef] [PubMed]

Nat. Photonics (1)

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and super lensing,” Nat. Photonics3(7), 388–394 (2009).
[CrossRef]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Opt. Commun. (1)

A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical sensors,” Opt. Commun.150(1-6), 5–8 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Philos. Mag. (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag.4(21), 396–402 (1902).
[CrossRef]

Phys. Rev. B (7)

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B70(12), 1–15 (2004).
[CrossRef]

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B62(23), 16100–16108 (2000).
[CrossRef]

M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B67(8), 085415 (2003).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gomez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80(20), 201401 (2009).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

B. Auguié, X. Bendaña, W. Barnes, and F. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82(15), 155447 (2010).
[CrossRef]

B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B85(24), 245411 (2012).
[CrossRef]

Phys. Rev. Lett. (7)

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the Fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102(14), 146807 (2009).
[CrossRef] [PubMed]

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett.105(26), 266801 (2010).
[CrossRef] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101(8), 087403 (2008).
[CrossRef] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008).
[CrossRef] [PubMed]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett.91(18), 183901 (2003).
[CrossRef] [PubMed]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90(2), 027402 (2003).
[CrossRef] [PubMed]

V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, C. Casiraghi, P. Klar, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Cascaded optical field enhancement in composite plasmonic nanostructures,” Phys. Rev. Lett.105(24), 246806 (2010).
[CrossRef] [PubMed]

Proc. R. Soc. Lond. (1)

L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond.A79, 399 (1907).

Rev. Mod. Phys. (2)

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79(4), 1267–1290 (2007).
[CrossRef]

E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Science (2)

G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (1)

A. V. Kabashin, V. E. Kochergin, and P. I. Nikitin, “Surface plasmon resonance bio- and chemical sensors with phase-polarisation contrat,” Sens. Actuators B Chem.54(1-2), 51–56 (1999).
[CrossRef]

Other (7)

“FDTD method for periodic structures,” in Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), Chap. 6.

A. Taflove and S. C. Hagness, “Computational Electrodynamics: The Finite Difference Time-Domain Method,” (Artech House Publishers, 2005), Chap. 8.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science337,1072–1074 (2012).

K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering: Physics and Applications, (Springer, 2006).

S. A. Maier Plasmonics: Fundamentals and Applications (Springer Science + Business Media LLC, 2007).

D. Maystre, in Electromagnetic Surface Modes edited by A. D. Boardman (Wiley, 1982), chap.17.

E. Simsek, “On the surface plasmon resonance modes of metal nanoparticle chains and arrays,” Plasmonics 4, 223{230 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Simulated total (blue) and 0-order (green) transmission and reflection spectra of a rectangular array of gold nanoparticles with lattice constants a x = 450 nm and a y = 250 nm (a) as well as ± 1 order power function (b). Transmission and reflection spectra for a single gold nanoparticle (red) (a). Inset shows schematic representation of the studied array.

Fig. 2
Fig. 2

Distributions of the electric field amplitude |Ey| for the structure with lattice constants a x = 450 nm, a y = 250 nm at the RA in (x, z) (a) and (y, z) (b) planes. Two unit cells are presented on the picture. |Ey| along the line through the center of the nanoparticle (marked by arrows) (c) and along the same line in far field simulation region (d).

Fig. 3
Fig. 3

Distributions of the electric field amplitude |Ey| for the structure with lattice constants a x = 450 nm, a y = 250 nm at the LPM excitation in (x, z) (a) and (y, z) (b) planes. Two unit cells are presented on the picture. |Ey| along the line (marked by arrows) through the point of the maximum field enhancement at the nanoparticule edge (c) and along the same line in far field simulation region (d).

Fig. 4
Fig. 4

Simulated total transmission and reflection spectra of the rectangular arrays of gold nanoparticles with fixed periodicity in y direction a Y = 250 and changing periodicity in x direction from 300 nm (bottom) to 750 nm (top) with 50 nm step. For clarity individual spectra are shifted by 0.1 units along y axis

Fig. 5
Fig. 5

Distributions of the electric field amplitude |Ey| in (x,y) plane that cuts four unit cells in the middle: for RA of the structure with a x = 450 nm (a) and LPM of the structures with a x = 300 nm (b), 450 nm (c), 650 nm (d). Below each plot |Ey| is depicted along the line shown by horizontal arrows. |Ey| along the line shown by vertical arrows for the same structures (e). Maximum |Ey| enhancement at the boundary and |Ey| value in the point between nanoparticles for the structures with a x changing from 300 nm to 800 nm with 50 nm step (f). For all plots a y is fixed to 250 nm. Inset shows the orientation of wave vector k and electric field vector E of the incident wave.

Tables (1)

Tables Icon

Table 1 Comparison of electric field enhancement between regime of strong coupling and regime of weak coupling for three values of lattice constant a y

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E c (x,y,z)= E c (x+ a x ,y,z) e i k x a x
H c (x,y,z)= H c (x+ a x ,y,z) e i k x a x
E c (x,y,z)= E c (x,y+ a y ,z) e i k y a y
H c (x,y,z)= H c (x,y+ a y ,z) e i k y a y
( E 1 , H 1 )=Re( E c , H c )
( E 2 , H 2 )=Im( E c , H c )

Metrics