Abstract

We present a narrow-bandwidth, widely tunable fiber laser source for coherent anti-Stokes Raman scattering (CARS) spectro-microscopy. The required, synchronized, two-color pulse trains are generated by optical-parametric amplification in a photonic-crystal fiber (PCF). The four-wave-mixing process in the PCF is pumped by a 140ps, alignment-free fiber laser system, and it is seeded by a tunable continuous-wave laser; hence, a high spectral resolution of up to 1cm−1 is obtained in the CARS process. Since the PCF is pumped close to its zero-dispersion wavelength, a broad parametric gain can be accessed, resulting in a large tuning range for the generated signal and idler wavelengths. CARS spectroscopy and microscopy is demonstrated, probing different molecular vibrational modes within the accessible region between 1200cm−1 and 3800cm−1.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science330(6009), 1368–1370 (2010).
    [CrossRef] [PubMed]
  2. C. L. Evans and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine,” Annual Rev. Analyt. Chem. (Palo Alto Calif)1(1), 883–909 (2008).
    [CrossRef]
  3. C. Krafft, B. Dietzek, and J. Popp, “Raman and CARS microspectroscopy of cells and tissues,” The Analyst134(6), 1046–1057 (2009).
    [CrossRef] [PubMed]
  4. G. Krauss, T. Hanke, A. Sell, D. Träutlein, A. Leitenstorfer, R. Selm, M. Winterhalder, and A. Zumbusch, “Compact coherent anti-Stokes Raman scattering microscope based on a picosecond two-color Er:fiber laser system,” Opt. Lett.34(18), 2847–2849 (2009).
    [CrossRef] [PubMed]
  5. R. Selm, M. Winterhalder, A. Zumbusch, G. Krauss, T. Hanke, A. Sell, and A. Leitenstorfer, “Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er:fiber laser system,” Opt. Lett.35(19), 3282–3284 (2010).
    [CrossRef] [PubMed]
  6. T. Gottschall, M. Baumgartl, A. Sagnier, J. Rothhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber-based source for multiplex-CARS microscopy based on degenerate four-wave mixing,” Opt. Express20(11), 12004–12013 (2012).
    [CrossRef] [PubMed]
  7. M. Marangoni, A. Gambetta, C. Manzoni, V. Kumar, R. Ramponi, and G. Cerullo, “Fiber-format CARS spectroscopy by spectral compression of femtosecond pulses from a single laser oscillator,” Opt. Lett.34(21), 3262–3264 (2009).
    [CrossRef] [PubMed]
  8. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express12(2), 299–309 (2004).
    [CrossRef] [PubMed]
  9. D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett.34(22), 3499–3501 (2009).
    [CrossRef] [PubMed]
  10. M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express20(4), 4484–4493 (2012).
    [CrossRef] [PubMed]
  11. M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing,” Opt. Express20(19), 21010–21018 (2012).
    [CrossRef] [PubMed]
  12. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  13. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  14. S. Hädrich, T. Gottschall, J. Rothhardt, J. Limpert, and A. Tünnermann, “CW seeded optical parametric amplifier providing wavelength and pulse duration tunable nearly transform limited pulses,” Opt. Express18(3), 3158–3167 (2010).
    [CrossRef] [PubMed]
  15. P. J. Mosley, S. A. Bateman, L. Lavoute, and W. J. Wadsworth, “Low-noise, high-brightness, tunable source of picosecond pulsed light in the near-infrared and visible,” Opt. Express19(25), 25337–25345 (2011).
    [CrossRef]
  16. S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. S. Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.37(10), 1652–1654 (2012).3382054
    [CrossRef] [PubMed]
  17. G. A. Ball and W. W. Morey, “Compression-tuned single-frequency Bragg grating fiber laser,” Opt. Lett.19(23), 1979–1981 (1994).
    [CrossRef] [PubMed]
  18. D. G. Steel, R. C. Lind, J. F. Lam, and C. R. Giuliano, “Polarization rotation and thermal motion studies via resonant degenerate four-wave-mixing,” Appl. Phys. Lett.35(5), 376–379 (1979).
    [CrossRef]
  19. G. Bergner, S. Chatzipapadopoulos, D. Akimov, B. Dietzek, D. Malsch, T. Henkel, S. Schlücker, and J. Popp, “Quantitative CARS microscopic detection of analytes and their isotopomers in a two-channel microfluidic chip,” Small5(24), 2816–2818 (2009).
    [CrossRef] [PubMed]

2012

2011

2010

2009

2008

C. L. Evans and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine,” Annual Rev. Analyt. Chem. (Palo Alto Calif)1(1), 883–909 (2008).
[CrossRef]

2004

1994

1979

D. G. Steel, R. C. Lind, J. F. Lam, and C. R. Giuliano, “Polarization rotation and thermal motion studies via resonant degenerate four-wave-mixing,” Appl. Phys. Lett.35(5), 376–379 (1979).
[CrossRef]

Abreu-Afonso, J.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Akimov, D.

G. Bergner, S. Chatzipapadopoulos, D. Akimov, B. Dietzek, D. Malsch, T. Henkel, S. Schlücker, and J. Popp, “Quantitative CARS microscopic detection of analytes and their isotopomers in a two-channel microfluidic chip,” Small5(24), 2816–2818 (2009).
[CrossRef] [PubMed]

Ball, G. A.

Bateman, S. A.

Baumgartl, M.

Bergner, G.

G. Bergner, S. Chatzipapadopoulos, D. Akimov, B. Dietzek, D. Malsch, T. Henkel, S. Schlücker, and J. Popp, “Quantitative CARS microscopic detection of analytes and their isotopomers in a two-channel microfluidic chip,” Small5(24), 2816–2818 (2009).
[CrossRef] [PubMed]

Biancalana, F.

Birks, T.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2008).

Cerullo, G.

Chatzipapadopoulos, S.

G. Bergner, S. Chatzipapadopoulos, D. Akimov, B. Dietzek, D. Malsch, T. Henkel, S. Schlücker, and J. Popp, “Quantitative CARS microscopic detection of analytes and their isotopomers in a two-channel microfluidic chip,” Small5(24), 2816–2818 (2009).
[CrossRef] [PubMed]

Chemnitz, M.

Dietzek, B.

Díez, A.

Evans, C. L.

C. L. Evans and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine,” Annual Rev. Analyt. Chem. (Palo Alto Calif)1(1), 883–909 (2008).
[CrossRef]

Freudiger, C. W.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

Fu, D.

Gambetta, A.

Giuliano, C. R.

D. G. Steel, R. C. Lind, J. F. Lam, and C. R. Giuliano, “Polarization rotation and thermal motion studies via resonant degenerate four-wave-mixing,” Appl. Phys. Lett.35(5), 376–379 (1979).
[CrossRef]

Gottschall, T.

Hädrich, S.

Hanke, T.

Henkel, T.

G. Bergner, S. Chatzipapadopoulos, D. Akimov, B. Dietzek, D. Malsch, T. Henkel, S. Schlücker, and J. Popp, “Quantitative CARS microscopic detection of analytes and their isotopomers in a two-channel microfluidic chip,” Small5(24), 2816–2818 (2009).
[CrossRef] [PubMed]

Herda, R.

Holtom, G. R.

S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. S. Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.37(10), 1652–1654 (2012).3382054
[CrossRef] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

Jauregui, C.

Joly, N.

Knight, J.

Kong, L.

Krafft, C.

C. Krafft, B. Dietzek, and J. Popp, “Raman and CARS microspectroscopy of cells and tissues,” The Analyst134(6), 1046–1057 (2009).
[CrossRef] [PubMed]

Krauss, G.

Kumar, V.

Lam, J. F.

D. G. Steel, R. C. Lind, J. F. Lam, and C. R. Giuliano, “Polarization rotation and thermal motion studies via resonant degenerate four-wave-mixing,” Appl. Phys. Lett.35(5), 376–379 (1979).
[CrossRef]

Lavoute, L.

Lefrancois, S.

Leitenstorfer, A.

Limpert, J.

Lind, R. C.

D. G. Steel, R. C. Lind, J. F. Lam, and C. R. Giuliano, “Polarization rotation and thermal motion studies via resonant degenerate four-wave-mixing,” Appl. Phys. Lett.35(5), 376–379 (1979).
[CrossRef]

Malsch, D.

G. Bergner, S. Chatzipapadopoulos, D. Akimov, B. Dietzek, D. Malsch, T. Henkel, S. Schlücker, and J. Popp, “Quantitative CARS microscopic detection of analytes and their isotopomers in a two-channel microfluidic chip,” Small5(24), 2816–2818 (2009).
[CrossRef] [PubMed]

Manzoni, C.

Marangoni, M.

Meyer, T.

Morey, W. W.

Mosley, P. J.

Nodop, D.

Popp, J.

Ramponi, R.

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

Rothhardt, J.

Rothhardt, M.

Russell, P.

Saar, B. G.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

Sagnier, A.

Schimpf, D.

Schlücker, S.

G. Bergner, S. Chatzipapadopoulos, D. Akimov, B. Dietzek, D. Malsch, T. Henkel, S. Schlücker, and J. Popp, “Quantitative CARS microscopic detection of analytes and their isotopomers in a two-channel microfluidic chip,” Small5(24), 2816–2818 (2009).
[CrossRef] [PubMed]

Schneider, P.

Sell, A.

Selm, R.

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

Steel, D. G.

D. G. Steel, R. C. Lind, J. F. Lam, and C. R. Giuliano, “Polarization rotation and thermal motion studies via resonant degenerate four-wave-mixing,” Appl. Phys. Lett.35(5), 376–379 (1979).
[CrossRef]

Träutlein, D.

Tünnermann, A.

Wadsworth, W.

Wadsworth, W. J.

Winterhalder, M.

Wise, F. W.

Xie, X. S.

S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. S. Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.37(10), 1652–1654 (2012).3382054
[CrossRef] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

C. L. Evans and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine,” Annual Rev. Analyt. Chem. (Palo Alto Calif)1(1), 883–909 (2008).
[CrossRef]

Zach, A.

Zumbusch, A.

Annual Rev. Analyt. Chem. (Palo Alto Calif)

C. L. Evans and X. S. Xie, “Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine,” Annual Rev. Analyt. Chem. (Palo Alto Calif)1(1), 883–909 (2008).
[CrossRef]

Appl. Phys. Lett.

D. G. Steel, R. C. Lind, J. F. Lam, and C. R. Giuliano, “Polarization rotation and thermal motion studies via resonant degenerate four-wave-mixing,” Appl. Phys. Lett.35(5), 376–379 (1979).
[CrossRef]

Opt. Express

T. Gottschall, M. Baumgartl, A. Sagnier, J. Rothhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber-based source for multiplex-CARS microscopy based on degenerate four-wave mixing,” Opt. Express20(11), 12004–12013 (2012).
[CrossRef] [PubMed]

W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express12(2), 299–309 (2004).
[CrossRef] [PubMed]

M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express20(4), 4484–4493 (2012).
[CrossRef] [PubMed]

M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing,” Opt. Express20(19), 21010–21018 (2012).
[CrossRef] [PubMed]

S. Hädrich, T. Gottschall, J. Rothhardt, J. Limpert, and A. Tünnermann, “CW seeded optical parametric amplifier providing wavelength and pulse duration tunable nearly transform limited pulses,” Opt. Express18(3), 3158–3167 (2010).
[CrossRef] [PubMed]

P. J. Mosley, S. A. Bateman, L. Lavoute, and W. J. Wadsworth, “Low-noise, high-brightness, tunable source of picosecond pulsed light in the near-infrared and visible,” Opt. Express19(25), 25337–25345 (2011).
[CrossRef]

Opt. Lett.

S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. S. Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.37(10), 1652–1654 (2012).3382054
[CrossRef] [PubMed]

G. A. Ball and W. W. Morey, “Compression-tuned single-frequency Bragg grating fiber laser,” Opt. Lett.19(23), 1979–1981 (1994).
[CrossRef] [PubMed]

D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett.34(22), 3499–3501 (2009).
[CrossRef] [PubMed]

M. Marangoni, A. Gambetta, C. Manzoni, V. Kumar, R. Ramponi, and G. Cerullo, “Fiber-format CARS spectroscopy by spectral compression of femtosecond pulses from a single laser oscillator,” Opt. Lett.34(21), 3262–3264 (2009).
[CrossRef] [PubMed]

G. Krauss, T. Hanke, A. Sell, D. Träutlein, A. Leitenstorfer, R. Selm, M. Winterhalder, and A. Zumbusch, “Compact coherent anti-Stokes Raman scattering microscope based on a picosecond two-color Er:fiber laser system,” Opt. Lett.34(18), 2847–2849 (2009).
[CrossRef] [PubMed]

R. Selm, M. Winterhalder, A. Zumbusch, G. Krauss, T. Hanke, A. Sell, and A. Leitenstorfer, “Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er:fiber laser system,” Opt. Lett.35(19), 3282–3284 (2010).
[CrossRef] [PubMed]

Science

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

Small

G. Bergner, S. Chatzipapadopoulos, D. Akimov, B. Dietzek, D. Malsch, T. Henkel, S. Schlücker, and J. Popp, “Quantitative CARS microscopic detection of analytes and their isotopomers in a two-channel microfluidic chip,” Small5(24), 2816–2818 (2009).
[CrossRef] [PubMed]

The Analyst

C. Krafft, B. Dietzek, and J. Popp, “Raman and CARS microspectroscopy of cells and tissues,” The Analyst134(6), 1046–1057 (2009).
[CrossRef] [PubMed]

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

R. W. Boyd, Nonlinear Optics (Academic, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic setup of the seeded fiber optical parametric amplifier. Pump and seed will be coupled into a PCF with a length of 0.35m. Labels: BP - band pass, DM - dichroic mirror, HWP - half-wave plate. The graphs below show the characteristics of the incident laser pulses: (a) spectrum of the Ti:Sa seed signal; (b) spectrum of the fiber laser pump; (c) temporal shape of the pulsed pump

Fig. 2
Fig. 2

Simulation results for a 0.35m long 5μm core PCF pumped with 2.5kW. (a) shows the signal and idler wavelength position for the gain maximum as a function of the pump wavelength. The coloured areas illustrate the theoretical FWHM bandwidth of each band. (b) shows the calculated frequency separation between signal and pump or signal and idler as a function of the pump wavelength. The blue boxes illustrate the theoretically accessible Raman excitation regions by mechanically tuning the internal FBG by ±3nm (yellow box).

Fig. 3
Fig. 3

(a) Spectrum measured at the output of the PCF for three cases: high pump power without seed (light gray), high pump power with 5mW seed (dark gray) and lower pump power with 5mW seed (red). In the first and in the last case the signal output power was the same (33mW). The spectra below show (b) signal (including unamplified seed spectrum), (c) pump and (d) idler for the last case in more detail. The frequency separation between signal and pump is within the so-called fingerprint region. This frequency separation can be increased by a factor of two when using signal and idler.

Fig. 4
Fig. 4

(a) Measured OPG spectrum (350mW pump power) (dashed line, gray area) and measured idler power (300mW pump power, 5mW seed power) at the output of the PCF for different signal seed wavelengths (red circles) with respective Gaussian fit (red). Depending on the chosen wavelength pair, two excitation frequency bands (lower and upper abscissa) are addressable. (b) OPG spectra for different pump wavelengths and 350mW pump power.

Fig. 5
Fig. 5

OPG: temporal pulse shape of DFWM pump (black, red) and signal (orange) in case of optical parametric generation (no seed). OPA: temporal pulse shape of DFWM pump (black, red) and signal (orange) in case of optical parametric amplification of a 5mW cw seed signal.

Fig. 6
Fig. 6

(a) Power of the amplified signal (cw background subtracted) over incident seed power. (b) Development of the temporal signal pulse shape with increasing seed. (c) Development of the signal output spectrum with increasing pump power and constant 5mW seed power.

Fig. 7
Fig. 7

Raman and CARS intensity of a mixture of n-hexane and toluol as a function of the wavenumber. The left panel displays the deformation vibration spectrum around 1430cm−1 belonging to n-hexane, whereas the right one corresponds to the CH stretching around 2900cm−1. All curves are normalised to their maxima.

Fig. 8
Fig. 8

Schematic setup of the CARS microscope. L: achromatic lenses, LP: long pass filter at 850nm, BP: band pass filter at 1040nm, SP: short pass filter at 900nm, MM: moveable xy-scanning mirror, PMT: photo multiplier tube.

Fig. 9
Fig. 9

Multimodal nonlinear microscopic image of an atherosclerotic plaque deposition at a human artery wall. In panel (a) the combined CARS microscopic images acquired at the aliphatic methylene stretching vibration at 2845cm−1 (blue) and the methyl stretching vibration at 2930cm−1 (green) for imaging the lipid and protein distribution are contrasted to the combined TPEF and SHG signal of collagen and elastin (red). Lipids are coloured turquoise due to their high CH2/CH3, while proteins appear greenish. The single channels are separately displayed in panels (b)–(d). The images of the area of 450 × 450 μm2 were acquired (2048 × 2048 pixels) illuminating the sample with 30mW of laser power.

Fig. 10
Fig. 10

Line intensity profiles across the selected region of the sample for vibrationally resonant and off-resonant excitation.

Metrics