Abstract

In this study, we found that the axial response curve of divided-aperture confocal microscopy has a shift while the point detector has a transverse offset from the optical axis. Based on this, a novel laser divided-aperture differential confocal sensing technology (LDDCST) with absolute zero and high axial resolution, as well as an LDDCST-based sensor, is proposed. LDDCST sets two micro-regions as virtual pinholes that are symmetrical to the optical axis along the xd direction on the focal plane of the divided-aperture confocal system to achieve the spot-division detection and to simplify the detection system, uses differential subtraction of two intensity responses simultaneously detected from the two micro-regions to achieve high axial resolution absolute measurement and low noise, and considers both resolution and measurement range by adjusting virtual pinholes in software. Theoretical analyses and packaged LDDCST sensor experiments indicate that LDDCST has high axial resolution as well as strong anti-interference and sectioning detection capability.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Li, K. Herrmann, and F. Pohlenz, “Lateral scanning confocal microscopy for the determination of in-plane displacements of microelectromechanical systems devices,” Opt. Lett.32(12), 1743–1745 (2007).
    [CrossRef] [PubMed]
  2. J. F. Aguilar, M. Lera, and C. J. R. Sheppard, “Imaging of spheres and surface profiling by confocal microscopy,” Appl. Opt.39(25), 4621–4628 (2000).
    [CrossRef] [PubMed]
  3. H. Yu, T. Chen, and J. Qu, “Improving FRET efficiency measurement in confocal microscopy imaging,” Chin. Opt. Lett.8(10), 947–949 (2010).
    [CrossRef]
  4. C. L. Arrasmith, D. L. Dickensheets, and A. Mahadevan-Jansen, “MEMS-based handheld confocal microscope for in-vivo skin imaging,” Opt. Express18(4), 3805–3819 (2010).
    [CrossRef] [PubMed]
  5. C. J. Koester, “Scanning mirror microscope with optical sectioning characteristics: applications in ophthalmology,” Appl. Opt.19(11), 1749–1757 (1980).
    [CrossRef] [PubMed]
  6. C. J. Koester, S. M. Khanna, H. D. Rosskothen, R. B. Tackaberry, and M. Ulfendahl, “Confocal slit divided-aperture microscope: applications in ear research,” Appl. Opt.33(4), 702–708 (1994).
    [CrossRef] [PubMed]
  7. P. J. Dwyer, C. A. DiMarzio, J. M. Zavislan, W. J. Fox, and M. Rajadhyaksha, “Confocal reflectance theta line scanning microscope for imaging human skin in vivo,” Opt. Lett.31(7), 942–944 (2006).
    [CrossRef] [PubMed]
  8. P. J. Dwyer, C. A. DiMarzio, and M. Rajadhyaksha, “Confocal theta line-scanning microscope for imaging human tissues,” Appl. Opt.46(10), 1843–1851 (2007).
    [CrossRef] [PubMed]
  9. C. J. R. Sheppard, W. Gong, and K. Si, “The divided aperture technique for microscopy through scattering media,” Opt. Express16(21), 17031–17038 (2008).
    [CrossRef] [PubMed]
  10. K. Si, W. Gong, and C. J. R. Sheppard, “Three-dimensional coherent transfer function for a confocal microscope with two D-shaped pupils,” Appl. Opt.48(5), 810–817 (2009).
    [CrossRef] [PubMed]
  11. W. Gong, K. Si, and C. J. R. Sheppard, “Optimization of axial resolution in a confocal microscope with D-shaped apertures,” Appl. Opt.48(20), 3998–4002 (2009).
    [CrossRef] [PubMed]
  12. W. Gong, K. Si, and C. J. R. Sheppard, “Improvements in confocal microscopy imaging using serrated divided apertures,” Opt. Commun.282(19), 3846–3849 (2009).
    [CrossRef]
  13. W. Zhao, J. Tan, and L. Qiu, “Bipolar absolute differential confocal approach to higher spatial resolution,” Opt. Express12(21), 5013–5021 (2004).
    [CrossRef] [PubMed]
  14. M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific Publishing, 1996), chap. 3.

2010 (2)

2009 (3)

2008 (1)

2007 (2)

2006 (1)

2004 (1)

2000 (1)

1994 (1)

1980 (1)

Aguilar, J. F.

Arrasmith, C. L.

Chen, T.

Dickensheets, D. L.

DiMarzio, C. A.

Dwyer, P. J.

Fox, W. J.

Gong, W.

Herrmann, K.

Khanna, S. M.

Koester, C. J.

Lera, M.

Li, Z.

Mahadevan-Jansen, A.

Pohlenz, F.

Qiu, L.

Qu, J.

Rajadhyaksha, M.

Rosskothen, H. D.

Sheppard, C. J. R.

Si, K.

Tackaberry, R. B.

Tan, J.

Ulfendahl, M.

Yu, H.

Zavislan, J. M.

Zhao, W.

Appl. Opt. (6)

Chin. Opt. Lett. (1)

Opt. Commun. (1)

W. Gong, K. Si, and C. J. R. Sheppard, “Improvements in confocal microscopy imaging using serrated divided apertures,” Opt. Commun.282(19), 3846–3849 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Other (1)

M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific Publishing, 1996), chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

LDDCST principle.

Fig. 2
Fig. 2

Theoretical axial response curves with vM = −4, 0, and 4.

Fig. 3
Fig. 3

Theoretical response curves of LDDCST.

Fig. 4
Fig. 4

Variation of gradient curve k(0,vM) with vM.

Fig. 5
Fig. 5

LDDCST property curves with different offset vM.

Fig. 6
Fig. 6

LDDCST and CM property curves.

Fig. 7
Fig. 7

The LDDCST sensor we developed (a) Schematic diagram of LDDCST sensor and (b) Photo of packaged sensor.

Fig. 8
Fig. 8

Axial properties experimental curves of LDDCST sensor (a) experimental curves of ILDDCST(z,C) with different vM and (b) experimental curves of IL(z,C) with different vM.

Fig. 9
Fig. 9

Lateral properties curves of LDDCST sensor.

Fig. 10
Fig. 10

Measurement of standard step by AFM.

Fig. 11
Fig. 11

Measurements of standard step scanned by the LDDCST sensor.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

h i ( v x , v y ,u)= S 1 P( v ξ , v η )exp[ iu 2 ( v ξ 2 + v η 2 ) ] exp[ i( v x v ξ + v y v η ) ]d v ξ d v η ,
h c ( v x , v y ,u, v M )= S 2 P( v ξ , v η )exp[ iu 2 ( v ξ 2 + v η 2 ) ] exp{ i[ ( v x + v M ) v ξ + v y v η ] }d v ξ d v η ,
I i ( u, v M )= | h i ( 0,0,u ) h c ( 0,0,u, v M ) | 2 .
I LDDCST ( u, v M )= I A (u, v M ) I B (u, v M ).
Δ axial =k( u, v M )= I LDDCST ( u, v M ) u ,
Δ axial =k( u, v M )=k( 0, v M ).
I L ( u, v M )= [ η I A (u, v M )+ε ][ η I B (u, v M )+ε ] [ η I A (u, v M )+ε ]+[ η I B (u, v M )+ε ] = I A (u, v M ) I B (u, v M ) I A (u, v M )+ I B (u, v M )+2ε/η .
I L ( u, v M ) I A (u, v M ) I B (u, v M ) I A (u, v M )+ I B (u, v M ) .
I L ( z,C ) I A (z,C) I B (z,C) I A (z,C)+ I B (z,C) = I A (z, v M C 0 ) I B (z, v M C 0 ) I A (z, v M C 0 )+ I B (z, v M C 0 ) .

Metrics