Abstract

We propose an innovative active imaging device named gain-assisted hybrid-superlens hyperlens and examine its resolving power theoretically. This semi-cylindrical device consists of a core of semi-cylindrical super-lens and a half cylindrical outer shell of hyperlens. Both the superlens and hyperlens parts of the device are appropriately designed multi-layered metal-dielectric structures having indefinite eigenvalues of dielectric tensors. The dielectric layers of the hyperlens are doped with Coumarin, which play the role of gain medium. The gain medium is analyzed thoroughly using a generic four-level system model, and the permittivity of the gain medium is extracted from this analysis for simulating the imaging characteristics of the device. According to our simulation at wavelength of 365 nm, an excellent resolution power much better than the diffraction limit value can be achieved.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  2. D. P. Tsai and W. C. Lin, “Probing the near fields of the super-resolution near-field optical structure,” Appl. Phys. Lett. 77(10), 1413–1415 (2000).
    [CrossRef]
  3. D. P. Tsai, C. W. Yang, W. C. Lin, F. H. Ho, H. J. Huang, M. Y. Chen, T. F. Tseng, C. H. Lee, and C. J. Yeh, “Dynamic aperture of near-field super resolution structures,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 982–983 (2000).
    [CrossRef]
  4. W. C. Liu, C. Y. Wen, K. H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett. 78(6), 685–687 (2001).
    [CrossRef]
  5. T. C. Chu, D. P. Tsai, and W. C. Liu, “Readout contrast beyond diffraction limit by a slab of random nanostructures,” Opt. Express 15(1), 12–23 (2007).
    [CrossRef] [PubMed]
  6. K. P. Chiu, K. F. Lai, and D. P. Tsai, “Application of surface polariton coupling between nano recording marks to optical data storage,” Opt. Express 16(18), 13885–13892 (2008).
    [CrossRef] [PubMed]
  7. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005).
    [CrossRef] [PubMed]
  8. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
    [CrossRef]
  9. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
    [CrossRef]
  10. W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
    [CrossRef]
  11. D. Schurig and D. R. Smith, “Sub-diffraction imaging with compensating bilayers,” New J. Phys. 7, 162 (2005).
    [CrossRef]
  12. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
    [CrossRef] [PubMed]
  13. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
    [CrossRef] [PubMed]
  14. H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for Imaging below the diffraction limit,” Opt. Express 15(24), 15886–15891 (2007).
    [CrossRef] [PubMed]
  15. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [CrossRef] [PubMed]
  16. S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102(16), 163903 (2009).
    [CrossRef] [PubMed]
  17. I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
    [CrossRef] [PubMed]
  18. N. Papasimakis, Z. Q. Luo, Z. X. Shen, F. De Angelis, E. Di Fabrizio, A. E. Nikolaenko, and N. I. Zheludev, “Graphene in a photonic metamaterial,” Opt. Express 18(8), 8353–8359 (2010).
    [CrossRef] [PubMed]
  19. C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
    [CrossRef] [PubMed]
  20. A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79(24), 241104 (2009).
    [CrossRef]
  21. S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett. 105(12), 127401 (2010).
    [CrossRef] [PubMed]
  22. F. J. Duarte and L. W. Hillman, “Dye laser principles with applications” (1990), See appendix.
  23. G. Somasundaram and A. Ramalingam, “Gain studies of Coumarin 1 dye-doped polymer laser,” J. Lumin. 90(1-2), 1–5 (2000).
    [CrossRef]
  24. H. E. Zimmerman, J. H. Penn, and C. W. Carpenter, “Evaluation of single-photon-counting measurements of excited-state lifetimes,” Proc. Natl. Acad. Sci. U.S.A. 79(6), 2128–2132 (1982).
    [CrossRef] [PubMed]
  25. B. H. Cheng, Y. Z. Ho, Y. C. Lan, and D. P. Tsai, “Optical hybrid-superlens-hyperlens for superresolution imaging,” IEEE J. Sel. Top. Quantum Electron. (submitted).

2011

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[CrossRef] [PubMed]

2010

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett. 105(12), 127401 (2010).
[CrossRef] [PubMed]

N. Papasimakis, Z. Q. Luo, Z. X. Shen, F. De Angelis, E. Di Fabrizio, A. E. Nikolaenko, and N. I. Zheludev, “Graphene in a photonic metamaterial,” Opt. Express 18(8), 8353–8359 (2010).
[CrossRef] [PubMed]

2009

A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79(24), 241104 (2009).
[CrossRef]

S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102(16), 163903 (2009).
[CrossRef] [PubMed]

2008

2007

T. C. Chu, D. P. Tsai, and W. C. Liu, “Readout contrast beyond diffraction limit by a slab of random nanostructures,” Opt. Express 15(1), 12–23 (2007).
[CrossRef] [PubMed]

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for Imaging below the diffraction limit,” Opt. Express 15(24), 15886–15891 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

2006

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[CrossRef]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[CrossRef] [PubMed]

2005

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
[CrossRef]

D. Schurig and D. R. Smith, “Sub-diffraction imaging with compensating bilayers,” New J. Phys. 7, 162 (2005).
[CrossRef]

D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005).
[CrossRef] [PubMed]

2001

W. C. Liu, C. Y. Wen, K. H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett. 78(6), 685–687 (2001).
[CrossRef]

2000

G. Somasundaram and A. Ramalingam, “Gain studies of Coumarin 1 dye-doped polymer laser,” J. Lumin. 90(1-2), 1–5 (2000).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

D. P. Tsai and W. C. Lin, “Probing the near fields of the super-resolution near-field optical structure,” Appl. Phys. Lett. 77(10), 1413–1415 (2000).
[CrossRef]

D. P. Tsai, C. W. Yang, W. C. Lin, F. H. Ho, H. J. Huang, M. Y. Chen, T. F. Tseng, C. H. Lee, and C. J. Yeh, “Dynamic aperture of near-field super resolution structures,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 982–983 (2000).
[CrossRef]

1982

H. E. Zimmerman, J. H. Penn, and C. W. Carpenter, “Evaluation of single-photon-counting measurements of excited-state lifetimes,” Proc. Natl. Acad. Sci. U.S.A. 79(6), 2128–2132 (1982).
[CrossRef] [PubMed]

Alekseyev, L. V.

Anlage, S. M.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[CrossRef] [PubMed]

Blaikie, R. J.

Bröll, M.

S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102(16), 163903 (2009).
[CrossRef] [PubMed]

Cai, W.

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
[CrossRef]

Carpenter, C. W.

H. E. Zimmerman, J. H. Penn, and C. W. Carpenter, “Evaluation of single-photon-counting measurements of excited-state lifetimes,” Proc. Natl. Acad. Sci. U.S.A. 79(6), 2128–2132 (1982).
[CrossRef] [PubMed]

Chen, K. H.

W. C. Liu, C. Y. Wen, K. H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett. 78(6), 685–687 (2001).
[CrossRef]

Chen, M. Y.

D. P. Tsai, C. W. Yang, W. C. Lin, F. H. Ho, H. J. Huang, M. Y. Chen, T. F. Tseng, C. H. Lee, and C. J. Yeh, “Dynamic aperture of near-field super resolution structures,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 982–983 (2000).
[CrossRef]

Cheng, B. H.

B. H. Cheng, Y. Z. Ho, Y. C. Lan, and D. P. Tsai, “Optical hybrid-superlens-hyperlens for superresolution imaging,” IEEE J. Sel. Top. Quantum Electron. (submitted).

Chiu, K. P.

Chu, T. C.

Davis, C. C.

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

De Angelis, F.

Di Fabrizio, E.

Engheta, N.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

Fang, A.

A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79(24), 241104 (2009).
[CrossRef]

Genov, D. A.

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
[CrossRef]

Hamm, J. M.

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett. 105(12), 127401 (2010).
[CrossRef] [PubMed]

Heitmann, D.

S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102(16), 163903 (2009).
[CrossRef] [PubMed]

Hess, O.

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett. 105(12), 127401 (2010).
[CrossRef] [PubMed]

Heyn, C.

S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102(16), 163903 (2009).
[CrossRef] [PubMed]

Ho, F. H.

D. P. Tsai, C. W. Yang, W. C. Lin, F. H. Ho, H. J. Huang, M. Y. Chen, T. F. Tseng, C. H. Lee, and C. J. Yeh, “Dynamic aperture of near-field super resolution structures,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 982–983 (2000).
[CrossRef]

Ho, Y. Z.

B. H. Cheng, Y. Z. Ho, Y. C. Lan, and D. P. Tsai, “Optical hybrid-superlens-hyperlens for superresolution imaging,” IEEE J. Sel. Top. Quantum Electron. (submitted).

Huang, H. J.

D. P. Tsai, C. W. Yang, W. C. Lin, F. H. Ho, H. J. Huang, M. Y. Chen, T. F. Tseng, C. H. Lee, and C. J. Yeh, “Dynamic aperture of near-field super resolution structures,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 982–983 (2000).
[CrossRef]

Hung, Y.-J.

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Jacob, Z.

Koschny, T.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[CrossRef] [PubMed]

Koschny, Th.

A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79(24), 241104 (2009).
[CrossRef]

Krohn, A.

S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102(16), 163903 (2009).
[CrossRef] [PubMed]

Kurter, C.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[CrossRef] [PubMed]

Lai, K. F.

Lan, Y. C.

B. H. Cheng, Y. Z. Ho, Y. C. Lan, and D. P. Tsai, “Optical hybrid-superlens-hyperlens for superresolution imaging,” IEEE J. Sel. Top. Quantum Electron. (submitted).

Lee, C. H.

D. P. Tsai, C. W. Yang, W. C. Lin, F. H. Ho, H. J. Huang, M. Y. Chen, T. F. Tseng, C. H. Lee, and C. J. Yeh, “Dynamic aperture of near-field super resolution structures,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 982–983 (2000).
[CrossRef]

Lee, H.

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for Imaging below the diffraction limit,” Opt. Express 15(24), 15886–15891 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

Lin, W. C.

W. C. Liu, C. Y. Wen, K. H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett. 78(6), 685–687 (2001).
[CrossRef]

D. P. Tsai, C. W. Yang, W. C. Lin, F. H. Ho, H. J. Huang, M. Y. Chen, T. F. Tseng, C. H. Lee, and C. J. Yeh, “Dynamic aperture of near-field super resolution structures,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 982–983 (2000).
[CrossRef]

D. P. Tsai and W. C. Lin, “Probing the near fields of the super-resolution near-field optical structure,” Appl. Phys. Lett. 77(10), 1413–1415 (2000).
[CrossRef]

Liu, W. C.

T. C. Chu, D. P. Tsai, and W. C. Liu, “Readout contrast beyond diffraction limit by a slab of random nanostructures,” Opt. Express 15(1), 12–23 (2007).
[CrossRef] [PubMed]

W. C. Liu, C. Y. Wen, K. H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett. 78(6), 685–687 (2001).
[CrossRef]

Liu, Z.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for Imaging below the diffraction limit,” Opt. Express 15(24), 15886–15891 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

Luo, Z. Q.

Melville, D. O. S.

Mendach, S.

S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102(16), 163903 (2009).
[CrossRef] [PubMed]

Narimanov, E.

Nikolaenko, A. E.

Papasimakis, N.

Pendry, J. B.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Penn, J. H.

H. E. Zimmerman, J. H. Penn, and C. W. Carpenter, “Evaluation of single-photon-counting measurements of excited-state lifetimes,” Proc. Natl. Acad. Sci. U.S.A. 79(6), 2128–2132 (1982).
[CrossRef] [PubMed]

Pusch, A.

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett. 105(12), 127401 (2010).
[CrossRef] [PubMed]

Ramalingam, A.

G. Somasundaram and A. Ramalingam, “Gain studies of Coumarin 1 dye-doped polymer laser,” J. Lumin. 90(1-2), 1–5 (2000).
[CrossRef]

Salandrino, A.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

Schurig, D.

D. Schurig and D. R. Smith, “Sub-diffraction imaging with compensating bilayers,” New J. Phys. 7, 162 (2005).
[CrossRef]

Schwaiger, S.

S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102(16), 163903 (2009).
[CrossRef] [PubMed]

Shalaev, V. M.

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
[CrossRef]

Shen, Z. X.

Smith, D. R.

D. Schurig and D. R. Smith, “Sub-diffraction imaging with compensating bilayers,” New J. Phys. 7, 162 (2005).
[CrossRef]

Smolyaninov, I. I.

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Somasundaram, G.

G. Somasundaram and A. Ramalingam, “Gain studies of Coumarin 1 dye-doped polymer laser,” J. Lumin. 90(1-2), 1–5 (2000).
[CrossRef]

Soukoulis, C. M.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[CrossRef] [PubMed]

A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79(24), 241104 (2009).
[CrossRef]

Stark, Y.

S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102(16), 163903 (2009).
[CrossRef] [PubMed]

Stemmann, A.

S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102(16), 163903 (2009).
[CrossRef] [PubMed]

Stickler, D.

S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102(16), 163903 (2009).
[CrossRef] [PubMed]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for Imaging below the diffraction limit,” Opt. Express 15(24), 15886–15891 (2007).
[CrossRef] [PubMed]

Tassin, P.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[CrossRef] [PubMed]

Tsai, D. P.

K. P. Chiu, K. F. Lai, and D. P. Tsai, “Application of surface polariton coupling between nano recording marks to optical data storage,” Opt. Express 16(18), 13885–13892 (2008).
[CrossRef] [PubMed]

T. C. Chu, D. P. Tsai, and W. C. Liu, “Readout contrast beyond diffraction limit by a slab of random nanostructures,” Opt. Express 15(1), 12–23 (2007).
[CrossRef] [PubMed]

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[CrossRef]

W. C. Liu, C. Y. Wen, K. H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett. 78(6), 685–687 (2001).
[CrossRef]

D. P. Tsai, C. W. Yang, W. C. Lin, F. H. Ho, H. J. Huang, M. Y. Chen, T. F. Tseng, C. H. Lee, and C. J. Yeh, “Dynamic aperture of near-field super resolution structures,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 982–983 (2000).
[CrossRef]

D. P. Tsai and W. C. Lin, “Probing the near fields of the super-resolution near-field optical structure,” Appl. Phys. Lett. 77(10), 1413–1415 (2000).
[CrossRef]

B. H. Cheng, Y. Z. Ho, Y. C. Lan, and D. P. Tsai, “Optical hybrid-superlens-hyperlens for superresolution imaging,” IEEE J. Sel. Top. Quantum Electron. (submitted).

Tsakmakidis, K. L.

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett. 105(12), 127401 (2010).
[CrossRef] [PubMed]

Tseng, T. F.

D. P. Tsai, C. W. Yang, W. C. Lin, F. H. Ho, H. J. Huang, M. Y. Chen, T. F. Tseng, C. H. Lee, and C. J. Yeh, “Dynamic aperture of near-field super resolution structures,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 982–983 (2000).
[CrossRef]

Ustinov, A. V.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[CrossRef] [PubMed]

Wegener, M.

A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79(24), 241104 (2009).
[CrossRef]

Wen, C. Y.

W. C. Liu, C. Y. Wen, K. H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett. 78(6), 685–687 (2001).
[CrossRef]

Wood, B.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[CrossRef]

Wuestner, S.

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett. 105(12), 127401 (2010).
[CrossRef] [PubMed]

Xiong, Y.

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for Imaging below the diffraction limit,” Opt. Express 15(24), 15886–15891 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

Yang, C. W.

D. P. Tsai, C. W. Yang, W. C. Lin, F. H. Ho, H. J. Huang, M. Y. Chen, T. F. Tseng, C. H. Lee, and C. J. Yeh, “Dynamic aperture of near-field super resolution structures,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 982–983 (2000).
[CrossRef]

Yeh, C. J.

D. P. Tsai, C. W. Yang, W. C. Lin, F. H. Ho, H. J. Huang, M. Y. Chen, T. F. Tseng, C. H. Lee, and C. J. Yeh, “Dynamic aperture of near-field super resolution structures,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 982–983 (2000).
[CrossRef]

Zhang, L.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[CrossRef] [PubMed]

Zhang, X.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for Imaging below the diffraction limit,” Opt. Express 15(24), 15886–15891 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

Zheludev, N. I.

Zhuravel, A. P.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[CrossRef] [PubMed]

Zimmerman, H. E.

H. E. Zimmerman, J. H. Penn, and C. W. Carpenter, “Evaluation of single-photon-counting measurements of excited-state lifetimes,” Proc. Natl. Acad. Sci. U.S.A. 79(6), 2128–2132 (1982).
[CrossRef] [PubMed]

Appl. Phys. Lett.

W. C. Liu, C. Y. Wen, K. H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett. 78(6), 685–687 (2001).
[CrossRef]

D. P. Tsai and W. C. Lin, “Probing the near fields of the super-resolution near-field optical structure,” Appl. Phys. Lett. 77(10), 1413–1415 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

B. H. Cheng, Y. Z. Ho, Y. C. Lan, and D. P. Tsai, “Optical hybrid-superlens-hyperlens for superresolution imaging,” IEEE J. Sel. Top. Quantum Electron. (submitted).

J. Lumin.

G. Somasundaram and A. Ramalingam, “Gain studies of Coumarin 1 dye-doped polymer laser,” J. Lumin. 90(1-2), 1–5 (2000).
[CrossRef]

Jpn. J. Appl. Phys.

D. P. Tsai, C. W. Yang, W. C. Lin, F. H. Ho, H. J. Huang, M. Y. Chen, T. F. Tseng, C. H. Lee, and C. J. Yeh, “Dynamic aperture of near-field super resolution structures,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 982–983 (2000).
[CrossRef]

Nat. Mater.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[CrossRef] [PubMed]

New J. Phys.

D. Schurig and D. R. Smith, “Sub-diffraction imaging with compensating bilayers,” New J. Phys. 7, 162 (2005).
[CrossRef]

Opt. Express

Phys. Rev. B

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[CrossRef]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
[CrossRef]

A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79(24), 241104 (2009).
[CrossRef]

Phys. Rev. Lett.

S. Wuestner, A. Pusch, K. L. Tsakmakidis, J. M. Hamm, and O. Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett. 105(12), 127401 (2010).
[CrossRef] [PubMed]

S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Phys. Rev. Lett. 102(16), 163903 (2009).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett. 107(4), 043901 (2011).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

H. E. Zimmerman, J. H. Penn, and C. W. Carpenter, “Evaluation of single-photon-counting measurements of excited-state lifetimes,” Proc. Natl. Acad. Sci. U.S.A. 79(6), 2128–2132 (1982).
[CrossRef] [PubMed]

Science

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

Other

F. J. Duarte and L. W. Hillman, “Dye laser principles with applications” (1990), See appendix.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the proposed hybrid-superlens hyperlens conceptual structure and the geometry and composition of active hybrid-superlens hyperlens. It can combine with an objective lens to provide high-resolution images of the observed sample. The yellow part is Chromium with thickness t = 50 nm, the red parts in upper hyperlens are SiO2, which refractive index is 1.333, the blue parts in lower hyperlens are gain medium and the gray parts are silver. The thickness of each layer is 30 nm, the width of slits is 50 nm, their center-to-center distance is 100 nm, and their thickness of inner and outer lens is H1 = 150nm and 480 nm, respectively.

Fig. 2
Fig. 2

According to the parameters, (a) the theoretical prediction to real and imaginary part of permittivity of Coumarin 2 are defined. (b) The isofrequency curve of upper superlens (red) and lower hyperlens (blue). k// (k) represents the effective wave vectors being parallel (perpendicular) to metal/dielectric interface.

Fig. 3
Fig. 3

(a) Two numerical magnetic field contours for incident wave of 365 nm. The field intensity shows a hybrid-superlens hyperlens in upper picture with gain and lower picture without gain. (b) The normalized (with incident intensity) field intensity versus x position collected at the cross section dashed line is shown in Fig. 3(a). The green dotted lines indicate the position of the two slits. The magnetic field can be apparently enhanced 3 times by composing gain medium.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

N 4 t =r N 1 N 4 τ 43
N 3 t = N 4 τ 43 N 3 τ 32 + 1 ω a E P t
N 2 t = N 3 τ 32 N 2 τ 21 1 ω a E P t
N 1 t = N 2 τ 21 r N 1
ΔN t + γ a ΔN= 1 ω a E P t +rN
2 P t 2 + Γ a P t + ω a 2 P= σ a ΔN( t )E
2 P t 2 + Γ a P t + ω a 2 P σ a rN γ a E+ σ a sin(δ)| E || P | 2 γ a E

Metrics