Abstract

Retinal and choroidal vascular imaging is a key to the better understanding and diagnosis of eye diseases. To achieve comprehensive three-dimensional capillary imaging, we used an enhanced vascular imaging technique, so called adaptive optics optical coherence angiography (AO-OCA). AO-OCA enables in vivo high-resolution and high-contrast micro-vascular imaging by detecting Doppler frequency shifts. Using this technique, the retinal and choroidal vasculatures of healthy subjects were imaged. The results show that both intensity and Doppler power images have sufficient contrast to discriminate almost all vasculatures from the static tissue. However, the choriocapillaris, pre-arterioles, and post-venules in the Sattler layer were more contrasted by the Doppler technique. In conclusion, AO-OCA enables three-dimensional capillary imaging, and is especially useful for the detection of the choriocapillaris and choroidal capillary network.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Albert Alm, “Circulation,” in Adler’s Physiology of the Eye, P. L. Kaufman and A. Alm, eds. (Mosby, 2002), pp.747–784.
    [PubMed]
  2. J. Flammer, S. Orgül, V. P Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002), http://www.sciencedirect.com/science/article/pii/S1350946202000083 .
    [CrossRef] [PubMed]
  3. M. A. Zarbin, “Current concepts in the pathogenesis of age-related macular degeneration,” Archives of Ophthalmology 122(4), 598–614 (2004), http://www.ncbi.nlm.nih.gov/pubmed/15078679 .
    [CrossRef] [PubMed]
  4. C. J. Pournaras, E. Rungger-Brändle, C. E. Riva, S. H. Hardarson, and E. Stefansson, “Regulation of retinal blood flow in health and disease,” Prog. Retin. Eye. Res. 27(3), 284–330 (2008), http://www.sciencedirect.com/science/article/pii/S135094620800013X .
    [CrossRef] [PubMed]
  5. R. F. Gariano and T. W. Gardner, “Retinal angiogenesis in development and disease,” Nature 438(7070), 960–966 (2005), http://www.nature.com/nature/journal/v438/n7070/full/nature04482.html .
    [CrossRef] [PubMed]
  6. L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986), http://www.ncbi.nlm.nih.gov/pubmed/3523356 .
    [PubMed]
  7. M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101(3), 529–533 (1994), http://www.ncbi.nlm.nih.gov/pubmed/8127574 .
    [PubMed]
  8. D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36(1), 57–66 (2005).
    [PubMed]
  9. A. Roorda, F. Romero-Borja, W. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
    [PubMed]
  10. J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112(12), 2219–2224 (2005), http://www.sciencedirect.com/science/article/pii/S0161642005009115 .
    [CrossRef] [PubMed]
  11. Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, “In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy,” Opt. Express 16(17), 12746–12756 (2008).
    [CrossRef] [PubMed]
  12. J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci. 51(3), 1691–1698 (2010), http://www.iovs.org/content/51/3/1691 .
    [CrossRef]
  13. J. Tam, P. Tiruveedhula, and A. Roorda, “Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(4), 781–793 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-4-781 .
    [CrossRef] [PubMed]
  14. J. Tam and A. Roorda, “Speed quantification and tracking of moving objects in adaptive optics scanning laser ophthalmoscopy,” J. Biomed. Opt. 16(3), 036002 (2011), http://dx.doi.org/10.1117/1.3548880 .
    [CrossRef] [PubMed]
  15. Z. Zhong, H. Song, T. Y. P. Chui, B. L. Petrig, L. Benno, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 52(7), 4151–4157 (2011), http://www.iovs.org/content/52/7/4151.abstract .
    [CrossRef] [PubMed]
  16. M. J. Hogan, J. A. Alvarado, and J. E. Weddell, Histology of the Human Eye (W.B. Saunders Company, 1971).
  17. Shinya Inoué, “Foundations of confocal scanned imaging in light microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Springer, 1995), pp. 1–14.
  18. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991), http://www.sciencemag.org/cgi/content/abstract/254/5035/1178 .
    [CrossRef] [PubMed]
  19. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17(2), 151–153 (1992), http://ol.osa.org/abstract.cfm?URI=ol-17-2-151 .
    [CrossRef] [PubMed]
  20. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28(19), 1745–1747 (2003), http://ol.osa.org/abstract.cfm?URI=ol-28-19-1745 .
    [CrossRef] [PubMed]
  21. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29(5), 480–482 (2004), http://ol.osa.org/abstract.cfm?URI=ol-29-5-480 .
    [CrossRef] [PubMed]
  22. B. Cense, N. Nassif, T. Chen, M. Pierce, S. Yun, B. Park, B. Bouma, G. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004).
    [CrossRef] [PubMed]
  23. W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27 (1), 45–88 (2008). http://www.sciencedirect.com/science/article/pii/S1350946207000444 .
    [CrossRef]
  24. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
    [CrossRef] [PubMed]
  25. X. J. Wang, T. E. Milner, and J. S. Nelson. “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Letters 20(11), 1337–1339 (1995), http://ol.osa.org/abstract.cfm?URI=ol-20-11-1337 .
    [CrossRef]
  26. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Opt. Lett. 25(19), 1448–1450 (2000), http://ol.osa.org/abstract.cfm?URI=ol-25-19-1448 .
    [CrossRef]
  27. R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
    [CrossRef] [PubMed]
  28. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
    [CrossRef] [PubMed]
  29. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. Stuart Nelson. “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000) http://ol.osa.org/abstract.cfm?URI=ol-25-2-114 .
    [CrossRef]
  30. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17(26), 23736–23754 (2009).
    [CrossRef]
  31. L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013–106013-9 (2011), http://link.aip.org/link/?JBO/16/106013/1 .
    [CrossRef] [PubMed]
  32. Y. Hong, S. Makita, F. Jaillon, M. J. Ju, E. J. Min, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno. “High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization,” Opt. Express 20(3), 2740–2760 (2012).
    [CrossRef] [PubMed]
  33. J. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express 13(14), 5234–5239 (2005).
    [CrossRef] [PubMed]
  34. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2009), http://ol.osa.org/abstract.cfm?URI=ol-33-13-1530 .
    [CrossRef]
  35. R. Motaghiannezam and S. Fraser, “Logarithmic intensity and speckle-based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography,” Biomed. Opt. Express 3(3), 503–521 (2012), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-3-503 .
    [CrossRef] [PubMed]
  36. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
    [CrossRef] [PubMed]
  37. J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009).
    [CrossRef] [PubMed]
  38. L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242, 345–350 (2004). http://www.sciencedirect.com/science/article/B6TVF-4D8F6KC-1/2/248c1c0c32a9be950faa5260ae275c0e .
    [CrossRef]
  39. G. Liu, W. Qi, L. Yu, and Z. Chen, “Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging,” Opt. Express 19(4), 3657–3666 (2011).
    [CrossRef] [PubMed]
  40. S. Makita, F. Jaillon, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express 19(2), 1271–1283 (2011).
    [CrossRef] [PubMed]
  41. S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express 19(2), 1217–1227 (2011).
    [CrossRef] [PubMed]
  42. B. Hermann, E. J. Fernández, A. Unterhuder, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004), http://ol.osa.org/abstract.cfm?URI=ol-29-18-2142 .
    [CrossRef] [PubMed]
  43. R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A 24(5), 1373–1383 (2007), http://josaa.osa.org/abstract.cfm?URI=josaa-24-5-1373 .
    [CrossRef]
  44. D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci. 49(5), 2061–2070 (2008), http://dx.doi.org/10.1167/iovs.07-1228 .
    [CrossRef] [PubMed]
  45. Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011), http://www.iovs.org/content/early/2011/01/17/iovs.10-6424.abstract .
    [CrossRef] [PubMed]
  46. R. J. Zawadzki, S. S. Choi, A. R. Fuller, J. W. Evans, B. Hamann, and J. S. Werner, “Cellular resolution volumetric in vivo retinal imaging with adaptive optics–optical coherence tomography,” Opt. Express 17(5), 4084–4094 (2009).
    [CrossRef] [PubMed]
  47. O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express 2(4), 748–763 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-4-748 .
    [CrossRef] [PubMed]
  48. K. Kurokawa, K. Sasaki, S. Makita, M. Yamanari, B. Cense, and Y. Yasuno, “Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography,” Opt. Express 18(8), 8515–8527 (2010).
    [CrossRef] [PubMed]
  49. K. Sasaki, K. Kurokawa, S. Makita, and Y. Yasuno, “Extended depth of focus adaptive optics spectral domain optical coherence tomography,” Biomed. Opt. Express 3(10), 2353–2370 (2012).
    [CrossRef]
  50. E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14(13) 6213–6225 (2006).
    [CrossRef] [PubMed]
  51. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16(11), 8126–8143 (2008).
    [CrossRef] [PubMed]
  52. R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express 2(6), 1674–1686 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-6-1674 .
    [CrossRef] [PubMed]
  53. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express 13(9), 3252–3258 (2005).
    [CrossRef] [PubMed]
  54. L. Chen, “Control algorithms,” in Adaptive Optics for Vision Science: Principles, Practices, Design and Applications, J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, eds. (Wiley-Interscience, 2006).
  55. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
    [CrossRef] [PubMed]
  56. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15) 11438–11452 (2008).
    [CrossRef] [PubMed]
  57. A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint spectral and time domain optical coherence tomography,” Opt. Express 17(13), 10584–10598 (2009).
    [CrossRef] [PubMed]
  58. S. H. Yun, G. Tearney, J. F. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12(13), 2977–2998 (2004).
    [CrossRef] [PubMed]
  59. J. Walther, A Krüger, M. Cuevas, and E. Koch, “Effects of axial, transverse, and oblique sample motion in FD OCT in systems with global or rolling shutter line detector,” J. Opt. Soc. A. A 25(11), 2791–2802 (2008), http://josaa.osa.org/abstract.cfm?URI=josaa-25-11-2791 .
    [CrossRef]
  60. B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm,” Opt. Express 13(11), 3931–3944 (2005).
    [CrossRef] [PubMed]
  61. P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008–024008-7 (2008), http://link.aip.org/link/?JBO/13/024008/1 .
    [CrossRef] [PubMed]
  62. D. M. Snodderly, R. S. Weinhaus, and J. C. Choi, “Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis),” J. Neurosci. 12(4), 1169–1193 (1992).
    [PubMed]
  63. S. Yoneya and M. O. M Tso, “Angioarchitecture of the human choroid,” Arch. Ophthalmol. 105(5), 681–687 (1987), http://archopht.ama-assn.org/cgi/content/abstract/105/5/681 .
    [CrossRef] [PubMed]
  64. H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” IOVS 46(6), 2012–2017 (2005), http://dx.doi.org/10.1167/iovs.04-0335 .
  65. T. Fabritius, S. Makita, M. Miura, R. Myllylä, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt. Express 17(18), 15659–15669 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-18-15659 .
    [CrossRef] [PubMed]
  66. S. J. Chiu, C. A. Toth, C. Bowes Rickman, J. A. Izatt, and S. Farsiu, “Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming,” Biomed. Opt. Express 3(5), 1127–1140 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-19413 .
    [CrossRef] [PubMed]
  67. V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express 18(14), 14730–14744 (2010).
    [CrossRef]
  68. Z136 Committee, American National Standard for Safe Use of Lasers: ANSI Z136.1-2000 (Laser Institute of America, 2003).
  69. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050nm fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-3044 .
    [CrossRef] [PubMed]
  70. B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M–82130M-8 (2012).
    [CrossRef]
  71. S. S. Hayreh, “The choriocapillaris,” Graefe’s Archive for Clinical and Experimental Ophthalmology 192(3), 165–179 (1974), http://dx.doi.org/10.1007/BF00416864 .
    [PubMed]
  72. R. W. Flower, A. W. Fryczkowski, and D. S. McLeod, “Variability in choriocapillaris blood flow distribution,” Invest. Ophthalmol. Vis. Sci. 36(7), 1247–1258 (1995), http://www.ncbi.nlm.nih.gov/pubmed/7775102 .
    [PubMed]
  73. R. W. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008), http://www.iovs.org/content/49/12/5510.long .
    [CrossRef] [PubMed]
  74. C. Torti, B. Považay, B. Hofer, A. Unterhuber, J. Carroll, P. Kurt Ahnelt, and W. Drexler, “Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina,” Opt. Express 17(22), 19382–19400 (2009).
    [CrossRef] [PubMed]

2012 (6)

Y. Hong, S. Makita, F. Jaillon, M. J. Ju, E. J. Min, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno. “High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization,” Opt. Express 20(3), 2740–2760 (2012).
[CrossRef] [PubMed]

R. Motaghiannezam and S. Fraser, “Logarithmic intensity and speckle-based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography,” Biomed. Opt. Express 3(3), 503–521 (2012), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-3-503 .
[CrossRef] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[CrossRef] [PubMed]

K. Sasaki, K. Kurokawa, S. Makita, and Y. Yasuno, “Extended depth of focus adaptive optics spectral domain optical coherence tomography,” Biomed. Opt. Express 3(10), 2353–2370 (2012).
[CrossRef]

S. J. Chiu, C. A. Toth, C. Bowes Rickman, J. A. Izatt, and S. Farsiu, “Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming,” Biomed. Opt. Express 3(5), 1127–1140 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-19413 .
[CrossRef] [PubMed]

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M–82130M-8 (2012).
[CrossRef]

2011 (11)

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050nm fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-3044 .
[CrossRef] [PubMed]

O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express 2(4), 748–763 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-4-748 .
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express 2(6), 1674–1686 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-6-1674 .
[CrossRef] [PubMed]

G. Liu, W. Qi, L. Yu, and Z. Chen, “Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging,” Opt. Express 19(4), 3657–3666 (2011).
[CrossRef] [PubMed]

S. Makita, F. Jaillon, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express 19(2), 1271–1283 (2011).
[CrossRef] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express 19(2), 1217–1227 (2011).
[CrossRef] [PubMed]

Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011), http://www.iovs.org/content/early/2011/01/17/iovs.10-6424.abstract .
[CrossRef] [PubMed]

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013–106013-9 (2011), http://link.aip.org/link/?JBO/16/106013/1 .
[CrossRef] [PubMed]

J. Tam, P. Tiruveedhula, and A. Roorda, “Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(4), 781–793 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-4-781 .
[CrossRef] [PubMed]

J. Tam and A. Roorda, “Speed quantification and tracking of moving objects in adaptive optics scanning laser ophthalmoscopy,” J. Biomed. Opt. 16(3), 036002 (2011), http://dx.doi.org/10.1117/1.3548880 .
[CrossRef] [PubMed]

Z. Zhong, H. Song, T. Y. P. Chui, B. L. Petrig, L. Benno, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 52(7), 4151–4157 (2011), http://www.iovs.org/content/52/7/4151.abstract .
[CrossRef] [PubMed]

2010 (4)

2009 (7)

T. Fabritius, S. Makita, M. Miura, R. Myllylä, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt. Express 17(18), 15659–15669 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-18-15659 .
[CrossRef] [PubMed]

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint spectral and time domain optical coherence tomography,” Opt. Express 17(13), 10584–10598 (2009).
[CrossRef] [PubMed]

R. J. Zawadzki, S. S. Choi, A. R. Fuller, J. W. Evans, B. Hamann, and J. S. Werner, “Cellular resolution volumetric in vivo retinal imaging with adaptive optics–optical coherence tomography,” Opt. Express 17(5), 4084–4094 (2009).
[CrossRef] [PubMed]

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2009), http://ol.osa.org/abstract.cfm?URI=ol-33-13-1530 .
[CrossRef]

I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17(26), 23736–23754 (2009).
[CrossRef]

J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009).
[CrossRef] [PubMed]

C. Torti, B. Považay, B. Hofer, A. Unterhuber, J. Carroll, P. Kurt Ahnelt, and W. Drexler, “Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina,” Opt. Express 17(22), 19382–19400 (2009).
[CrossRef] [PubMed]

2008 (9)

R. W. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008), http://www.iovs.org/content/49/12/5510.long .
[CrossRef] [PubMed]

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27 (1), 45–88 (2008). http://www.sciencedirect.com/science/article/pii/S1350946207000444 .
[CrossRef]

Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, “In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy,” Opt. Express 16(17), 12746–12756 (2008).
[CrossRef] [PubMed]

C. J. Pournaras, E. Rungger-Brändle, C. E. Riva, S. H. Hardarson, and E. Stefansson, “Regulation of retinal blood flow in health and disease,” Prog. Retin. Eye. Res. 27(3), 284–330 (2008), http://www.sciencedirect.com/science/article/pii/S135094620800013X .
[CrossRef] [PubMed]

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci. 49(5), 2061–2070 (2008), http://dx.doi.org/10.1167/iovs.07-1228 .
[CrossRef] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16(11), 8126–8143 (2008).
[CrossRef] [PubMed]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15) 11438–11452 (2008).
[CrossRef] [PubMed]

J. Walther, A Krüger, M. Cuevas, and E. Koch, “Effects of axial, transverse, and oblique sample motion in FD OCT in systems with global or rolling shutter line detector,” J. Opt. Soc. A. A 25(11), 2791–2802 (2008), http://josaa.osa.org/abstract.cfm?URI=josaa-25-11-2791 .
[CrossRef]

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008–024008-7 (2008), http://link.aip.org/link/?JBO/13/024008/1 .
[CrossRef] [PubMed]

2007 (1)

2006 (2)

2005 (7)

B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm,” Opt. Express 13(11), 3931–3944 (2005).
[CrossRef] [PubMed]

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” IOVS 46(6), 2012–2017 (2005), http://dx.doi.org/10.1167/iovs.04-0335 .

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express 13(9), 3252–3258 (2005).
[CrossRef] [PubMed]

R. F. Gariano and T. W. Gardner, “Retinal angiogenesis in development and disease,” Nature 438(7070), 960–966 (2005), http://www.nature.com/nature/journal/v438/n7070/full/nature04482.html .
[CrossRef] [PubMed]

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36(1), 57–66 (2005).
[PubMed]

J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112(12), 2219–2224 (2005), http://www.sciencedirect.com/science/article/pii/S0161642005009115 .
[CrossRef] [PubMed]

J. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express 13(14), 5234–5239 (2005).
[CrossRef] [PubMed]

2004 (6)

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242, 345–350 (2004). http://www.sciencedirect.com/science/article/B6TVF-4D8F6KC-1/2/248c1c0c32a9be950faa5260ae275c0e .
[CrossRef]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29(5), 480–482 (2004), http://ol.osa.org/abstract.cfm?URI=ol-29-5-480 .
[CrossRef] [PubMed]

B. Cense, N. Nassif, T. Chen, M. Pierce, S. Yun, B. Park, B. Bouma, G. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004).
[CrossRef] [PubMed]

M. A. Zarbin, “Current concepts in the pathogenesis of age-related macular degeneration,” Archives of Ophthalmology 122(4), 598–614 (2004), http://www.ncbi.nlm.nih.gov/pubmed/15078679 .
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuder, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004), http://ol.osa.org/abstract.cfm?URI=ol-29-18-2142 .
[CrossRef] [PubMed]

S. H. Yun, G. Tearney, J. F. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12(13), 2977–2998 (2004).
[CrossRef] [PubMed]

2003 (3)

2002 (2)

J. Flammer, S. Orgül, V. P Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002), http://www.sciencedirect.com/science/article/pii/S1350946202000083 .
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[PubMed]

2000 (2)

1995 (2)

X. J. Wang, T. E. Milner, and J. S. Nelson. “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Letters 20(11), 1337–1339 (1995), http://ol.osa.org/abstract.cfm?URI=ol-20-11-1337 .
[CrossRef]

R. W. Flower, A. W. Fryczkowski, and D. S. McLeod, “Variability in choriocapillaris blood flow distribution,” Invest. Ophthalmol. Vis. Sci. 36(7), 1247–1258 (1995), http://www.ncbi.nlm.nih.gov/pubmed/7775102 .
[PubMed]

1994 (1)

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101(3), 529–533 (1994), http://www.ncbi.nlm.nih.gov/pubmed/8127574 .
[PubMed]

1992 (2)

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17(2), 151–153 (1992), http://ol.osa.org/abstract.cfm?URI=ol-17-2-151 .
[CrossRef] [PubMed]

D. M. Snodderly, R. S. Weinhaus, and J. C. Choi, “Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis),” J. Neurosci. 12(4), 1169–1193 (1992).
[PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991), http://www.sciencemag.org/cgi/content/abstract/254/5035/1178 .
[CrossRef] [PubMed]

1987 (1)

S. Yoneya and M. O. M Tso, “Angioarchitecture of the human choroid,” Arch. Ophthalmol. 105(5), 681–687 (1987), http://archopht.ama-assn.org/cgi/content/abstract/105/5/681 .
[CrossRef] [PubMed]

1986 (1)

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986), http://www.ncbi.nlm.nih.gov/pubmed/3523356 .
[PubMed]

1974 (1)

S. S. Hayreh, “The choriocapillaris,” Graefe’s Archive for Clinical and Experimental Ophthalmology 192(3), 165–179 (1974), http://dx.doi.org/10.1007/BF00416864 .
[PubMed]

Alm, Albert

Albert Alm, “Circulation,” in Adler’s Physiology of the Eye, P. L. Kaufman and A. Alm, eds. (Mosby, 2002), pp.747–784.
[PubMed]

Aloni, E.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36(1), 57–66 (2005).
[PubMed]

Alvarado, J. A.

M. J. Hogan, J. A. Alvarado, and J. E. Weddell, Histology of the Human Eye (W.B. Saunders Company, 1971).

An, L.

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013–106013-9 (2011), http://link.aip.org/link/?JBO/16/106013/1 .
[CrossRef] [PubMed]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15) 11438–11452 (2008).
[CrossRef] [PubMed]

Artal, P.

Ashman, R.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008–024008-7 (2008), http://link.aip.org/link/?JBO/13/024008/1 .
[CrossRef] [PubMed]

Bachman, M.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242, 345–350 (2004). http://www.sciencedirect.com/science/article/B6TVF-4D8F6KC-1/2/248c1c0c32a9be950faa5260ae275c0e .
[CrossRef]

Bajraszewski, T.

Balderas-Mata, S.

Barnaby, A. M.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci. 49(5), 2061–2070 (2008), http://dx.doi.org/10.1167/iovs.07-1228 .
[CrossRef] [PubMed]

Barry, S.

Barton, J.

Baumann, B.

Beaton, S.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” IOVS 46(6), 2012–2017 (2005), http://dx.doi.org/10.1167/iovs.04-0335 .

Bedggood, P.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008–024008-7 (2008), http://link.aip.org/link/?JBO/13/024008/1 .
[CrossRef] [PubMed]

Belkin, M.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36(1), 57–66 (2005).
[PubMed]

Benno, L.

Z. Zhong, H. Song, T. Y. P. Chui, B. L. Petrig, L. Benno, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 52(7), 4151–4157 (2011), http://www.iovs.org/content/52/7/4151.abstract .
[CrossRef] [PubMed]

Biedermann, B. R.

Bigelow, C. E.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci. 49(5), 2061–2070 (2008), http://dx.doi.org/10.1167/iovs.07-1228 .
[CrossRef] [PubMed]

Bonesi, M.

Bouma, B.

Bouma, B. E.

Bowes Rickman, C.

Bruestle, J.

Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011), http://www.iovs.org/content/early/2011/01/17/iovs.10-6424.abstract .
[CrossRef] [PubMed]

Burns, S. A.

Z. Zhong, H. Song, T. Y. P. Chui, B. L. Petrig, L. Benno, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 52(7), 4151–4157 (2011), http://www.iovs.org/content/52/7/4151.abstract .
[CrossRef] [PubMed]

Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, “In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy,” Opt. Express 16(17), 12746–12756 (2008).
[CrossRef] [PubMed]

Cable, A.

Cable, A. E.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M–82130M-8 (2012).
[CrossRef]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

Campbell, M. C. W.

Carroll, J.

Cense, B.

Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011), http://www.iovs.org/content/early/2011/01/17/iovs.10-6424.abstract .
[CrossRef] [PubMed]

K. Kurokawa, K. Sasaki, S. Makita, M. Yamanari, B. Cense, and Y. Yasuno, “Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography,” Opt. Express 18(8), 8515–8527 (2010).
[CrossRef] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16(11), 8126–8143 (2008).
[CrossRef] [PubMed]

B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm,” Opt. Express 13(11), 3931–3944 (2005).
[CrossRef] [PubMed]

B. Cense, N. Nassif, T. Chen, M. Pierce, S. Yun, B. Park, B. Bouma, G. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29(5), 480–482 (2004), http://ol.osa.org/abstract.cfm?URI=ol-29-5-480 .
[CrossRef] [PubMed]

B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991), http://www.sciencemag.org/cgi/content/abstract/254/5035/1178 .
[CrossRef] [PubMed]

Chavez-Pirson, A.

Chen, L.

L. Chen, “Control algorithms,” in Adaptive Optics for Vision Science: Principles, Practices, Design and Applications, J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, eds. (Wiley-Interscience, 2006).

Chen, T.

Chen, T. C.

Chen, Z.

Chiu, S. J.

Choi, J. C.

D. M. Snodderly, R. S. Weinhaus, and J. C. Choi, “Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis),” J. Neurosci. 12(4), 1169–1193 (1992).
[PubMed]

Choi, S. S.

Chui, T. Y. P.

Z. Zhong, H. Song, T. Y. P. Chui, B. L. Petrig, L. Benno, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 52(7), 4151–4157 (2011), http://www.iovs.org/content/52/7/4151.abstract .
[CrossRef] [PubMed]

Costa, V. P

J. Flammer, S. Orgül, V. P Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002), http://www.sciencedirect.com/science/article/pii/S1350946202000083 .
[CrossRef] [PubMed]

Costanza, M. A.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986), http://www.ncbi.nlm.nih.gov/pubmed/3523356 .
[PubMed]

Cuevas, M.

J. Walther, A Krüger, M. Cuevas, and E. Koch, “Effects of axial, transverse, and oblique sample motion in FD OCT in systems with global or rolling shutter line detector,” J. Opt. Soc. A. A 25(11), 2791–2802 (2008), http://josaa.osa.org/abstract.cfm?URI=josaa-25-11-2791 .
[CrossRef]

Daaboul, M.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008–024008-7 (2008), http://link.aip.org/link/?JBO/13/024008/1 .
[CrossRef] [PubMed]

de Boer, J. F.

B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm,” Opt. Express 13(11), 3931–3944 (2005).
[CrossRef] [PubMed]

S. H. Yun, G. Tearney, J. F. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12(13), 2977–2998 (2004).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29(5), 480–482 (2004), http://ol.osa.org/abstract.cfm?URI=ol-29-5-480 .
[CrossRef] [PubMed]

B. Cense, N. Nassif, T. Chen, M. Pierce, S. Yun, B. Park, B. Bouma, G. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004).
[CrossRef] [PubMed]

B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
[CrossRef] [PubMed]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. Stuart Nelson. “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000) http://ol.osa.org/abstract.cfm?URI=ol-25-2-114 .
[CrossRef]

Derby, J. C.

Donnelly, W.

Drexler, W.

V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express 18(14), 14730–14744 (2010).
[CrossRef]

C. Torti, B. Považay, B. Hofer, A. Unterhuber, J. Carroll, P. Kurt Ahnelt, and W. Drexler, “Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina,” Opt. Express 17(22), 19382–19400 (2009).
[CrossRef] [PubMed]

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27 (1), 45–88 (2008). http://www.sciencedirect.com/science/article/pii/S1350946207000444 .
[CrossRef]

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14(13) 6213–6225 (2006).
[CrossRef] [PubMed]

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express 13(9), 3252–3258 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuder, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004), http://ol.osa.org/abstract.cfm?URI=ol-29-18-2142 .
[CrossRef] [PubMed]

R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
[CrossRef] [PubMed]

Duker, J. S.

Eigenwillig, C. M.

Evans, J. W.

Fabritius, T.

Farsiu, S.

Fercher, A.

Fercher, A. F.

Ferguson, R. D.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci. 49(5), 2061–2070 (2008), http://dx.doi.org/10.1167/iovs.07-1228 .
[CrossRef] [PubMed]

Fernández, E. J.

Fingler, J.

Flammer, J.

J. Flammer, S. Orgül, V. P Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002), http://www.sciencedirect.com/science/article/pii/S1350946202000083 .
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991), http://www.sciencemag.org/cgi/content/abstract/254/5035/1178 .
[CrossRef] [PubMed]

Flower, R. W.

R. W. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008), http://www.iovs.org/content/49/12/5510.long .
[CrossRef] [PubMed]

R. W. Flower, A. W. Fryczkowski, and D. S. McLeod, “Variability in choriocapillaris blood flow distribution,” Invest. Ophthalmol. Vis. Sci. 36(7), 1247–1258 (1995), http://www.ncbi.nlm.nih.gov/pubmed/7775102 .
[PubMed]

Fraser, S.

Fraser, S. E.

Fryczkowski, A. W.

R. W. Flower, A. W. Fryczkowski, and D. S. McLeod, “Variability in choriocapillaris blood flow distribution,” Invest. Ophthalmol. Vis. Sci. 36(7), 1247–1258 (1995), http://www.ncbi.nlm.nih.gov/pubmed/7775102 .
[PubMed]

Fujimoto, J. G.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M–82130M-8 (2012).
[CrossRef]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27 (1), 45–88 (2008). http://www.sciencedirect.com/science/article/pii/S1350946207000444 .
[CrossRef]

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” IOVS 46(6), 2012–2017 (2005), http://dx.doi.org/10.1167/iovs.04-0335 .

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17(2), 151–153 (1992), http://ol.osa.org/abstract.cfm?URI=ol-17-2-151 .
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991), http://www.sciencemag.org/cgi/content/abstract/254/5035/1178 .
[CrossRef] [PubMed]

Fuller, A. R.

Fulton, A. B.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci. 49(5), 2061–2070 (2008), http://dx.doi.org/10.1167/iovs.07-1228 .
[CrossRef] [PubMed]

Gao, W.

Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011), http://www.iovs.org/content/early/2011/01/17/iovs.10-6424.abstract .
[CrossRef] [PubMed]

O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express 2(4), 748–763 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-4-748 .
[CrossRef] [PubMed]

Gardner, T. W.

R. F. Gariano and T. W. Gardner, “Retinal angiogenesis in development and disease,” Nature 438(7070), 960–966 (2005), http://www.nature.com/nature/journal/v438/n7070/full/nature04482.html .
[CrossRef] [PubMed]

Gariano, R. F.

R. F. Gariano and T. W. Gardner, “Retinal angiogenesis in development and disease,” Nature 438(7070), 960–966 (2005), http://www.nature.com/nature/journal/v438/n7070/full/nature04482.html .
[CrossRef] [PubMed]

Gorczynska, I.

Götzinger, E.

Gragoudas, E. S.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101(3), 529–533 (1994), http://www.ncbi.nlm.nih.gov/pubmed/8127574 .
[PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991), http://www.sciencemag.org/cgi/content/abstract/254/5035/1178 .
[CrossRef] [PubMed]

Grinvald, A.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36(1), 57–66 (2005).
[PubMed]

Grulkowski, I.

Gryczynski, I.

R. W. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008), http://www.iovs.org/content/49/12/5510.long .
[CrossRef] [PubMed]

Gryczynski, Z.

R. W. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008), http://www.iovs.org/content/49/12/5510.long .
[CrossRef] [PubMed]

Guo, S.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242, 345–350 (2004). http://www.sciencedirect.com/science/article/B6TVF-4D8F6KC-1/2/248c1c0c32a9be950faa5260ae275c0e .
[CrossRef]

Guyer, D. R.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101(3), 529–533 (1994), http://www.ncbi.nlm.nih.gov/pubmed/8127574 .
[PubMed]

Hamann, B.

Hammer, D. X.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci. 49(5), 2061–2070 (2008), http://dx.doi.org/10.1167/iovs.07-1228 .
[CrossRef] [PubMed]

Hardarson, S. H.

C. J. Pournaras, E. Rungger-Brändle, C. E. Riva, S. H. Hardarson, and E. Stefansson, “Regulation of retinal blood flow in health and disease,” Prog. Retin. Eye. Res. 27(3), 284–330 (2008), http://www.sciencedirect.com/science/article/pii/S135094620800013X .
[CrossRef] [PubMed]

Hayreh, S. S.

S. S. Hayreh, “The choriocapillaris,” Graefe’s Archive for Clinical and Experimental Ophthalmology 192(3), 165–179 (1974), http://dx.doi.org/10.1007/BF00416864 .
[PubMed]

Hebert, T. J.

Hee, M. R.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17(2), 151–153 (1992), http://ol.osa.org/abstract.cfm?URI=ol-17-2-151 .
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991), http://www.sciencemag.org/cgi/content/abstract/254/5035/1178 .
[CrossRef] [PubMed]

Heim, P. J. S.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M–82130M-8 (2012).
[CrossRef]

Herde, A. E.

Hermann, B.

Hitzenberger, C. K.

Hofer, B.

Hogan, M. J.

M. J. Hogan, J. A. Alvarado, and J. E. Weddell, Histology of the Human Eye (W.B. Saunders Company, 1971).

Hong, Y.

Hope-Ross, M.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101(3), 529–533 (1994), http://www.ncbi.nlm.nih.gov/pubmed/8127574 .
[PubMed]

Hornegger, J.

Huang, D.

Huber, R.

Iftimia, N. V.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci. 49(5), 2061–2070 (2008), http://dx.doi.org/10.1167/iovs.07-1228 .
[CrossRef] [PubMed]

Inoué, Shinya

Shinya Inoué, “Foundations of confocal scanned imaging in light microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Springer, 1995), pp. 1–14.

Ishikawa, H.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” IOVS 46(6), 2012–2017 (2005), http://dx.doi.org/10.1167/iovs.04-0335 .

Itoh, M.

Izatt, J. A.

Jaillon, F.

Jayaraman, V.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M–82130M-8 (2012).
[CrossRef]

Jia, Y.

Jiang, J.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M–82130M-8 (2012).
[CrossRef]

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2009), http://ol.osa.org/abstract.cfm?URI=ol-33-13-1530 .
[CrossRef]

Jones, S. M.

Jonnal, R. S.

Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011), http://www.iovs.org/content/early/2011/01/17/iovs.10-6424.abstract .
[CrossRef] [PubMed]

O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express 2(4), 748–763 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-4-748 .
[CrossRef] [PubMed]

Ju, M. J.

Kajic, V.

Khurana, M.

Kim, D. Y.

Klein, T.

Kocaoglu, O. P.

Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011), http://www.iovs.org/content/early/2011/01/17/iovs.10-6424.abstract .
[CrossRef] [PubMed]

O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express 2(4), 748–763 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-4-748 .
[CrossRef] [PubMed]

Koch, E.

J. Walther, A Krüger, M. Cuevas, and E. Koch, “Effects of axial, transverse, and oblique sample motion in FD OCT in systems with global or rolling shutter line detector,” J. Opt. Soc. A. A 25(11), 2791–2802 (2008), http://josaa.osa.org/abstract.cfm?URI=josaa-25-11-2791 .
[CrossRef]

Kowalczyk, A.

Kraus, M. F.

Krieglstein, G. K.

J. Flammer, S. Orgül, V. P Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002), http://www.sciencedirect.com/science/article/pii/S1350946202000083 .
[CrossRef] [PubMed]

Krüger, A

J. Walther, A Krüger, M. Cuevas, and E. Koch, “Effects of axial, transverse, and oblique sample motion in FD OCT in systems with global or rolling shutter line detector,” J. Opt. Soc. A. A 25(11), 2791–2802 (2008), http://josaa.osa.org/abstract.cfm?URI=josaa-25-11-2791 .
[CrossRef]

Krupsky, S.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36(1), 57–66 (2005).
[PubMed]

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101(3), 529–533 (1994), http://www.ncbi.nlm.nih.gov/pubmed/8127574 .
[PubMed]

Kurokawa, K.

Kurt Ahnelt, P.

Lee, B. H.

Lee, S.

Leitgeb, R.

Leitgeb, R. A.

Leung, M. K. K.

Li, G. P.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242, 345–350 (2004). http://www.sciencedirect.com/science/article/B6TVF-4D8F6KC-1/2/248c1c0c32a9be950faa5260ae275c0e .
[CrossRef]

Lin, C. P.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17(2), 151–153 (1992), http://ol.osa.org/abstract.cfm?URI=ol-17-2-151 .
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991), http://www.sciencemag.org/cgi/content/abstract/254/5035/1178 .
[CrossRef] [PubMed]

Liu, G.

Liu, J. J.

Magnani, M.

R. W. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008), http://www.iovs.org/content/49/12/5510.long .
[CrossRef] [PubMed]

Makita, S.

Mariampillai, A.

Marshall, D.

Martin, J. A.

J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci. 51(3), 1691–1698 (2010), http://www.iovs.org/content/51/3/1691 .
[CrossRef]

J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112(12), 2219–2224 (2005), http://www.sciencedirect.com/science/article/pii/S0161642005009115 .
[CrossRef] [PubMed]

McLeod, D. S.

R. W. Flower, A. W. Fryczkowski, and D. S. McLeod, “Variability in choriocapillaris blood flow distribution,” Invest. Ophthalmol. Vis. Sci. 36(7), 1247–1258 (1995), http://www.ncbi.nlm.nih.gov/pubmed/7775102 .
[PubMed]

Metha, A.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008–024008-7 (2008), http://link.aip.org/link/?JBO/13/024008/1 .
[CrossRef] [PubMed]

Miller, D. T.

Milner, T. E.

X. J. Wang, T. E. Milner, and J. S. Nelson. “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Letters 20(11), 1337–1339 (1995), http://ol.osa.org/abstract.cfm?URI=ol-20-11-1337 .
[CrossRef]

Min, E. J.

Miura, M.

Moriyama, E. H.

Motaghiannezam, R.

Mujat, M.

Munce, N. R.

Myllylä, R.

Nassif, N.

Nelson, D. A.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36(1), 57–66 (2005).
[PubMed]

Nelson, J. S.

X. J. Wang, T. E. Milner, and J. S. Nelson. “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Letters 20(11), 1337–1339 (1995), http://ol.osa.org/abstract.cfm?URI=ol-20-11-1337 .
[CrossRef]

Oliver, S. S.

Olivier, S. S.

Orgül, S.

J. Flammer, S. Orgül, V. P Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002), http://www.sciencedirect.com/science/article/pii/S1350946202000083 .
[CrossRef] [PubMed]

Orlock, D. A.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101(3), 529–533 (1994), http://www.ncbi.nlm.nih.gov/pubmed/8127574 .
[PubMed]

Orzalesi, N.

J. Flammer, S. Orgül, V. P Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002), http://www.sciencedirect.com/science/article/pii/S1350946202000083 .
[CrossRef] [PubMed]

Park, B.

Park, B. H.

Peiretti, E.

R. W. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008), http://www.iovs.org/content/49/12/5510.long .
[CrossRef] [PubMed]

Petrig, B. L.

Z. Zhong, H. Song, T. Y. P. Chui, B. L. Petrig, L. Benno, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 52(7), 4151–4157 (2011), http://www.iovs.org/content/52/7/4151.abstract .
[CrossRef] [PubMed]

Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, “In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy,” Opt. Express 16(17), 12746–12756 (2008).
[CrossRef] [PubMed]

Pierce, M.

Pierce, M. C.

Pilli, S.

Pircher, M.

Pollack, A.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36(1), 57–66 (2005).
[PubMed]

Potsaid, B.

Pournaras, C. J.

C. J. Pournaras, E. Rungger-Brändle, C. E. Riva, S. H. Hardarson, and E. Stefansson, “Regulation of retinal blood flow in health and disease,” Prog. Retin. Eye. Res. 27(3), 284–330 (2008), http://www.sciencedirect.com/science/article/pii/S135094620800013X .
[CrossRef] [PubMed]

Považay, B.

Prieto, P. M.

Puliafito, C. A.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101(3), 529–533 (1994), http://www.ncbi.nlm.nih.gov/pubmed/8127574 .
[PubMed]

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17(2), 151–153 (1992), http://ol.osa.org/abstract.cfm?URI=ol-17-2-151 .
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991), http://www.sciencemag.org/cgi/content/abstract/254/5035/1178 .
[CrossRef] [PubMed]

Qi, W.

Qi, X.

Queener, H.

Renard, J. P.

J. Flammer, S. Orgül, V. P Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002), http://www.sciencedirect.com/science/article/pii/S1350946202000083 .
[CrossRef] [PubMed]

Riva, C. E.

C. J. Pournaras, E. Rungger-Brändle, C. E. Riva, S. H. Hardarson, and E. Stefansson, “Regulation of retinal blood flow in health and disease,” Prog. Retin. Eye. Res. 27(3), 284–330 (2008), http://www.sciencedirect.com/science/article/pii/S135094620800013X .
[CrossRef] [PubMed]

Rohrer, K. T.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986), http://www.ncbi.nlm.nih.gov/pubmed/3523356 .
[PubMed]

Rollins, A. M.

Romero-Borja, F.

Roorda, A.

J. Tam and A. Roorda, “Speed quantification and tracking of moving objects in adaptive optics scanning laser ophthalmoscopy,” J. Biomed. Opt. 16(3), 036002 (2011), http://dx.doi.org/10.1117/1.3548880 .
[CrossRef] [PubMed]

J. Tam, P. Tiruveedhula, and A. Roorda, “Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(4), 781–793 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-4-781 .
[CrossRef] [PubMed]

J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci. 51(3), 1691–1698 (2010), http://www.iovs.org/content/51/3/1691 .
[CrossRef]

J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112(12), 2219–2224 (2005), http://www.sciencedirect.com/science/article/pii/S0161642005009115 .
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[PubMed]

Rosin, P. L.

Rosner, M.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36(1), 57–66 (2005).
[PubMed]

Rossi, L.

R. W. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008), http://www.iovs.org/content/49/12/5510.long .
[CrossRef] [PubMed]

Rungger-Brändle, E.

C. J. Pournaras, E. Rungger-Brändle, C. E. Riva, S. H. Hardarson, and E. Stefansson, “Regulation of retinal blood flow in health and disease,” Prog. Retin. Eye. Res. 27(3), 284–330 (2008), http://www.sciencedirect.com/science/article/pii/S135094620800013X .
[CrossRef] [PubMed]

Sasaki, K.

Sattmann, H.

Saxer, C.

Schmetterer, L.

Schuman, J. S.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” IOVS 46(6), 2012–2017 (2005), http://dx.doi.org/10.1167/iovs.04-0335 .

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991), http://www.sciencemag.org/cgi/content/abstract/254/5035/1178 .
[CrossRef] [PubMed]

Schwartz, D.

Serafini, S.

R. W. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008), http://www.iovs.org/content/49/12/5510.long .
[CrossRef] [PubMed]

Serra, L. M.

J. Flammer, S. Orgül, V. P Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002), http://www.sciencedirect.com/science/article/pii/S1350946202000083 .
[CrossRef] [PubMed]

Shen, T. T.

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013–106013-9 (2011), http://link.aip.org/link/?JBO/16/106013/1 .
[CrossRef] [PubMed]

Shields, W.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986), http://www.ncbi.nlm.nih.gov/pubmed/3523356 .
[PubMed]

Slakter, J. S.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101(3), 529–533 (1994), http://www.ncbi.nlm.nih.gov/pubmed/8127574 .
[PubMed]

Smith, G.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008–024008-7 (2008), http://link.aip.org/link/?JBO/13/024008/1 .
[CrossRef] [PubMed]

Snodderly, D. M.

D. M. Snodderly, R. S. Weinhaus, and J. C. Choi, “Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis),” J. Neurosci. 12(4), 1169–1193 (1992).
[PubMed]

Sobel, R. S.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986), http://www.ncbi.nlm.nih.gov/pubmed/3523356 .
[PubMed]

Song, H.

Z. Zhong, H. Song, T. Y. P. Chui, B. L. Petrig, L. Benno, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 52(7), 4151–4157 (2011), http://www.iovs.org/content/52/7/4151.abstract .
[CrossRef] [PubMed]

Sorenson, J. A.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101(3), 529–533 (1994), http://www.ncbi.nlm.nih.gov/pubmed/8127574 .
[PubMed]

Standish, B. A.

Stefansson, E.

C. J. Pournaras, E. Rungger-Brändle, C. E. Riva, S. H. Hardarson, and E. Stefansson, “Regulation of retinal blood flow in health and disease,” Prog. Retin. Eye. Res. 27(3), 284–330 (2008), http://www.sciencedirect.com/science/article/pii/S135094620800013X .
[CrossRef] [PubMed]

Stefánsson, E.

J. Flammer, S. Orgül, V. P Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002), http://www.sciencedirect.com/science/article/pii/S1350946202000083 .
[CrossRef] [PubMed]

Stein, D. M.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” IOVS 46(6), 2012–2017 (2005), http://dx.doi.org/10.1167/iovs.04-0335 .

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991), http://www.sciencemag.org/cgi/content/abstract/254/5035/1178 .
[CrossRef] [PubMed]

Stromski, S.

Stuart Nelson, J.

Subhash, H.

Swanson, E. A.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17(2), 151–153 (1992), http://ol.osa.org/abstract.cfm?URI=ol-17-2-151 .
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991), http://www.sciencemag.org/cgi/content/abstract/254/5035/1178 .
[CrossRef] [PubMed]

Szkulmowska, A.

Szkulmowski, M.

Szlag, D.

Tam, J.

J. Tam, P. Tiruveedhula, and A. Roorda, “Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(4), 781–793 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-4-781 .
[CrossRef] [PubMed]

J. Tam and A. Roorda, “Speed quantification and tracking of moving objects in adaptive optics scanning laser ophthalmoscopy,” J. Biomed. Opt. 16(3), 036002 (2011), http://dx.doi.org/10.1117/1.3548880 .
[CrossRef] [PubMed]

J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci. 51(3), 1691–1698 (2010), http://www.iovs.org/content/51/3/1691 .
[CrossRef]

Tan, O.

Targowski, P.

Tearney, G.

Tearney, G. J.

Tindel, L. J.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986), http://www.ncbi.nlm.nih.gov/pubmed/3523356 .
[PubMed]

Tiruveedhula, P.

Tokayer, J.

Torti, C.

Torzicky, T.

Toth, C. A.

Tso, M. O. M

S. Yoneya and M. O. M Tso, “Angioarchitecture of the human choroid,” Arch. Ophthalmol. 105(5), 681–687 (1987), http://archopht.ama-assn.org/cgi/content/abstract/105/5/681 .
[CrossRef] [PubMed]

Unterhuber, A.

Unterhuder, A.

Ustun, T. E.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci. 49(5), 2061–2070 (2008), http://dx.doi.org/10.1167/iovs.07-1228 .
[CrossRef] [PubMed]

Vanzetta, I.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36(1), 57–66 (2005).
[PubMed]

Vitkin, I. A.

Walther, J.

J. Walther, A Krüger, M. Cuevas, and E. Koch, “Effects of axial, transverse, and oblique sample motion in FD OCT in systems with global or rolling shutter line detector,” J. Opt. Soc. A. A 25(11), 2791–2802 (2008), http://josaa.osa.org/abstract.cfm?URI=josaa-25-11-2791 .
[CrossRef]

Wang, L.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242, 345–350 (2004). http://www.sciencedirect.com/science/article/B6TVF-4D8F6KC-1/2/248c1c0c32a9be950faa5260ae275c0e .
[CrossRef]

Wang, Q.

Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011), http://www.iovs.org/content/early/2011/01/17/iovs.10-6424.abstract .
[CrossRef] [PubMed]

O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express 2(4), 748–763 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-4-748 .
[CrossRef] [PubMed]

Wang, R. K.

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013–106013-9 (2011), http://link.aip.org/link/?JBO/16/106013/1 .
[CrossRef] [PubMed]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15) 11438–11452 (2008).
[CrossRef] [PubMed]

Wang, X. J.

X. J. Wang, T. E. Milner, and J. S. Nelson. “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Letters 20(11), 1337–1339 (1995), http://ol.osa.org/abstract.cfm?URI=ol-20-11-1337 .
[CrossRef]

Wang, Y.

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[CrossRef] [PubMed]

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242, 345–350 (2004). http://www.sciencedirect.com/science/article/B6TVF-4D8F6KC-1/2/248c1c0c32a9be950faa5260ae275c0e .
[CrossRef]

Weddell, J. E.

M. J. Hogan, J. A. Alvarado, and J. E. Weddell, Histology of the Human Eye (W.B. Saunders Company, 1971).

Weinhaus, R. S.

D. M. Snodderly, R. S. Weinhaus, and J. C. Choi, “Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis),” J. Neurosci. 12(4), 1169–1193 (1992).
[PubMed]

Werner, J. S.

R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express 2(6), 1674–1686 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-6-1674 .
[CrossRef] [PubMed]

R. J. Zawadzki, S. S. Choi, A. R. Fuller, J. W. Evans, B. Hamann, and J. S. Werner, “Cellular resolution volumetric in vivo retinal imaging with adaptive optics–optical coherence tomography,” Opt. Express 17(5), 4084–4094 (2009).
[CrossRef] [PubMed]

J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009).
[CrossRef] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16(11), 8126–8143 (2008).
[CrossRef] [PubMed]

R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A 24(5), 1373–1383 (2007), http://josaa.osa.org/abstract.cfm?URI=josaa-24-5-1373 .
[CrossRef]

White, B.

Wieser, W.

Wilson, B. C.

Wojtkowski, M.

Wollstein, G.

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” IOVS 46(6), 2012–2017 (2005), http://dx.doi.org/10.1167/iovs.04-0335 .

Xiang, S.

Yamanari, M.

Yang, V. X. D.

Yannuzzi, L. A.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101(3), 529–533 (1994), http://www.ncbi.nlm.nih.gov/pubmed/8127574 .
[PubMed]

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986), http://www.ncbi.nlm.nih.gov/pubmed/3523356 .
[PubMed]

Yasuno, Y.

Yatagai, T.

Yazdanfar, S.

Yoneya, S.

S. Yoneya and M. O. M Tso, “Angioarchitecture of the human choroid,” Arch. Ophthalmol. 105(5), 681–687 (1987), http://archopht.ama-assn.org/cgi/content/abstract/105/5/681 .
[CrossRef] [PubMed]

Yu, L.

Yun, S.

Yun, S. H.

Zang, E.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986), http://www.ncbi.nlm.nih.gov/pubmed/3523356 .
[PubMed]

Zarbin, M. A.

M. A. Zarbin, “Current concepts in the pathogenesis of age-related macular degeneration,” Archives of Ophthalmology 122(4), 598–614 (2004), http://www.ncbi.nlm.nih.gov/pubmed/15078679 .
[CrossRef] [PubMed]

Zawadzki, R.

Zawadzki, R. J.

R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express 2(6), 1674–1686 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-6-1674 .
[CrossRef] [PubMed]

R. J. Zawadzki, S. S. Choi, A. R. Fuller, J. W. Evans, B. Hamann, and J. S. Werner, “Cellular resolution volumetric in vivo retinal imaging with adaptive optics–optical coherence tomography,” Opt. Express 17(5), 4084–4094 (2009).
[CrossRef] [PubMed]

J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009).
[CrossRef] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16(11), 8126–8143 (2008).
[CrossRef] [PubMed]

R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A 24(5), 1373–1383 (2007), http://josaa.osa.org/abstract.cfm?URI=josaa-24-5-1373 .
[CrossRef]

Zhang, J.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242, 345–350 (2004). http://www.sciencedirect.com/science/article/B6TVF-4D8F6KC-1/2/248c1c0c32a9be950faa5260ae275c0e .
[CrossRef]

Zhang, Y.

Zhao, Y.

Zhong, Z.

Z. Zhong, H. Song, T. Y. P. Chui, B. L. Petrig, L. Benno, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 52(7), 4151–4157 (2011), http://www.iovs.org/content/52/7/4151.abstract .
[CrossRef] [PubMed]

Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, “In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy,” Opt. Express 16(17), 12746–12756 (2008).
[CrossRef] [PubMed]

Zotter, S.

Arch. Ophthalmol. (1)

S. Yoneya and M. O. M Tso, “Angioarchitecture of the human choroid,” Arch. Ophthalmol. 105(5), 681–687 (1987), http://archopht.ama-assn.org/cgi/content/abstract/105/5/681 .
[CrossRef] [PubMed]

Archives of Ophthalmology (1)

M. A. Zarbin, “Current concepts in the pathogenesis of age-related macular degeneration,” Archives of Ophthalmology 122(4), 598–614 (2004), http://www.ncbi.nlm.nih.gov/pubmed/15078679 .
[CrossRef] [PubMed]

Biomed. Opt. Express (6)

O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, and D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express 2(4), 748–763 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-4-748 .
[CrossRef] [PubMed]

J. Tam, P. Tiruveedhula, and A. Roorda, “Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(4), 781–793 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-4-781 .
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express 2(6), 1674–1686 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-6-1674 .
[CrossRef] [PubMed]

R. Motaghiannezam and S. Fraser, “Logarithmic intensity and speckle-based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography,” Biomed. Opt. Express 3(3), 503–521 (2012), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-3-503 .
[CrossRef] [PubMed]

S. J. Chiu, C. A. Toth, C. Bowes Rickman, J. A. Izatt, and S. Farsiu, “Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming,” Biomed. Opt. Express 3(5), 1127–1140 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-19413 .
[CrossRef] [PubMed]

K. Sasaki, K. Kurokawa, S. Makita, and Y. Yasuno, “Extended depth of focus adaptive optics spectral domain optical coherence tomography,” Biomed. Opt. Express 3(10), 2353–2370 (2012).
[CrossRef]

Graefe’s Archive for Clinical and Experimental Ophthalmology (1)

S. S. Hayreh, “The choriocapillaris,” Graefe’s Archive for Clinical and Experimental Ophthalmology 192(3), 165–179 (1974), http://dx.doi.org/10.1007/BF00416864 .
[PubMed]

Invest. Ophthalmol. Vis. Sci. (6)

R. W. Flower, A. W. Fryczkowski, and D. S. McLeod, “Variability in choriocapillaris blood flow distribution,” Invest. Ophthalmol. Vis. Sci. 36(7), 1247–1258 (1995), http://www.ncbi.nlm.nih.gov/pubmed/7775102 .
[PubMed]

R. W. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci. 49(12), 5510–5516 (2008), http://www.iovs.org/content/49/12/5510.long .
[CrossRef] [PubMed]

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci. 49(5), 2061–2070 (2008), http://dx.doi.org/10.1167/iovs.07-1228 .
[CrossRef] [PubMed]

Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011), http://www.iovs.org/content/early/2011/01/17/iovs.10-6424.abstract .
[CrossRef] [PubMed]

Z. Zhong, H. Song, T. Y. P. Chui, B. L. Petrig, L. Benno, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 52(7), 4151–4157 (2011), http://www.iovs.org/content/52/7/4151.abstract .
[CrossRef] [PubMed]

J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci. 51(3), 1691–1698 (2010), http://www.iovs.org/content/51/3/1691 .
[CrossRef]

IOVS (1)

H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” IOVS 46(6), 2012–2017 (2005), http://dx.doi.org/10.1167/iovs.04-0335 .

J. Biomed. Opt. (3)

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008–024008-7 (2008), http://link.aip.org/link/?JBO/13/024008/1 .
[CrossRef] [PubMed]

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013–106013-9 (2011), http://link.aip.org/link/?JBO/16/106013/1 .
[CrossRef] [PubMed]

J. Tam and A. Roorda, “Speed quantification and tracking of moving objects in adaptive optics scanning laser ophthalmoscopy,” J. Biomed. Opt. 16(3), 036002 (2011), http://dx.doi.org/10.1117/1.3548880 .
[CrossRef] [PubMed]

J. Neurosci. (1)

D. M. Snodderly, R. S. Weinhaus, and J. C. Choi, “Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis),” J. Neurosci. 12(4), 1169–1193 (1992).
[PubMed]

J. Opt. Soc. A. A (1)

J. Walther, A Krüger, M. Cuevas, and E. Koch, “Effects of axial, transverse, and oblique sample motion in FD OCT in systems with global or rolling shutter line detector,” J. Opt. Soc. A. A 25(11), 2791–2802 (2008), http://josaa.osa.org/abstract.cfm?URI=josaa-25-11-2791 .
[CrossRef]

J. Opt. Soc. Am. A (1)

Nature (1)

R. F. Gariano and T. W. Gardner, “Retinal angiogenesis in development and disease,” Nature 438(7070), 960–966 (2005), http://www.nature.com/nature/journal/v438/n7070/full/nature04482.html .
[CrossRef] [PubMed]

Ophthalmic Surg. Lasers Imaging (1)

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36(1), 57–66 (2005).
[PubMed]

Ophthalmology (3)

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986), http://www.ncbi.nlm.nih.gov/pubmed/3523356 .
[PubMed]

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology 101(3), 529–533 (1994), http://www.ncbi.nlm.nih.gov/pubmed/8127574 .
[PubMed]

J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112(12), 2219–2224 (2005), http://www.sciencedirect.com/science/article/pii/S0161642005009115 .
[CrossRef] [PubMed]

Opt. Commun. (1)

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242, 345–350 (2004). http://www.sciencedirect.com/science/article/B6TVF-4D8F6KC-1/2/248c1c0c32a9be950faa5260ae275c0e .
[CrossRef]

Opt. Express (28)

A. Roorda, F. Romero-Borja, W. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[PubMed]

R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
[CrossRef] [PubMed]

B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
[CrossRef] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16(11), 8126–8143 (2008).
[CrossRef] [PubMed]

B. Cense, N. Nassif, T. Chen, M. Pierce, S. Yun, B. Park, B. Bouma, G. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004).
[CrossRef] [PubMed]

S. H. Yun, G. Tearney, J. F. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12(13), 2977–2998 (2004).
[CrossRef] [PubMed]

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express 13(9), 3252–3258 (2005).
[CrossRef] [PubMed]

B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm,” Opt. Express 13(11), 3931–3944 (2005).
[CrossRef] [PubMed]

J. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express 13(14), 5234–5239 (2005).
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14(13) 6213–6225 (2006).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[CrossRef] [PubMed]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15) 11438–11452 (2008).
[CrossRef] [PubMed]

Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, “In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy,” Opt. Express 16(17), 12746–12756 (2008).
[CrossRef] [PubMed]

R. J. Zawadzki, S. S. Choi, A. R. Fuller, J. W. Evans, B. Hamann, and J. S. Werner, “Cellular resolution volumetric in vivo retinal imaging with adaptive optics–optical coherence tomography,” Opt. Express 17(5), 4084–4094 (2009).
[CrossRef] [PubMed]

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint spectral and time domain optical coherence tomography,” Opt. Express 17(13), 10584–10598 (2009).
[CrossRef] [PubMed]

T. Fabritius, S. Makita, M. Miura, R. Myllylä, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt. Express 17(18), 15659–15669 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-18-15659 .
[CrossRef] [PubMed]

C. Torti, B. Považay, B. Hofer, A. Unterhuber, J. Carroll, P. Kurt Ahnelt, and W. Drexler, “Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina,” Opt. Express 17(22), 19382–19400 (2009).
[CrossRef] [PubMed]

J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009).
[CrossRef] [PubMed]

I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17(26), 23736–23754 (2009).
[CrossRef]

K. Kurokawa, K. Sasaki, S. Makita, M. Yamanari, B. Cense, and Y. Yasuno, “Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography,” Opt. Express 18(8), 8515–8527 (2010).
[CrossRef] [PubMed]

V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express 18(14), 14730–14744 (2010).
[CrossRef]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express 19(2), 1217–1227 (2011).
[CrossRef] [PubMed]

S. Makita, F. Jaillon, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express 19(2), 1271–1283 (2011).
[CrossRef] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050nm fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-3044 .
[CrossRef] [PubMed]

G. Liu, W. Qi, L. Yu, and Z. Chen, “Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging,” Opt. Express 19(4), 3657–3666 (2011).
[CrossRef] [PubMed]

Y. Hong, S. Makita, F. Jaillon, M. J. Ju, E. J. Min, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno. “High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization,” Opt. Express 20(3), 2740–2760 (2012).
[CrossRef] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[CrossRef] [PubMed]

Opt. Lett. (7)

B. Hermann, E. J. Fernández, A. Unterhuder, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004), http://ol.osa.org/abstract.cfm?URI=ol-29-18-2142 .
[CrossRef] [PubMed]

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2009), http://ol.osa.org/abstract.cfm?URI=ol-33-13-1530 .
[CrossRef]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29(5), 480–482 (2004), http://ol.osa.org/abstract.cfm?URI=ol-29-5-480 .
[CrossRef] [PubMed]

M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28(19), 1745–1747 (2003), http://ol.osa.org/abstract.cfm?URI=ol-28-19-1745 .
[CrossRef] [PubMed]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. Stuart Nelson. “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000) http://ol.osa.org/abstract.cfm?URI=ol-25-2-114 .
[CrossRef]

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17(2), 151–153 (1992), http://ol.osa.org/abstract.cfm?URI=ol-17-2-151 .
[CrossRef] [PubMed]

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Opt. Lett. 25(19), 1448–1450 (2000), http://ol.osa.org/abstract.cfm?URI=ol-25-19-1448 .
[CrossRef]

Opt. Letters (1)

X. J. Wang, T. E. Milner, and J. S. Nelson. “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Letters 20(11), 1337–1339 (1995), http://ol.osa.org/abstract.cfm?URI=ol-20-11-1337 .
[CrossRef]

Proc. SPIE (1)

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M–82130M-8 (2012).
[CrossRef]

Prog. Retin. Eye Res. (2)

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27 (1), 45–88 (2008). http://www.sciencedirect.com/science/article/pii/S1350946207000444 .
[CrossRef]

J. Flammer, S. Orgül, V. P Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J. P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res. 21(4), 359–393 (2002), http://www.sciencedirect.com/science/article/pii/S1350946202000083 .
[CrossRef] [PubMed]

Prog. Retin. Eye. Res. (1)

C. J. Pournaras, E. Rungger-Brändle, C. E. Riva, S. H. Hardarson, and E. Stefansson, “Regulation of retinal blood flow in health and disease,” Prog. Retin. Eye. Res. 27(3), 284–330 (2008), http://www.sciencedirect.com/science/article/pii/S135094620800013X .
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991), http://www.sciencemag.org/cgi/content/abstract/254/5035/1178 .
[CrossRef] [PubMed]

Other (5)

M. J. Hogan, J. A. Alvarado, and J. E. Weddell, Histology of the Human Eye (W.B. Saunders Company, 1971).

Shinya Inoué, “Foundations of confocal scanned imaging in light microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Springer, 1995), pp. 1–14.

Albert Alm, “Circulation,” in Adler’s Physiology of the Eye, P. L. Kaufman and A. Alm, eds. (Mosby, 2002), pp.747–784.
[PubMed]

L. Chen, “Control algorithms,” in Adaptive Optics for Vision Science: Principles, Practices, Design and Applications, J. Porter, H. Queener, J. Lin, K. Thorn, and A. A. S. Awwal, eds. (Wiley-Interscience, 2006).

Z136 Committee, American National Standard for Safe Use of Lasers: ANSI Z136.1-2000 (Laser Institute of America, 2003).

Supplementary Material (4)

» Media 1: AVI (3601 KB)     
» Media 2: AVI (3070 KB)     
» Media 3: AVI (1568 KB)     
» Media 4: AVI (1447 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Optical design of achromatizer. An yellow arrow indicates the beam direction from the fiber tip to the retina. (b) The chromatic focal shift with the achromatizer (red solid line) and without the achromatizer (green dashed line).

Fig. 2
Fig. 2

(a) An example of the OCT volume used to evaluate the performance of bulk motion correction. The red box represents the region of interest. The red arrow indicates the slow-scan direction, and the blue arrow indicates the fast-scan direction. (b) The RMS of phase differences for each B-scan. ‘+’ and ‘×’ respectively indicate the RMS obtained with mean and mode motion estimators.

Fig. 3
Fig. 3

(a) En face projection of photoreceptors. (b) Representative B-scan image with segmentation results. The corresponding depths are indicated by black arrows. A white bar indicate 100 μm.

Fig. 4
Fig. 4

(a) En face projections of retinal capillaries. (b) En face projections of the choriocapillaries layer and choroidal capillary in the Sattler layer. A black bar indicates 100 μm.

Fig. 5
Fig. 5

(a) Measured area in the fundus image (5 mm × 5 mm). (b) Measured area after averaging and cropping

Fig. 6
Fig. 6

Wide-field en face projections of intensity (left column) and Doppler power (right column) images at different depths of the GCL and IPL ((a) and (b)), IPL/INL boundary ((c) and (d)), INL/OPL boundary ((e) and (f)) and choriocapillaris ((g) and (h)).

Fig. 7
Fig. 7

(a)–(c) En face projections of the choriocapillaris and Sattler layers at different depths for Subjects-A, B and C. A black bar indicates 100 μm.

Tables (2)

Tables Icon

Table 1 Participants’ characteristics. ID is the subject ID, Sph and Cyl are spherical and cylindrical refractive errors in diopters and L/R indicates the left (L)/right (R) eye.

Tables Icon

Table 2 Summary of scanning protocols. The fractional displacement is the separation between adjacent B-scans with respect to the 1/e2 beam diameter of the probe. The minimum velocity is estimated for an SNR of 20 dB.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

v t + T = v t α A + ( s T s target ) ,
ϕ B Arg [ j S i ( j ) S i + 1 * ( j ) ] ,

Metrics