Abstract

We introduce depth-filtered digital holography (DFDH) as a method for quantitative tomographic phase imaging of buried layers in multilayer samples. The procedure is based on the acquisition of multiple holograms for different wavelengths. Analyzing the intensity over wavelength pixel wise and using an inverse Fourier transform leads to a depth-profile of the multilayered sample. Applying a windowed Fourier transform with a narrow window, we choose a depth-of interest (DOI) which is used to synthesize filtered interference patterns that just contain information of this limited depth. We use the angular spectrum method to introduce an additional spatial filtering and to reconstruct the corresponding holograms. After a short theoretical framework we show experimental proof-of-principle results for the method.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Pedrini, P. Fröning, H. J. Tiziani, and F. Mendoza Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164(4-6), 257–268 (1999).
    [CrossRef]
  2. F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. D. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45(5), 829–835 (2006).
    [CrossRef] [PubMed]
  3. Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE J. Microelectromechan. Syst. 19, 1–5 (2010).
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  5. B. L. Danielson and C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt. 30(21), 2975–2979 (1991).
    [CrossRef] [PubMed]
  6. C. K. Hitzenberger, “Measurement of corneal thickness by low-coherence interferometry,” Appl. Opt. 31(31), 6637–6642 (1992).
    [CrossRef] [PubMed]
  7. P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44(10), 1806–1812 (2005).
    [CrossRef] [PubMed]
  8. G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41(22), 4489–4496 (2002).
    [CrossRef] [PubMed]
  9. K. Jeong, J. J. Turek, and D. D. Nolte, “Fourier-domain digital holographic optical coherence imaging of living tissue,” Appl. Opt. 46(22), 4999–5008 (2007).
    [CrossRef] [PubMed]
  10. G. Indebetouw and P. Klysubun, “Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography,” Opt. Lett. 25(4), 212–214 (2000).
    [CrossRef] [PubMed]
  11. S. Tamano, Y. Hayasaki, and N. Nishida, “Phase-shifting digital holography with a low-coherence light source for reconstruction of a digital relief object hidden behind a light-scattering medium,” Appl. Opt. 45(5), 953–959 (2006).
    [CrossRef] [PubMed]
  12. M. K. Kim, “Wavelength-scanning digital interference holography for optical section imaging,” Opt. Lett. 24(23), 1693–1695 (1999).
    [CrossRef] [PubMed]
  13. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30(16), 2092–2094 (2005).
    [CrossRef] [PubMed]
  14. F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. D. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45(32), 8209–8217 (2006).
    [CrossRef] [PubMed]
  15. G. Sheoran, S. Dubey, A. Anand, D. S. Mehta, and C. Shakher, “Swept-source digital holography to reconstruct tomographic images,” Opt. Lett. 34(12), 1879–1881 (2009).
    [CrossRef] [PubMed]
  16. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
    [CrossRef] [PubMed]
  17. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30(16), 2131–2133 (2005).
    [CrossRef] [PubMed]
  18. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
    [CrossRef] [PubMed]
  19. F. E. Robles, L. L. Satterwhite, and A. Wax, “Nonlinear phase dispersion spectroscopy,” Opt. Lett. 36(23), 4665–4667 (2011).
    [CrossRef] [PubMed]
  20. M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31(10), 1462–1464 (2006).
    [CrossRef] [PubMed]
  21. T. Anna, C. Shakher, and D. Singh Mehta, “Simultaneous tomography and topography of silicon integrated circuits using full-field swept source optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 11(4), 045501 (2009).
    [CrossRef]
  22. M. Sticker, C. K. Hitzenberger, R. Leitgeb, and A. F. Fercher, “Quantitative differential phase measurement and imaging in transparent and turbid media by optical coherence tomography,” Opt. Lett. 26(8), 518–520 (2001).
    [CrossRef] [PubMed]
  23. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 2003)
  24. N. Koukourakis, C. Kasseck, D. Rytz, N. C. Gerhardt, and M. R. Hofmann, “Single-shot holography for depth resolved three dimensional imaging,” Opt. Express 17(23), 21015–21029 (2009).
    [CrossRef] [PubMed]
  25. C. Kasseck, V. Jaedicke, N. C. Gerhardt, H. Welp, and M. R. Hofmann, “Substance identification by depth-resolved spectroscopic pattern reconstruction in frequency domain optical coherence tomography,” Opt. Commun. 283(23), 4816–4822 (2010).
    [CrossRef]
  26. N. Koukourakis, T. Abdelwahab, M. Y. Li, H. Höpfner, Y. W. Lai, E. Darakis, C. Brenner, N. C. Gerhardt, and M. R. Hofmann, “Photorefractive two-wave mixing for image amplification in digital holography,” Opt. Express 19(22), 22004–22023 (2011).
    [CrossRef] [PubMed]
  27. J. W. Goodman, Introduction to Fourier-Optics 2nd Edition, (McGraw Hill, 1996)
  28. E. N. Leith, J. Upatnieks, and K. A. Haines, “Microscopy by wavefront reconstruction,” J. Opt. Soc. Am. 55(5), 981–986 (1965).
    [CrossRef]
  29. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
    [CrossRef] [PubMed]
  30. N. Koukourakis, M. Breede, N. C. Gerhardt, M. R. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth-resolved holographic imaging with variable depth-resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46–48 (2009).
    [CrossRef]
  31. B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366(6450), 44–48 (1993).
    [CrossRef] [PubMed]
  32. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
    [CrossRef] [PubMed]
  33. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength,” Opt. Express 11(26), 3598–3604 (2003).
    [CrossRef] [PubMed]
  34. C. Polhemus, “Two-wavelength interferometry,” Appl. Opt. 12(9), 2071–2074 (1973).
    [CrossRef] [PubMed]

2011 (2)

2010 (2)

C. Kasseck, V. Jaedicke, N. C. Gerhardt, H. Welp, and M. R. Hofmann, “Substance identification by depth-resolved spectroscopic pattern reconstruction in frequency domain optical coherence tomography,” Opt. Commun. 283(23), 4816–4822 (2010).
[CrossRef]

Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE J. Microelectromechan. Syst. 19, 1–5 (2010).

2009 (4)

G. Sheoran, S. Dubey, A. Anand, D. S. Mehta, and C. Shakher, “Swept-source digital holography to reconstruct tomographic images,” Opt. Lett. 34(12), 1879–1881 (2009).
[CrossRef] [PubMed]

N. Koukourakis, M. Breede, N. C. Gerhardt, M. R. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth-resolved holographic imaging with variable depth-resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46–48 (2009).
[CrossRef]

N. Koukourakis, C. Kasseck, D. Rytz, N. C. Gerhardt, and M. R. Hofmann, “Single-shot holography for depth resolved three dimensional imaging,” Opt. Express 17(23), 21015–21029 (2009).
[CrossRef] [PubMed]

T. Anna, C. Shakher, and D. Singh Mehta, “Simultaneous tomography and topography of silicon integrated circuits using full-field swept source optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 11(4), 045501 (2009).
[CrossRef]

2007 (2)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

K. Jeong, J. J. Turek, and D. D. Nolte, “Fourier-domain digital holographic optical coherence imaging of living tissue,” Appl. Opt. 46(22), 4999–5008 (2007).
[CrossRef] [PubMed]

2006 (4)

2005 (4)

2004 (1)

2003 (1)

2002 (1)

2001 (1)

2000 (2)

1999 (2)

G. Pedrini, P. Fröning, H. J. Tiziani, and F. Mendoza Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164(4-6), 257–268 (1999).
[CrossRef]

M. K. Kim, “Wavelength-scanning digital interference holography for optical section imaging,” Opt. Lett. 24(23), 1693–1695 (1999).
[CrossRef] [PubMed]

1993 (1)

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366(6450), 44–48 (1993).
[CrossRef] [PubMed]

1992 (1)

1991 (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

B. L. Danielson and C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt. 30(21), 2975–2979 (1991).
[CrossRef] [PubMed]

1973 (1)

1965 (1)

Abdelwahab, T.

Akkin, T.

Anand, A.

Anna, T.

T. Anna, C. Shakher, and D. Singh Mehta, “Simultaneous tomography and topography of silicon integrated circuits using full-field swept source optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 11(4), 045501 (2009).
[CrossRef]

Badizadegan, K.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

Bailey, B.

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366(6450), 44–48 (1993).
[CrossRef] [PubMed]

Boisrobert, C. Y.

Bouma, B. E.

Breede, M.

N. Koukourakis, M. Breede, N. C. Gerhardt, M. R. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth-resolved holographic imaging with variable depth-resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46–48 (2009).
[CrossRef]

Brenner, C.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Charrière, F.

Choi, W.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

Colomb, T.

Cuche, E.

Danielson, B. L.

Darakis, E.

N. Koukourakis, T. Abdelwahab, M. Y. Li, H. Höpfner, Y. W. Lai, E. Darakis, C. Brenner, N. C. Gerhardt, and M. R. Hofmann, “Photorefractive two-wave mixing for image amplification in digital holography,” Opt. Express 19(22), 22004–22023 (2011).
[CrossRef] [PubMed]

Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE J. Microelectromechan. Syst. 19, 1–5 (2010).

Dasari, R. R.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

de Boer, J. F.

Depeursinge, C.

Depeursinge, C. D.

Dubey, S.

Duker, J. S.

Ehmann, M.

Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE J. Microelectromechan. Syst. 19, 1–5 (2010).

Emery, Y.

Fang-Yen, C.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

Farkas, D. L.

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366(6450), 44–48 (1993).
[CrossRef] [PubMed]

Feld, M. S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fröning, P.

G. Pedrini, P. Fröning, H. J. Tiziani, and F. Mendoza Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164(4-6), 257–268 (1999).
[CrossRef]

Fujimoto, J. G.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gerhardt, N. C.

N. Koukourakis, T. Abdelwahab, M. Y. Li, H. Höpfner, Y. W. Lai, E. Darakis, C. Brenner, N. C. Gerhardt, and M. R. Hofmann, “Photorefractive two-wave mixing for image amplification in digital holography,” Opt. Express 19(22), 22004–22023 (2011).
[CrossRef] [PubMed]

Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE J. Microelectromechan. Syst. 19, 1–5 (2010).

C. Kasseck, V. Jaedicke, N. C. Gerhardt, H. Welp, and M. R. Hofmann, “Substance identification by depth-resolved spectroscopic pattern reconstruction in frequency domain optical coherence tomography,” Opt. Commun. 283(23), 4816–4822 (2010).
[CrossRef]

N. Koukourakis, M. Breede, N. C. Gerhardt, M. R. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth-resolved holographic imaging with variable depth-resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46–48 (2009).
[CrossRef]

N. Koukourakis, C. Kasseck, D. Rytz, N. C. Gerhardt, and M. R. Hofmann, “Single-shot holography for depth resolved three dimensional imaging,” Opt. Express 17(23), 21015–21029 (2009).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hackl, K.

Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE J. Microelectromechan. Syst. 19, 1–5 (2010).

Haines, K. A.

Hamann, S.

Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE J. Microelectromechan. Syst. 19, 1–5 (2010).

Hayasaki, Y.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Herminjard, S.

Hitzenberger, C. K.

Hofmann, M. R.

N. Koukourakis, T. Abdelwahab, M. Y. Li, H. Höpfner, Y. W. Lai, E. Darakis, C. Brenner, N. C. Gerhardt, and M. R. Hofmann, “Photorefractive two-wave mixing for image amplification in digital holography,” Opt. Express 19(22), 22004–22023 (2011).
[CrossRef] [PubMed]

C. Kasseck, V. Jaedicke, N. C. Gerhardt, H. Welp, and M. R. Hofmann, “Substance identification by depth-resolved spectroscopic pattern reconstruction in frequency domain optical coherence tomography,” Opt. Commun. 283(23), 4816–4822 (2010).
[CrossRef]

Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE J. Microelectromechan. Syst. 19, 1–5 (2010).

N. Koukourakis, M. Breede, N. C. Gerhardt, M. R. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth-resolved holographic imaging with variable depth-resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46–48 (2009).
[CrossRef]

N. Koukourakis, C. Kasseck, D. Rytz, N. C. Gerhardt, and M. R. Hofmann, “Single-shot holography for depth resolved three dimensional imaging,” Opt. Express 17(23), 21015–21029 (2009).
[CrossRef] [PubMed]

Höpfner, H.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Indebetouw, G.

Izatt, J. A.

Jaedicke, V.

C. Kasseck, V. Jaedicke, N. C. Gerhardt, H. Welp, and M. R. Hofmann, “Substance identification by depth-resolved spectroscopic pattern reconstruction in frequency domain optical coherence tomography,” Opt. Commun. 283(23), 4816–4822 (2010).
[CrossRef]

Jeong, K.

Joo, C.

Kasseck, C.

C. Kasseck, V. Jaedicke, N. C. Gerhardt, H. Welp, and M. R. Hofmann, “Substance identification by depth-resolved spectroscopic pattern reconstruction in frequency domain optical coherence tomography,” Opt. Commun. 283(23), 4816–4822 (2010).
[CrossRef]

N. Koukourakis, C. Kasseck, D. Rytz, N. C. Gerhardt, and M. R. Hofmann, “Single-shot holography for depth resolved three dimensional imaging,” Opt. Express 17(23), 21015–21029 (2009).
[CrossRef] [PubMed]

Kim, M. K.

Klysubun, P.

Ko, T. H.

Köber, S.

N. Koukourakis, M. Breede, N. C. Gerhardt, M. R. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth-resolved holographic imaging with variable depth-resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46–48 (2009).
[CrossRef]

Koukourakis, N.

N. Koukourakis, T. Abdelwahab, M. Y. Li, H. Höpfner, Y. W. Lai, E. Darakis, C. Brenner, N. C. Gerhardt, and M. R. Hofmann, “Photorefractive two-wave mixing for image amplification in digital holography,” Opt. Express 19(22), 22004–22023 (2011).
[CrossRef] [PubMed]

Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE J. Microelectromechan. Syst. 19, 1–5 (2010).

N. Koukourakis, M. Breede, N. C. Gerhardt, M. R. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth-resolved holographic imaging with variable depth-resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46–48 (2009).
[CrossRef]

N. Koukourakis, C. Kasseck, D. Rytz, N. C. Gerhardt, and M. R. Hofmann, “Single-shot holography for depth resolved three dimensional imaging,” Opt. Express 17(23), 21015–21029 (2009).
[CrossRef] [PubMed]

Kowalczyk, A.

Kühn, J.

Lai, Y. W.

N. Koukourakis, T. Abdelwahab, M. Y. Li, H. Höpfner, Y. W. Lai, E. Darakis, C. Brenner, N. C. Gerhardt, and M. R. Hofmann, “Photorefractive two-wave mixing for image amplification in digital holography,” Opt. Express 19(22), 22004–22023 (2011).
[CrossRef] [PubMed]

Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE J. Microelectromechan. Syst. 19, 1–5 (2010).

Lanni, F.

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366(6450), 44–48 (1993).
[CrossRef] [PubMed]

Leitgeb, R.

Leith, E. N.

Li, M. Y.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ludwig, A.

Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE J. Microelectromechan. Syst. 19, 1–5 (2010).

Lue, N.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

Magistretti, P. J.

Marquet, P.

Massatsch, P.

Meerholz, K.

N. Koukourakis, M. Breede, N. C. Gerhardt, M. R. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth-resolved holographic imaging with variable depth-resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46–48 (2009).
[CrossRef]

Mehta, D. S.

Mendoza Santoyo, F.

G. Pedrini, P. Fröning, H. J. Tiziani, and F. Mendoza Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164(4-6), 257–268 (1999).
[CrossRef]

Meyer, R.

Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE J. Microelectromechan. Syst. 19, 1–5 (2010).

Montfort, F.

Nishida, N.

Nolte, D. D.

Oh, S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

Park, B. H.

Pedrini, G.

G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41(22), 4489–4496 (2002).
[CrossRef] [PubMed]

G. Pedrini, P. Fröning, H. J. Tiziani, and F. Mendoza Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164(4-6), 257–268 (1999).
[CrossRef]

Polhemus, C.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Rappaz, B.

Robles, F. E.

Rytz, D.

Salvador, M.

N. Koukourakis, M. Breede, N. C. Gerhardt, M. R. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth-resolved holographic imaging with variable depth-resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46–48 (2009).
[CrossRef]

Sarunic, M. V.

Satterwhite, L. L.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Shakher, C.

T. Anna, C. Shakher, and D. Singh Mehta, “Simultaneous tomography and topography of silicon integrated circuits using full-field swept source optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 11(4), 045501 (2009).
[CrossRef]

G. Sheoran, S. Dubey, A. Anand, D. S. Mehta, and C. Shakher, “Swept-source digital holography to reconstruct tomographic images,” Opt. Lett. 34(12), 1879–1881 (2009).
[CrossRef] [PubMed]

Sheoran, G.

Singh Mehta, D.

T. Anna, C. Shakher, and D. Singh Mehta, “Simultaneous tomography and topography of silicon integrated circuits using full-field swept source optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 11(4), 045501 (2009).
[CrossRef]

Srinivasan, V. J.

Sticker, M.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tamano, S.

Taylor, D. L.

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366(6450), 44–48 (1993).
[CrossRef] [PubMed]

Tearney, G. J.

Tiziani, H. J.

G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41(22), 4489–4496 (2002).
[CrossRef] [PubMed]

G. Pedrini, P. Fröning, H. J. Tiziani, and F. Mendoza Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164(4-6), 257–268 (1999).
[CrossRef]

Turek, J. J.

Upatnieks, J.

Wax, A.

Weible, K.

Weinberg, S.

Welp, H.

C. Kasseck, V. Jaedicke, N. C. Gerhardt, H. Welp, and M. R. Hofmann, “Substance identification by depth-resolved spectroscopic pattern reconstruction in frequency domain optical coherence tomography,” Opt. Commun. 283(23), 4816–4822 (2010).
[CrossRef]

Wojtkowski, M.

Yu, L.

Yun, S. H.

Appl. Opt. (10)

B. L. Danielson and C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt. 30(21), 2975–2979 (1991).
[CrossRef] [PubMed]

C. K. Hitzenberger, “Measurement of corneal thickness by low-coherence interferometry,” Appl. Opt. 31(31), 6637–6642 (1992).
[CrossRef] [PubMed]

P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44(10), 1806–1812 (2005).
[CrossRef] [PubMed]

G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41(22), 4489–4496 (2002).
[CrossRef] [PubMed]

K. Jeong, J. J. Turek, and D. D. Nolte, “Fourier-domain digital holographic optical coherence imaging of living tissue,” Appl. Opt. 46(22), 4999–5008 (2007).
[CrossRef] [PubMed]

F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. D. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45(5), 829–835 (2006).
[CrossRef] [PubMed]

S. Tamano, Y. Hayasaki, and N. Nishida, “Phase-shifting digital holography with a low-coherence light source for reconstruction of a digital relief object hidden behind a light-scattering medium,” Appl. Opt. 45(5), 953–959 (2006).
[CrossRef] [PubMed]

F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. D. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45(32), 8209–8217 (2006).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
[CrossRef] [PubMed]

C. Polhemus, “Two-wavelength interferometry,” Appl. Opt. 12(9), 2071–2074 (1973).
[CrossRef] [PubMed]

Electron. Lett. (1)

N. Koukourakis, M. Breede, N. C. Gerhardt, M. R. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth-resolved holographic imaging with variable depth-resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46–48 (2009).
[CrossRef]

IEEE J. Microelectromechan. Syst. (1)

Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE J. Microelectromechan. Syst. 19, 1–5 (2010).

J. Opt. A, Pure Appl. Opt. (1)

T. Anna, C. Shakher, and D. Singh Mehta, “Simultaneous tomography and topography of silicon integrated circuits using full-field swept source optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 11(4), 045501 (2009).
[CrossRef]

J. Opt. Soc. Am. (1)

Nat. Methods (1)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

Nature (1)

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366(6450), 44–48 (1993).
[CrossRef] [PubMed]

Opt. Commun. (2)

G. Pedrini, P. Fröning, H. J. Tiziani, and F. Mendoza Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164(4-6), 257–268 (1999).
[CrossRef]

C. Kasseck, V. Jaedicke, N. C. Gerhardt, H. Welp, and M. R. Hofmann, “Substance identification by depth-resolved spectroscopic pattern reconstruction in frequency domain optical coherence tomography,” Opt. Commun. 283(23), 4816–4822 (2010).
[CrossRef]

Opt. Express (5)

Opt. Lett. (8)

F. E. Robles, L. L. Satterwhite, and A. Wax, “Nonlinear phase dispersion spectroscopy,” Opt. Lett. 36(23), 4665–4667 (2011).
[CrossRef] [PubMed]

M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31(10), 1462–1464 (2006).
[CrossRef] [PubMed]

M. Sticker, C. K. Hitzenberger, R. Leitgeb, and A. F. Fercher, “Quantitative differential phase measurement and imaging in transparent and turbid media by optical coherence tomography,” Opt. Lett. 26(8), 518–520 (2001).
[CrossRef] [PubMed]

C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30(16), 2131–2133 (2005).
[CrossRef] [PubMed]

G. Sheoran, S. Dubey, A. Anand, D. S. Mehta, and C. Shakher, “Swept-source digital holography to reconstruct tomographic images,” Opt. Lett. 34(12), 1879–1881 (2009).
[CrossRef] [PubMed]

M. K. Kim, “Wavelength-scanning digital interference holography for optical section imaging,” Opt. Lett. 24(23), 1693–1695 (1999).
[CrossRef] [PubMed]

L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30(16), 2092–2094 (2005).
[CrossRef] [PubMed]

G. Indebetouw and P. Klysubun, “Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography,” Opt. Lett. 25(4), 212–214 (2000).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (2)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 2003)

J. W. Goodman, Introduction to Fourier-Optics 2nd Edition, (McGraw Hill, 1996)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Principle of depth-filtered digital holography (DFDH). The pixel-wise analysis of multiple holograms acquired at different wavelengths bears depth-information of the sample coded within a spectral modulation. Using a depth-filtering procedure, interference patterns can be synthesized that just contain information of the filtered depth, i.e. certain modulation frequencies. Digital holographic analysis of the filtered interference patterns allows for phase analysis in the depth.

Fig. 2
Fig. 2

a) Quantitative digital holographic phase reconstruction of the metallic island as a reference. b) The side-view and c) the front-view of the sample-configuration used in this paper.

Fig. 3
Fig. 3

Sketch of the off-axis digital holographic setup used in our proof-of principle experiment.

Fig. 4
Fig. 4

Digital holographic reconstructions obtained without depth-filtering: Amplitude (a), wrapped phase (b) and line-scan over unwrapped phase-profile (c) across the line marked in (a).

Fig. 5
Fig. 5

Angular spectrum of the interference pattern of the hologram reconstructed in Fig. 4. The insets a-c show the reconstruction of the corresponding part of the spectrum.

Fig. 6
Fig. 6

Depth profile of the metallic island behind the cover glasses. The z-axis shows the mismatch between object- and reference arm-length.

Fig. 7
Fig. 7

The windows that are used in the following are marked in the depth-profile. We name them windows a-h.

Fig. 8
Fig. 8

The figure shows the reconstructed amplitude of the interference patterns synthesized for the windows a-h, as depicted in Fig. 7. Windows “a” to “d” are located in the depth of the metallic island. Consequently the reconstructions of the interference patterns synthesized for these depths clearly show a good reconstruction of the metallic island. In contrast, the amplitude-reconstructions for windows e to h are strongly affected by the cover glasses as the filtered depth used here is located away from the island.

Fig. 9
Fig. 9

Digital holographic reconstruction without window (a-c) and with window “d” (d-f). From left to right: amplitude, wrapped and unwrapped phase.

Fig. 10
Fig. 10

Unwrapped reconstruction without depth-filtering (a) and with window “d” (b).

Fig. 11
Fig. 11

Digital holographic reconstruction with a synthetic wavelength. 3D view for the unfiltered (a) and filtered case (b) (first row), unwrapped phase (c) (second row left) and line-scan over phase-profile (d) (second row right).

Fig. 12
Fig. 12

Digital holographic amplitude reconstruction using window “d” (a). Line-scan of the unwrapped phase profile for the marked lines (b).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I(x,y;k)=S(k)[ T R + R O +2 R O T R cos(2Δzk)].
I(z)S(z)[( T R + R O )δ(z)+2 R O T R (δ(z+z')+δ(zz'))]
w(z, Δ z )={ 1 2 [1+cos(2π (zz') Δ z )], z-z' Δ z 2 0 , z-z'> Δ z 2 ,
H( f x , f y ,0)= I filt (x,y,c=0)exp[j( f x x+ f y y)] dxdy
I ˜ filt (x,y,0)= H ˜ ( f x , f y ,0)exp[+j( f x x+ f y y)] d f x d f y .
H ˜ ( f x , f y ,d)= H ˜ ( f x , f y ,0)exp(j f z d),
I ˜ filt (x,y,d)= H ˜ ( f x , f y ,d)exp[+j( f x x+ f y y)] d f x d f y .

Metrics