Abstract

This paper presents our study regarding diffracted intensity distribution in Fresnel and Fraunhofer approximation from different cell types. Starting from experimental information obtained through digital holographic microscopy, we modeled the cell shapes as oblate spheroids and built their phase-only transmission functions. In Fresnel approximation, the experimental and numerical diffraction patterns from mature and immature red blood cells have complementary central intensity values at different distances. The Fraunhofer diffraction patterns of deformed red blood cells were processed in the reciprocal space where, the isoamplitude curves were formed independently for each degree of cell deformation present within every sample; the values on each separate isoamplitude curve are proportional with the percentage of the respective cell type within the sample.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Leung and M. K. Cheung, “Decrease in light diffraction intensity of contracting muscle fibres,” Eur. Biophys. J. 15(6), 359–368 (1988).
    [CrossRef] [PubMed]
  2. A. F. Leung, “Laser diffraction of single intact cardiac muscle cells at rest,” J. Muscle Res. Cell Motil. 3(4), 399–418 (1982).
    [CrossRef] [PubMed]
  3. C. L. Sundell, Y. E. Goldman, and L. D. Peachey, “Fine structure in near-field and far-field laser diffraction patterns from skeletal muscle fibers,” Biophys. J. 49(2), 521–530 (1986).
    [CrossRef] [PubMed]
  4. M. Wussling, W. Schenk, and B. Nilius, “A study of dynamic properties in isolated myocardial cells by the laser diffraction method,” J. Mol. Cell. Cardiol. 19(9), 897–907 (1987).
    [CrossRef] [PubMed]
  5. C. D. Boothby, J. Daniel, S. Adam, and J. E. D. Dyson, “Use of a laser diffraction particle sizer for the measurement of mean diameter of multicellular tumor spheroids,” In Vitro Cell. Dev. Biol. 25(10), 946–950 (1989).
    [CrossRef] [PubMed]
  6. W. Groner, N. Mohandas, and M. Bessis, “New optical technique for measuring erythrocyte deformability with the ektacytometer,” Clin. Chem. 26(10), 1435–1442 (1980).
    [PubMed]
  7. D. Miller, W. J. Plaus, and R. P. Zelt, “Clinical tear analysis using laser diffraction,” Acta Ophthalmol. (Copenh.) 58(4), 588–596 (1980).
    [CrossRef] [PubMed]
  8. http://www.mechatronics.nl/products/lorrca/index.htm .
  9. S. Shin, Y. Ku, M. S. Park, and J. S. Suh, “Slit-flow ektacytometry: laser diffraction in a slit rheometer,” Cytometry, Part B 65B(1), 6–13 (2005).
    [CrossRef] [PubMed]
  10. Y. K. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
    [CrossRef] [PubMed]
  11. P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47(19), D176–D182 (2008), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-19-D176 .
    [CrossRef] [PubMed]
  12. I. Moon, M. Daneshpanah, A. Anand, and B. Javidi, “Cell identification with computational 3D Holographic Microscopy,” Opt. Photonics News 22(6), 18–23 (2011).
    [CrossRef]
  13. G. J. Streekstra, A. G. Hoekstra, E.-J. Nijhof, and R. M. Heethaar, “Light scattering by red blood cells in ektacytometry: Fraunhofer versus anomalous diffraction,” Appl. Opt. 32(13), 2266–2272 (1993), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-32-13-2266 .
    [CrossRef] [PubMed]
  14. G. J. Streekstra, J. G. G. Dobbe, and A. G. Hoekstra, “Quantification of the fraction poorly deformable red blood cells using ektacytometry,” Opt. Express 18(13), 14173–14182 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-13-14173 .
    [CrossRef] [PubMed]
  15. M. Mihailescu, M. Scarlat, A. Gheorghiu, J. Costescu, M. Kusko, I. A. Paun, and E. Scarlat, “Automated imaging, identification, and counting of similar cells from digital hologram reconstructions,” Appl. Opt. 50(20), 3589–3597 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=ao-50-20-3589 .
    [CrossRef] [PubMed]
  16. L. M. Lowenstein, “The Mammalian Reticulocyte,” in International Review of Cytology, G. H. Bourne and J. F. Danielli, eds. (Academic Press Inc., London, 1959), Vol. 8.
  17. M. Mir, H. Ding, Z. Wang, J. Reedy, K. Tangella, and G. Popescu, “Blood screening using diffraction phase cytometry,” J. Biomed. Opt. 15(2), 027016 (2010).
    [CrossRef] [PubMed]
  18. B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry, Part A 73A(10), 895–903 (2008).
    [CrossRef] [PubMed]
  19. W. Groner, N. Mohandas, and M. Bessis, “New optical technique for measuring erythrocyte deformability with the ektacytometer,” Clin. Chem. 26(10), 1435–1442 (1980).
    [PubMed]
  20. F. M. Gaffney, “Experimental Haemolytic Anaemia with Particular Reference to the Corpuscular Haemoglobin Concentrations of the Erythrocytes,” Br. J. Haematol. 3(3), 311–319 (1957).
    [CrossRef]
  21. G. d’Onofrio, R. Chirillo, G. Zini, G. Caenaro, M. Tommasi, and G. Micciulli, “Simultaneous measurement of reticulocyte and red blood cell indices in healthy subjects and patients with microcytic and macrocytic anemia,” Blood 85(3), 818–823 (1995).
    [PubMed]
  22. G. J. Streekstra, A. G. Hoekstra, and R. M. Heethaar, “Anomalous diffraction by arbitrarily oriented ellipsoids: applications in ektacytometry,” Appl. Opt. 33(31), 7288–7296 (1994), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-33-31-7288 .
    [CrossRef] [PubMed]
  23. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill Book Co., 1968).
  24. M. Mihailescu, “Natural quasy-periodic binary structure with focusing property in near field diffraction pattern,” Opt. Express 18(12), 12526–12536 (2010).
    [CrossRef] [PubMed]
  25. S. Shin, Y. Ku, M.-S. Park, and J.-S. Suh, “Measurement of red cell deformability and whole blood viscosity using laser-diffraction slit rheometer,” Korea-Aust. Rheol. J. 16, 85–90 (2004).
  26. S. Shin, Y. H. Ku, M. S. Park, S. Y. Moon, J. H. Jang, and J. S. Suh, “Laser-diffraction slit rheometer to measure red blood cell deformability,” Rev. Sci. Instrum. 75(2), 559–561 (2004).
    [CrossRef]
  27. R. Bayer, S. Caglayan, R. Hofmann, and D. Ostuni, “Laser diffraction of RBC: the method and its pitfalls,” Proc. SPIE 2100, 248–255 (1994), doi:.
    [CrossRef]

2011 (2)

2010 (3)

2008 (2)

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry, Part A 73A(10), 895–903 (2008).
[CrossRef] [PubMed]

P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47(19), D176–D182 (2008), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-19-D176 .
[CrossRef] [PubMed]

2006 (1)

2005 (1)

S. Shin, Y. Ku, M. S. Park, and J. S. Suh, “Slit-flow ektacytometry: laser diffraction in a slit rheometer,” Cytometry, Part B 65B(1), 6–13 (2005).
[CrossRef] [PubMed]

2004 (2)

S. Shin, Y. Ku, M.-S. Park, and J.-S. Suh, “Measurement of red cell deformability and whole blood viscosity using laser-diffraction slit rheometer,” Korea-Aust. Rheol. J. 16, 85–90 (2004).

S. Shin, Y. H. Ku, M. S. Park, S. Y. Moon, J. H. Jang, and J. S. Suh, “Laser-diffraction slit rheometer to measure red blood cell deformability,” Rev. Sci. Instrum. 75(2), 559–561 (2004).
[CrossRef]

1995 (1)

G. d’Onofrio, R. Chirillo, G. Zini, G. Caenaro, M. Tommasi, and G. Micciulli, “Simultaneous measurement of reticulocyte and red blood cell indices in healthy subjects and patients with microcytic and macrocytic anemia,” Blood 85(3), 818–823 (1995).
[PubMed]

1994 (2)

1993 (1)

1989 (1)

C. D. Boothby, J. Daniel, S. Adam, and J. E. D. Dyson, “Use of a laser diffraction particle sizer for the measurement of mean diameter of multicellular tumor spheroids,” In Vitro Cell. Dev. Biol. 25(10), 946–950 (1989).
[CrossRef] [PubMed]

1988 (1)

A. F. Leung and M. K. Cheung, “Decrease in light diffraction intensity of contracting muscle fibres,” Eur. Biophys. J. 15(6), 359–368 (1988).
[CrossRef] [PubMed]

1987 (1)

M. Wussling, W. Schenk, and B. Nilius, “A study of dynamic properties in isolated myocardial cells by the laser diffraction method,” J. Mol. Cell. Cardiol. 19(9), 897–907 (1987).
[CrossRef] [PubMed]

1986 (1)

C. L. Sundell, Y. E. Goldman, and L. D. Peachey, “Fine structure in near-field and far-field laser diffraction patterns from skeletal muscle fibers,” Biophys. J. 49(2), 521–530 (1986).
[CrossRef] [PubMed]

1982 (1)

A. F. Leung, “Laser diffraction of single intact cardiac muscle cells at rest,” J. Muscle Res. Cell Motil. 3(4), 399–418 (1982).
[CrossRef] [PubMed]

1980 (3)

W. Groner, N. Mohandas, and M. Bessis, “New optical technique for measuring erythrocyte deformability with the ektacytometer,” Clin. Chem. 26(10), 1435–1442 (1980).
[PubMed]

W. Groner, N. Mohandas, and M. Bessis, “New optical technique for measuring erythrocyte deformability with the ektacytometer,” Clin. Chem. 26(10), 1435–1442 (1980).
[PubMed]

D. Miller, W. J. Plaus, and R. P. Zelt, “Clinical tear analysis using laser diffraction,” Acta Ophthalmol. (Copenh.) 58(4), 588–596 (1980).
[CrossRef] [PubMed]

1957 (1)

F. M. Gaffney, “Experimental Haemolytic Anaemia with Particular Reference to the Corpuscular Haemoglobin Concentrations of the Erythrocytes,” Br. J. Haematol. 3(3), 311–319 (1957).
[CrossRef]

Adam, S.

C. D. Boothby, J. Daniel, S. Adam, and J. E. D. Dyson, “Use of a laser diffraction particle sizer for the measurement of mean diameter of multicellular tumor spheroids,” In Vitro Cell. Dev. Biol. 25(10), 946–950 (1989).
[CrossRef] [PubMed]

Anand, A.

I. Moon, M. Daneshpanah, A. Anand, and B. Javidi, “Cell identification with computational 3D Holographic Microscopy,” Opt. Photonics News 22(6), 18–23 (2011).
[CrossRef]

Badizadegan, K.

Barbul, A.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry, Part A 73A(10), 895–903 (2008).
[CrossRef] [PubMed]

Bayer, R.

R. Bayer, S. Caglayan, R. Hofmann, and D. Ostuni, “Laser diffraction of RBC: the method and its pitfalls,” Proc. SPIE 2100, 248–255 (1994), doi:.
[CrossRef]

Bessis, M.

W. Groner, N. Mohandas, and M. Bessis, “New optical technique for measuring erythrocyte deformability with the ektacytometer,” Clin. Chem. 26(10), 1435–1442 (1980).
[PubMed]

W. Groner, N. Mohandas, and M. Bessis, “New optical technique for measuring erythrocyte deformability with the ektacytometer,” Clin. Chem. 26(10), 1435–1442 (1980).
[PubMed]

Boothby, C. D.

C. D. Boothby, J. Daniel, S. Adam, and J. E. D. Dyson, “Use of a laser diffraction particle sizer for the measurement of mean diameter of multicellular tumor spheroids,” In Vitro Cell. Dev. Biol. 25(10), 946–950 (1989).
[CrossRef] [PubMed]

Caenaro, G.

G. d’Onofrio, R. Chirillo, G. Zini, G. Caenaro, M. Tommasi, and G. Micciulli, “Simultaneous measurement of reticulocyte and red blood cell indices in healthy subjects and patients with microcytic and macrocytic anemia,” Blood 85(3), 818–823 (1995).
[PubMed]

Caglayan, S.

R. Bayer, S. Caglayan, R. Hofmann, and D. Ostuni, “Laser diffraction of RBC: the method and its pitfalls,” Proc. SPIE 2100, 248–255 (1994), doi:.
[CrossRef]

Cheung, M. K.

A. F. Leung and M. K. Cheung, “Decrease in light diffraction intensity of contracting muscle fibres,” Eur. Biophys. J. 15(6), 359–368 (1988).
[CrossRef] [PubMed]

Chirillo, R.

G. d’Onofrio, R. Chirillo, G. Zini, G. Caenaro, M. Tommasi, and G. Micciulli, “Simultaneous measurement of reticulocyte and red blood cell indices in healthy subjects and patients with microcytic and macrocytic anemia,” Blood 85(3), 818–823 (1995).
[PubMed]

Costescu, J.

d’Onofrio, G.

G. d’Onofrio, R. Chirillo, G. Zini, G. Caenaro, M. Tommasi, and G. Micciulli, “Simultaneous measurement of reticulocyte and red blood cell indices in healthy subjects and patients with microcytic and macrocytic anemia,” Blood 85(3), 818–823 (1995).
[PubMed]

Daneshpanah, M.

I. Moon, M. Daneshpanah, A. Anand, and B. Javidi, “Cell identification with computational 3D Holographic Microscopy,” Opt. Photonics News 22(6), 18–23 (2011).
[CrossRef]

Daniel, J.

C. D. Boothby, J. Daniel, S. Adam, and J. E. D. Dyson, “Use of a laser diffraction particle sizer for the measurement of mean diameter of multicellular tumor spheroids,” In Vitro Cell. Dev. Biol. 25(10), 946–950 (1989).
[CrossRef] [PubMed]

Dasari, R. R.

Depeursinge, C.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry, Part A 73A(10), 895–903 (2008).
[CrossRef] [PubMed]

Ding, H.

M. Mir, H. Ding, Z. Wang, J. Reedy, K. Tangella, and G. Popescu, “Blood screening using diffraction phase cytometry,” J. Biomed. Opt. 15(2), 027016 (2010).
[CrossRef] [PubMed]

Dirksen, D.

Dobbe, J. G. G.

Dyson, J. E. D.

C. D. Boothby, J. Daniel, S. Adam, and J. E. D. Dyson, “Use of a laser diffraction particle sizer for the measurement of mean diameter of multicellular tumor spheroids,” In Vitro Cell. Dev. Biol. 25(10), 946–950 (1989).
[CrossRef] [PubMed]

Emery, Y.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry, Part A 73A(10), 895–903 (2008).
[CrossRef] [PubMed]

Feld, M. S.

Gaffney, F. M.

F. M. Gaffney, “Experimental Haemolytic Anaemia with Particular Reference to the Corpuscular Haemoglobin Concentrations of the Erythrocytes,” Br. J. Haematol. 3(3), 311–319 (1957).
[CrossRef]

Gheorghiu, A.

Goldman, Y. E.

C. L. Sundell, Y. E. Goldman, and L. D. Peachey, “Fine structure in near-field and far-field laser diffraction patterns from skeletal muscle fibers,” Biophys. J. 49(2), 521–530 (1986).
[CrossRef] [PubMed]

Groner, W.

W. Groner, N. Mohandas, and M. Bessis, “New optical technique for measuring erythrocyte deformability with the ektacytometer,” Clin. Chem. 26(10), 1435–1442 (1980).
[PubMed]

W. Groner, N. Mohandas, and M. Bessis, “New optical technique for measuring erythrocyte deformability with the ektacytometer,” Clin. Chem. 26(10), 1435–1442 (1980).
[PubMed]

Heethaar, R. M.

Hoekstra, A. G.

Hofmann, R.

R. Bayer, S. Caglayan, R. Hofmann, and D. Ostuni, “Laser diffraction of RBC: the method and its pitfalls,” Proc. SPIE 2100, 248–255 (1994), doi:.
[CrossRef]

Jang, J. H.

S. Shin, Y. H. Ku, M. S. Park, S. Y. Moon, J. H. Jang, and J. S. Suh, “Laser-diffraction slit rheometer to measure red blood cell deformability,” Rev. Sci. Instrum. 75(2), 559–561 (2004).
[CrossRef]

Javidi, B.

I. Moon, M. Daneshpanah, A. Anand, and B. Javidi, “Cell identification with computational 3D Holographic Microscopy,” Opt. Photonics News 22(6), 18–23 (2011).
[CrossRef]

Kemper, B.

Korenstein, R.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry, Part A 73A(10), 895–903 (2008).
[CrossRef] [PubMed]

Ku, Y.

S. Shin, Y. Ku, M. S. Park, and J. S. Suh, “Slit-flow ektacytometry: laser diffraction in a slit rheometer,” Cytometry, Part B 65B(1), 6–13 (2005).
[CrossRef] [PubMed]

S. Shin, Y. Ku, M.-S. Park, and J.-S. Suh, “Measurement of red cell deformability and whole blood viscosity using laser-diffraction slit rheometer,” Korea-Aust. Rheol. J. 16, 85–90 (2004).

Ku, Y. H.

S. Shin, Y. H. Ku, M. S. Park, S. Y. Moon, J. H. Jang, and J. S. Suh, “Laser-diffraction slit rheometer to measure red blood cell deformability,” Rev. Sci. Instrum. 75(2), 559–561 (2004).
[CrossRef]

Kusko, M.

Langehanenberg, P.

Leung, A. F.

A. F. Leung and M. K. Cheung, “Decrease in light diffraction intensity of contracting muscle fibres,” Eur. Biophys. J. 15(6), 359–368 (1988).
[CrossRef] [PubMed]

A. F. Leung, “Laser diffraction of single intact cardiac muscle cells at rest,” J. Muscle Res. Cell Motil. 3(4), 399–418 (1982).
[CrossRef] [PubMed]

Magistretti, P. J.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry, Part A 73A(10), 895–903 (2008).
[CrossRef] [PubMed]

Marquet, P.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry, Part A 73A(10), 895–903 (2008).
[CrossRef] [PubMed]

Micciulli, G.

G. d’Onofrio, R. Chirillo, G. Zini, G. Caenaro, M. Tommasi, and G. Micciulli, “Simultaneous measurement of reticulocyte and red blood cell indices in healthy subjects and patients with microcytic and macrocytic anemia,” Blood 85(3), 818–823 (1995).
[PubMed]

Mihailescu, M.

Miller, D.

D. Miller, W. J. Plaus, and R. P. Zelt, “Clinical tear analysis using laser diffraction,” Acta Ophthalmol. (Copenh.) 58(4), 588–596 (1980).
[CrossRef] [PubMed]

Mir, M.

M. Mir, H. Ding, Z. Wang, J. Reedy, K. Tangella, and G. Popescu, “Blood screening using diffraction phase cytometry,” J. Biomed. Opt. 15(2), 027016 (2010).
[CrossRef] [PubMed]

Mohandas, N.

W. Groner, N. Mohandas, and M. Bessis, “New optical technique for measuring erythrocyte deformability with the ektacytometer,” Clin. Chem. 26(10), 1435–1442 (1980).
[PubMed]

W. Groner, N. Mohandas, and M. Bessis, “New optical technique for measuring erythrocyte deformability with the ektacytometer,” Clin. Chem. 26(10), 1435–1442 (1980).
[PubMed]

Moon, I.

I. Moon, M. Daneshpanah, A. Anand, and B. Javidi, “Cell identification with computational 3D Holographic Microscopy,” Opt. Photonics News 22(6), 18–23 (2011).
[CrossRef]

Moon, S. Y.

S. Shin, Y. H. Ku, M. S. Park, S. Y. Moon, J. H. Jang, and J. S. Suh, “Laser-diffraction slit rheometer to measure red blood cell deformability,” Rev. Sci. Instrum. 75(2), 559–561 (2004).
[CrossRef]

Nijhof, E.-J.

Nilius, B.

M. Wussling, W. Schenk, and B. Nilius, “A study of dynamic properties in isolated myocardial cells by the laser diffraction method,” J. Mol. Cell. Cardiol. 19(9), 897–907 (1987).
[CrossRef] [PubMed]

Ostuni, D.

R. Bayer, S. Caglayan, R. Hofmann, and D. Ostuni, “Laser diffraction of RBC: the method and its pitfalls,” Proc. SPIE 2100, 248–255 (1994), doi:.
[CrossRef]

Park, M. S.

S. Shin, Y. Ku, M. S. Park, and J. S. Suh, “Slit-flow ektacytometry: laser diffraction in a slit rheometer,” Cytometry, Part B 65B(1), 6–13 (2005).
[CrossRef] [PubMed]

S. Shin, Y. H. Ku, M. S. Park, S. Y. Moon, J. H. Jang, and J. S. Suh, “Laser-diffraction slit rheometer to measure red blood cell deformability,” Rev. Sci. Instrum. 75(2), 559–561 (2004).
[CrossRef]

Park, M.-S.

S. Shin, Y. Ku, M.-S. Park, and J.-S. Suh, “Measurement of red cell deformability and whole blood viscosity using laser-diffraction slit rheometer,” Korea-Aust. Rheol. J. 16, 85–90 (2004).

Park, Y. K.

Paun, I. A.

Peachey, L. D.

C. L. Sundell, Y. E. Goldman, and L. D. Peachey, “Fine structure in near-field and far-field laser diffraction patterns from skeletal muscle fibers,” Biophys. J. 49(2), 521–530 (1986).
[CrossRef] [PubMed]

Plaus, W. J.

D. Miller, W. J. Plaus, and R. P. Zelt, “Clinical tear analysis using laser diffraction,” Acta Ophthalmol. (Copenh.) 58(4), 588–596 (1980).
[CrossRef] [PubMed]

Popescu, G.

M. Mir, H. Ding, Z. Wang, J. Reedy, K. Tangella, and G. Popescu, “Blood screening using diffraction phase cytometry,” J. Biomed. Opt. 15(2), 027016 (2010).
[CrossRef] [PubMed]

Y. K. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14(18), 8263–8268 (2006).
[CrossRef] [PubMed]

Rappaz, B.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry, Part A 73A(10), 895–903 (2008).
[CrossRef] [PubMed]

Reedy, J.

M. Mir, H. Ding, Z. Wang, J. Reedy, K. Tangella, and G. Popescu, “Blood screening using diffraction phase cytometry,” J. Biomed. Opt. 15(2), 027016 (2010).
[CrossRef] [PubMed]

Scarlat, E.

Scarlat, M.

Schenk, W.

M. Wussling, W. Schenk, and B. Nilius, “A study of dynamic properties in isolated myocardial cells by the laser diffraction method,” J. Mol. Cell. Cardiol. 19(9), 897–907 (1987).
[CrossRef] [PubMed]

Shin, S.

S. Shin, Y. Ku, M. S. Park, and J. S. Suh, “Slit-flow ektacytometry: laser diffraction in a slit rheometer,” Cytometry, Part B 65B(1), 6–13 (2005).
[CrossRef] [PubMed]

S. Shin, Y. H. Ku, M. S. Park, S. Y. Moon, J. H. Jang, and J. S. Suh, “Laser-diffraction slit rheometer to measure red blood cell deformability,” Rev. Sci. Instrum. 75(2), 559–561 (2004).
[CrossRef]

S. Shin, Y. Ku, M.-S. Park, and J.-S. Suh, “Measurement of red cell deformability and whole blood viscosity using laser-diffraction slit rheometer,” Korea-Aust. Rheol. J. 16, 85–90 (2004).

Streekstra, G. J.

Suh, J. S.

S. Shin, Y. Ku, M. S. Park, and J. S. Suh, “Slit-flow ektacytometry: laser diffraction in a slit rheometer,” Cytometry, Part B 65B(1), 6–13 (2005).
[CrossRef] [PubMed]

S. Shin, Y. H. Ku, M. S. Park, S. Y. Moon, J. H. Jang, and J. S. Suh, “Laser-diffraction slit rheometer to measure red blood cell deformability,” Rev. Sci. Instrum. 75(2), 559–561 (2004).
[CrossRef]

Suh, J.-S.

S. Shin, Y. Ku, M.-S. Park, and J.-S. Suh, “Measurement of red cell deformability and whole blood viscosity using laser-diffraction slit rheometer,” Korea-Aust. Rheol. J. 16, 85–90 (2004).

Sundell, C. L.

C. L. Sundell, Y. E. Goldman, and L. D. Peachey, “Fine structure in near-field and far-field laser diffraction patterns from skeletal muscle fibers,” Biophys. J. 49(2), 521–530 (1986).
[CrossRef] [PubMed]

Tangella, K.

M. Mir, H. Ding, Z. Wang, J. Reedy, K. Tangella, and G. Popescu, “Blood screening using diffraction phase cytometry,” J. Biomed. Opt. 15(2), 027016 (2010).
[CrossRef] [PubMed]

Tommasi, M.

G. d’Onofrio, R. Chirillo, G. Zini, G. Caenaro, M. Tommasi, and G. Micciulli, “Simultaneous measurement of reticulocyte and red blood cell indices in healthy subjects and patients with microcytic and macrocytic anemia,” Blood 85(3), 818–823 (1995).
[PubMed]

von Bally, G.

Wang, Z.

M. Mir, H. Ding, Z. Wang, J. Reedy, K. Tangella, and G. Popescu, “Blood screening using diffraction phase cytometry,” J. Biomed. Opt. 15(2), 027016 (2010).
[CrossRef] [PubMed]

Wussling, M.

M. Wussling, W. Schenk, and B. Nilius, “A study of dynamic properties in isolated myocardial cells by the laser diffraction method,” J. Mol. Cell. Cardiol. 19(9), 897–907 (1987).
[CrossRef] [PubMed]

Zelt, R. P.

D. Miller, W. J. Plaus, and R. P. Zelt, “Clinical tear analysis using laser diffraction,” Acta Ophthalmol. (Copenh.) 58(4), 588–596 (1980).
[CrossRef] [PubMed]

Zini, G.

G. d’Onofrio, R. Chirillo, G. Zini, G. Caenaro, M. Tommasi, and G. Micciulli, “Simultaneous measurement of reticulocyte and red blood cell indices in healthy subjects and patients with microcytic and macrocytic anemia,” Blood 85(3), 818–823 (1995).
[PubMed]

Acta Ophthalmol. (Copenh.) (1)

D. Miller, W. J. Plaus, and R. P. Zelt, “Clinical tear analysis using laser diffraction,” Acta Ophthalmol. (Copenh.) 58(4), 588–596 (1980).
[CrossRef] [PubMed]

Appl. Opt. (4)

Biophys. J. (1)

C. L. Sundell, Y. E. Goldman, and L. D. Peachey, “Fine structure in near-field and far-field laser diffraction patterns from skeletal muscle fibers,” Biophys. J. 49(2), 521–530 (1986).
[CrossRef] [PubMed]

Blood (1)

G. d’Onofrio, R. Chirillo, G. Zini, G. Caenaro, M. Tommasi, and G. Micciulli, “Simultaneous measurement of reticulocyte and red blood cell indices in healthy subjects and patients with microcytic and macrocytic anemia,” Blood 85(3), 818–823 (1995).
[PubMed]

Br. J. Haematol. (1)

F. M. Gaffney, “Experimental Haemolytic Anaemia with Particular Reference to the Corpuscular Haemoglobin Concentrations of the Erythrocytes,” Br. J. Haematol. 3(3), 311–319 (1957).
[CrossRef]

Clin. Chem. (2)

W. Groner, N. Mohandas, and M. Bessis, “New optical technique for measuring erythrocyte deformability with the ektacytometer,” Clin. Chem. 26(10), 1435–1442 (1980).
[PubMed]

W. Groner, N. Mohandas, and M. Bessis, “New optical technique for measuring erythrocyte deformability with the ektacytometer,” Clin. Chem. 26(10), 1435–1442 (1980).
[PubMed]

Cytometry, Part A (1)

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry, Part A 73A(10), 895–903 (2008).
[CrossRef] [PubMed]

Cytometry, Part B (1)

S. Shin, Y. Ku, M. S. Park, and J. S. Suh, “Slit-flow ektacytometry: laser diffraction in a slit rheometer,” Cytometry, Part B 65B(1), 6–13 (2005).
[CrossRef] [PubMed]

Eur. Biophys. J. (1)

A. F. Leung and M. K. Cheung, “Decrease in light diffraction intensity of contracting muscle fibres,” Eur. Biophys. J. 15(6), 359–368 (1988).
[CrossRef] [PubMed]

In Vitro Cell. Dev. Biol. (1)

C. D. Boothby, J. Daniel, S. Adam, and J. E. D. Dyson, “Use of a laser diffraction particle sizer for the measurement of mean diameter of multicellular tumor spheroids,” In Vitro Cell. Dev. Biol. 25(10), 946–950 (1989).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

M. Mir, H. Ding, Z. Wang, J. Reedy, K. Tangella, and G. Popescu, “Blood screening using diffraction phase cytometry,” J. Biomed. Opt. 15(2), 027016 (2010).
[CrossRef] [PubMed]

J. Mol. Cell. Cardiol. (1)

M. Wussling, W. Schenk, and B. Nilius, “A study of dynamic properties in isolated myocardial cells by the laser diffraction method,” J. Mol. Cell. Cardiol. 19(9), 897–907 (1987).
[CrossRef] [PubMed]

J. Muscle Res. Cell Motil. (1)

A. F. Leung, “Laser diffraction of single intact cardiac muscle cells at rest,” J. Muscle Res. Cell Motil. 3(4), 399–418 (1982).
[CrossRef] [PubMed]

Korea-Aust. Rheol. J. (1)

S. Shin, Y. Ku, M.-S. Park, and J.-S. Suh, “Measurement of red cell deformability and whole blood viscosity using laser-diffraction slit rheometer,” Korea-Aust. Rheol. J. 16, 85–90 (2004).

Opt. Express (3)

Opt. Photonics News (1)

I. Moon, M. Daneshpanah, A. Anand, and B. Javidi, “Cell identification with computational 3D Holographic Microscopy,” Opt. Photonics News 22(6), 18–23 (2011).
[CrossRef]

Proc. SPIE (1)

R. Bayer, S. Caglayan, R. Hofmann, and D. Ostuni, “Laser diffraction of RBC: the method and its pitfalls,” Proc. SPIE 2100, 248–255 (1994), doi:.
[CrossRef]

Rev. Sci. Instrum. (1)

S. Shin, Y. H. Ku, M. S. Park, S. Y. Moon, J. H. Jang, and J. S. Suh, “Laser-diffraction slit rheometer to measure red blood cell deformability,” Rev. Sci. Instrum. 75(2), 559–561 (2004).
[CrossRef]

Other (3)

L. M. Lowenstein, “The Mammalian Reticulocyte,” in International Review of Cytology, G. H. Bourne and J. F. Danielli, eds. (Academic Press Inc., London, 1959), Vol. 8.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill Book Co., 1968).

http://www.mechatronics.nl/products/lorrca/index.htm .

Supplementary Material (2)

» Media 1: MOV (175 KB)     
» Media 2: MOV (137 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Hologram recorded experimentally, (b) its 3D phase reconstruction, profiles for (c) mature RBC, (d) immature RBC and (e) white BC

Fig. 2
Fig. 2

Diffraction pattern recorded experimentally at different distances (a) z = 9μm, (b) z = 6μm, (c) z = 3μm, (d) z = 0μm, (e) z = −3μm. The origin on the z axis is the point where the radius of DP is minimal

Fig. 3
Fig. 3

Diffraction pattern simulated in Fresnel approximation at different distances using dedicated software (VirtualLAB) at (a) z = 6μm, (b) z = 3μm, and our code written in MATLAB (c) z = −3μm, (d) z = 9μm. The values on the axes are pixel numbers.

Fig. 4
Fig. 4

The evolution of the central intensity along the propagation axis when (a) external diameter for immature RBC is dext_i = 8μm and external diameter for mature RBC is dext_m = 6μm, (b) dext_i = 8.5μm, dext_m = 6.5μm (c) dext_i = 9μm, dext_m = 7μm and internal diameter for concavity dint_m_c = 4.5μm (d) dext_i = 9μm, dext_m = 7μm, dint_m_c = 5μm. Signs from curves represent: mature RBC - circles and immature RBC - points.

Fig. 5
Fig. 5

Diffraction patterns (top) and their images in the reciprocal space (bottom), when we vary the percentages of deformed and undeformed RBCs (a) deformed 0%, (b) deformed and undeformed, 50% each, (c) deformed 100%. In images from the top row, the zero order is divided by a factor of 2, in images from the bottom row, the zero order is subtracted.

Fig. 6
Fig. 6

Single-frame excerpts from video recordings of the evolution of the isoamplitude curves in the reciprocal space when: (a) the percentage of deformed cells varies between 0% and 100% and for undeformed between 100% and 0% (Media 1), (b) the percentages of two types of deformed cells vary between 0% and 40%, and from 0% to 60% respectively, and for undeformed cells between 100% and 0% (Media 2).

Fig. 7
Fig. 7

Diffraction pattern (a) and its image in the reciprocal space (b), when we have three RBC types with different deformations. In image to the left, the zero order is divided by a factor of 2; in image to the right, the zero order is subtracted.

Fig. 8
Fig. 8

(Top) Reciprocal space images when we have different projection shapes: (a) two RBC ellipse types, (b) two RBC types - disks and type 1 ellipses, (c) two RBC types - disks and type 2 ellipses. (Bottom) Evolution of the intensity values automatically monitored in the corresponding pixels on the isoamplitude curves, as highlighted in the top images (red circles for points marked with red and blue stars for points marked with blue).

Fig. 9
Fig. 9

(a) Image in reciprocal space when we have three RBC types (disks, type1 ellipses and type2 ellipses). (b) Evolution of amplitude values as automatically monitored in the corresponding pixels marked in (a). (red circles for points marked with red, blue stars for points marked with red, green stars for points marked with green).

Fig. 10
Fig. 10

Linear fitting of intensity to disk percentage plots for samples containing (a) disks and type1 ellipse (b) disks and type2 ellipses.

Fig. 11
Fig. 11

Relative pixel intensity as a function of one cell type % in samples containing, in turn, all combinations of disks and type1 and 2 ellipses that include the respective cell type (bottom) with the pixel used to extract the intensity values highlighted over the isoamplitude curve images (top), for: (a) disks, (b) and (c) type2 ellipse, (d) type1 ellipse.

Metrics