Abstract

An optical coherence tomography (OCT) system employing a microelectromechanical system (MEMS) mirror was used to measure the refractive index (RI) of anatomically different regions in acute brain tissue slices, in which viability was maintained. RI was measured in white-matter and grey-matter regions, including the cerebral cortex, putamen, hippocampus, thalamus and corpus callosum. The RI in the corpus callosum was found to be ~4% higher than the RIs in other regions. Changes in RI with tissue deformation were also measured in the cerebral cortex and corpus callosum under uniform compression (20-80% strain). For 80% strain, measured RIs increased nonlinearly by up to 70% and 90% in the cerebral cortex and corpus callosum respectively. Knowledge of RI in heterogeneous tissues can be used to correct distorted optical images caused by RI variations between different regions. Also deformation-dependent changes in RI can be applied to OCT elastography or to mechanical tests based on optical imaging such as indentation tests.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. N. Claxton, T. Fellers, and M. Davidson, “Laser scanning confocal microscopy,” Olympus, (2006). Available online at http://www.olympusconfocal.com/theory/LSCMIntro.pdf .
  3. M. Gu, X. Gan, A. Kisteman, and M. G. Xu, “Comparison of penetration depth between two-photon excitation and single-photon excitation in imaging through turbid tissue media,” Appl. Phys. Lett. 77(10), 1551–1553 (2000).
    [CrossRef]
  4. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
    [CrossRef] [PubMed]
  5. E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31(2), 241–243 (2006).
    [CrossRef] [PubMed]
  6. K. König, M. Speicher, R. Bückle, J. Reckfort, G. McKenzie, J. Welzel, M. J. Koehler, P. Elsner, and M. Kaatz, “Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases,” J. Biophotonics 2(6-7), 389–397 (2009).
    [CrossRef] [PubMed]
  7. S. González, Aplicaciones clínicas de la microscopía confocal de reflectancia en el manejo de los tumores cutáneos,” Actas Dermosifiliogr. 99(7), 528–531 (2008).
    [PubMed]
  8. J. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 (1998).
    [CrossRef] [PubMed]
  9. S. J. Lee, J. Sun, J. J. Flint, S. Guo, H. K. Xie, M. A. King, and M. Sarntinoranont, “Optically based-indentation technique for acute rat brain tissue slices and thin biomaterials,” J. Biomed. Mater. Res., Part B: Appl. Biomater. 97B(1), 84–95 (2011).
    [CrossRef] [PubMed]
  10. T. Enatsu, H. Kitahara, K. Takano, and T. Nagashima, Terahertz spectroscopic imaging of paraffin-embedded liver cancer samples,” Infrared and Millimeter Waves, 2007 and the 2007 15th International Conference on Terahertz Electronics. IRMMW-THz. Joint 32nd International Conference 557–558, 2–9 Sept. (2007).
  11. S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997).
    [CrossRef] [PubMed]
  12. H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48(16), 2713–2727 (2003).
    [CrossRef] [PubMed]
  13. F. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Appl. Opt. 28(12), 2297–2303 (1989).
    [CrossRef] [PubMed]
  14. Q. W. Song, C. Ku, C. Zhang, and R. Michalak, “Modified critical angle method for measuring the refractive index of bio-optical materials and its application to bacteriorhodopsin,” J. Opt. Soc. Am. B 12(5), 797–803 (1995).
    [CrossRef]
  15. H. Li and S. Xie, “Measurement method of the refractive index of biotissue by total internal reflection,” Appl. Opt. 35(10), 1793–1795 (1996).
    [CrossRef] [PubMed]
  16. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20(21), 2258–2260 (1995).
    [CrossRef] [PubMed]
  17. J. Binding, J. Ben Arous, J. F. Léger, S. Gigan, C. Boccara, and L. Bourdieu, “Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy,” Opt. Express 19(6), 4833–4847 (2011).
    [CrossRef] [PubMed]
  18. N. Lue, J. Bewersdorf, M. D. Lessard, K. Badizadegan, R. R. Dasari, M. S. Feld, and G. Popescu, “Tissue refractometry using Hilbert phase microscopy,” Opt. Lett. 32(24), 3522–3524 (2007).
    [CrossRef] [PubMed]
  19. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
    [CrossRef] [PubMed]
  20. J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41(3), 369–382 (1996).
    [CrossRef] [PubMed]
  21. N. L. Dorward, O. Alberti, B. Velani, F. A. Gerritsen, W. F. J. Harkness, N. D. Kitchen, and D. G. T. Thomas, “Postimaging brain distortion: magnitude, correlates, and impact on neuronavigation,” J. Neurosurg. 88(4), 656–662 (1998).
    [CrossRef] [PubMed]
  22. D. W. Roberts, A. Hartov, F. E. Kennedy, M. I. Miga, and K. D. Paulsen, “Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases,” Neurosurgery 43(4), 749–758, discussion 758–760 (1998).
    [CrossRef] [PubMed]
  23. S. Cheng and L. E. Bilston, “Computational model of the cerebral ventricles in hydrocephalus,” J. Biomech. Eng. 132(5), 054501 (2010).
    [CrossRef] [PubMed]
  24. J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
    [CrossRef] [PubMed]
  25. C. Nicholson and E. Syková, “Extracellular space structure revealed by diffusion analysis,” Trends Neurosci. 21(5), 207–215 (1998).
    [CrossRef] [PubMed]
  26. T. Shigeno, M. Brock, S. Shigeno, E. Fritschka, and J. Cervós-Navarro, “The determination of brain water content: microgravimetry versus drying-weighing method,” J. Neurosurg. 57(1), 99–107 (1982).
    [CrossRef] [PubMed]
  27. G. Xu, P. V. Bayly, and L. A. Taber, “Residual stress in the adult mouse brain,” Biomech. Model. Mechanobiol. 8(4), 253–262 (2009).
    [CrossRef] [PubMed]

2011 (2)

S. J. Lee, J. Sun, J. J. Flint, S. Guo, H. K. Xie, M. A. King, and M. Sarntinoranont, “Optically based-indentation technique for acute rat brain tissue slices and thin biomaterials,” J. Biomed. Mater. Res., Part B: Appl. Biomater. 97B(1), 84–95 (2011).
[CrossRef] [PubMed]

J. Binding, J. Ben Arous, J. F. Léger, S. Gigan, C. Boccara, and L. Bourdieu, “Brain refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy,” Opt. Express 19(6), 4833–4847 (2011).
[CrossRef] [PubMed]

2010 (2)

2009 (2)

G. Xu, P. V. Bayly, and L. A. Taber, “Residual stress in the adult mouse brain,” Biomech. Model. Mechanobiol. 8(4), 253–262 (2009).
[CrossRef] [PubMed]

K. König, M. Speicher, R. Bückle, J. Reckfort, G. McKenzie, J. Welzel, M. J. Koehler, P. Elsner, and M. Kaatz, “Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases,” J. Biophotonics 2(6-7), 389–397 (2009).
[CrossRef] [PubMed]

2008 (1)

S. González, Aplicaciones clínicas de la microscopía confocal de reflectancia en el manejo de los tumores cutáneos,” Actas Dermosifiliogr. 99(7), 528–531 (2008).
[PubMed]

2007 (1)

2006 (1)

2005 (1)

2003 (2)

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48(16), 2713–2727 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

2000 (1)

M. Gu, X. Gan, A. Kisteman, and M. G. Xu, “Comparison of penetration depth between two-photon excitation and single-photon excitation in imaging through turbid tissue media,” Appl. Phys. Lett. 77(10), 1551–1553 (2000).
[CrossRef]

1998 (4)

J. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 (1998).
[CrossRef] [PubMed]

N. L. Dorward, O. Alberti, B. Velani, F. A. Gerritsen, W. F. J. Harkness, N. D. Kitchen, and D. G. T. Thomas, “Postimaging brain distortion: magnitude, correlates, and impact on neuronavigation,” J. Neurosurg. 88(4), 656–662 (1998).
[CrossRef] [PubMed]

D. W. Roberts, A. Hartov, F. E. Kennedy, M. I. Miga, and K. D. Paulsen, “Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases,” Neurosurgery 43(4), 749–758, discussion 758–760 (1998).
[CrossRef] [PubMed]

C. Nicholson and E. Syková, “Extracellular space structure revealed by diffusion analysis,” Trends Neurosci. 21(5), 207–215 (1998).
[CrossRef] [PubMed]

1997 (1)

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997).
[CrossRef] [PubMed]

1996 (2)

H. Li and S. Xie, “Measurement method of the refractive index of biotissue by total internal reflection,” Appl. Opt. 35(10), 1793–1795 (1996).
[CrossRef] [PubMed]

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41(3), 369–382 (1996).
[CrossRef] [PubMed]

1995 (2)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1989 (1)

1982 (1)

T. Shigeno, M. Brock, S. Shigeno, E. Fritschka, and J. Cervós-Navarro, “The determination of brain water content: microgravimetry versus drying-weighing method,” J. Neurosurg. 57(1), 99–107 (1982).
[CrossRef] [PubMed]

Alberti, O.

N. L. Dorward, O. Alberti, B. Velani, F. A. Gerritsen, W. F. J. Harkness, N. D. Kitchen, and D. G. T. Thomas, “Postimaging brain distortion: magnitude, correlates, and impact on neuronavigation,” J. Neurosurg. 88(4), 656–662 (1998).
[CrossRef] [PubMed]

Arridge, S. R.

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997).
[CrossRef] [PubMed]

Badizadegan, K.

Bayly, P. V.

G. Xu, P. V. Bayly, and L. A. Taber, “Residual stress in the adult mouse brain,” Biomech. Model. Mechanobiol. 8(4), 253–262 (2009).
[CrossRef] [PubMed]

Ben Arous, J.

Beuthan, J.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41(3), 369–382 (1996).
[CrossRef] [PubMed]

Bewersdorf, J.

Bilston, L. E.

S. Cheng and L. E. Bilston, “Computational model of the cerebral ventricles in hydrocephalus,” J. Biomech. Eng. 132(5), 054501 (2010).
[CrossRef] [PubMed]

Binding, J.

Boccara, C.

Bolin, F. P.

Bouma, B. E.

Bourdieu, L.

Brezinski, M. E.

Brock, M.

T. Shigeno, M. Brock, S. Shigeno, E. Fritschka, and J. Cervós-Navarro, “The determination of brain water content: microgravimetry versus drying-weighing method,” J. Neurosurg. 57(1), 99–107 (1982).
[CrossRef] [PubMed]

Brooksby, B.

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48(16), 2713–2727 (2003).
[CrossRef] [PubMed]

Bückle, R.

K. König, M. Speicher, R. Bückle, J. Reckfort, G. McKenzie, J. Welzel, M. J. Koehler, P. Elsner, and M. Kaatz, “Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases,” J. Biophotonics 2(6-7), 389–397 (2009).
[CrossRef] [PubMed]

Cervós-Navarro, J.

T. Shigeno, M. Brock, S. Shigeno, E. Fritschka, and J. Cervós-Navarro, “The determination of brain water content: microgravimetry versus drying-weighing method,” J. Neurosurg. 57(1), 99–107 (1982).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Cheng, S.

S. Cheng and L. E. Bilston, “Computational model of the cerebral ventricles in hydrocephalus,” J. Biomech. Eng. 132(5), 054501 (2010).
[CrossRef] [PubMed]

Choe, S. W.

Christie, R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Cuche, E.

Dasari, R. R.

Dehghani, H.

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48(16), 2713–2727 (2003).
[CrossRef] [PubMed]

Depeursinge, C.

Dorward, N. L.

N. L. Dorward, O. Alberti, B. Velani, F. A. Gerritsen, W. F. J. Harkness, N. D. Kitchen, and D. G. T. Thomas, “Postimaging brain distortion: magnitude, correlates, and impact on neuronavigation,” J. Neurosurg. 88(4), 656–662 (1998).
[CrossRef] [PubMed]

Elsner, P.

K. König, M. Speicher, R. Bückle, J. Reckfort, G. McKenzie, J. Welzel, M. J. Koehler, P. Elsner, and M. Kaatz, “Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases,” J. Biophotonics 2(6-7), 389–397 (2009).
[CrossRef] [PubMed]

Emery, Y.

Evans, C. L.

Feld, M. S.

Ference, R. J.

Flint, J. J.

S. J. Lee, J. Sun, J. J. Flint, S. Guo, H. K. Xie, M. A. King, and M. Sarntinoranont, “Optically based-indentation technique for acute rat brain tissue slices and thin biomaterials,” J. Biomed. Mater. Res., Part B: Appl. Biomater. 97B(1), 84–95 (2011).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fritschka, E.

T. Shigeno, M. Brock, S. Shigeno, E. Fritschka, and J. Cervós-Navarro, “The determination of brain water content: microgravimetry versus drying-weighing method,” J. Neurosurg. 57(1), 99–107 (1982).
[CrossRef] [PubMed]

Fujimoto, J. G.

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20(21), 2258–2260 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gan, X.

M. Gu, X. Gan, A. Kisteman, and M. G. Xu, “Comparison of penetration depth between two-photon excitation and single-photon excitation in imaging through turbid tissue media,” Appl. Phys. Lett. 77(10), 1551–1553 (2000).
[CrossRef]

Gerritsen, F. A.

N. L. Dorward, O. Alberti, B. Velani, F. A. Gerritsen, W. F. J. Harkness, N. D. Kitchen, and D. G. T. Thomas, “Postimaging brain distortion: magnitude, correlates, and impact on neuronavigation,” J. Neurosurg. 88(4), 656–662 (1998).
[CrossRef] [PubMed]

Gigan, S.

González, S.

S. González, Aplicaciones clínicas de la microscopía confocal de reflectancia en el manejo de los tumores cutáneos,” Actas Dermosifiliogr. 99(7), 528–531 (2008).
[PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gu, M.

M. Gu, X. Gan, A. Kisteman, and M. G. Xu, “Comparison of penetration depth between two-photon excitation and single-photon excitation in imaging through turbid tissue media,” Appl. Phys. Lett. 77(10), 1551–1553 (2000).
[CrossRef]

Guo, S.

S. J. Lee, J. Sun, J. J. Flint, S. Guo, H. K. Xie, M. A. King, and M. Sarntinoranont, “Optically based-indentation technique for acute rat brain tissue slices and thin biomaterials,” J. Biomed. Mater. Res., Part B: Appl. Biomater. 97B(1), 84–95 (2011).
[CrossRef] [PubMed]

J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
[CrossRef] [PubMed]

Harkness, W. F. J.

N. L. Dorward, O. Alberti, B. Velani, F. A. Gerritsen, W. F. J. Harkness, N. D. Kitchen, and D. G. T. Thomas, “Postimaging brain distortion: magnitude, correlates, and impact on neuronavigation,” J. Neurosurg. 88(4), 656–662 (1998).
[CrossRef] [PubMed]

Hartov, A.

D. W. Roberts, A. Hartov, F. E. Kennedy, M. I. Miga, and K. D. Paulsen, “Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases,” Neurosurgery 43(4), 749–758, discussion 758–760 (1998).
[CrossRef] [PubMed]

Hebden, J. C.

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997).
[CrossRef] [PubMed]

Hee, M. R.

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20(21), 2258–2260 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Helfmann, J.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41(3), 369–382 (1996).
[CrossRef] [PubMed]

Herrig, M.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41(3), 369–382 (1996).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hyman, B. T.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Kaatz, M.

K. König, M. Speicher, R. Bückle, J. Reckfort, G. McKenzie, J. Welzel, M. J. Koehler, P. Elsner, and M. Kaatz, “Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases,” J. Biophotonics 2(6-7), 389–397 (2009).
[CrossRef] [PubMed]

Kennedy, F. E.

D. W. Roberts, A. Hartov, F. E. Kennedy, M. I. Miga, and K. D. Paulsen, “Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases,” Neurosurgery 43(4), 749–758, discussion 758–760 (1998).
[CrossRef] [PubMed]

King, M. A.

S. J. Lee, J. Sun, J. J. Flint, S. Guo, H. K. Xie, M. A. King, and M. Sarntinoranont, “Optically based-indentation technique for acute rat brain tissue slices and thin biomaterials,” J. Biomed. Mater. Res., Part B: Appl. Biomater. 97B(1), 84–95 (2011).
[CrossRef] [PubMed]

Kisteman, A.

M. Gu, X. Gan, A. Kisteman, and M. G. Xu, “Comparison of penetration depth between two-photon excitation and single-photon excitation in imaging through turbid tissue media,” Appl. Phys. Lett. 77(10), 1551–1553 (2000).
[CrossRef]

Kitchen, N. D.

N. L. Dorward, O. Alberti, B. Velani, F. A. Gerritsen, W. F. J. Harkness, N. D. Kitchen, and D. G. T. Thomas, “Postimaging brain distortion: magnitude, correlates, and impact on neuronavigation,” J. Neurosurg. 88(4), 656–662 (1998).
[CrossRef] [PubMed]

Koehler, M. J.

K. König, M. Speicher, R. Bückle, J. Reckfort, G. McKenzie, J. Welzel, M. J. Koehler, P. Elsner, and M. Kaatz, “Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases,” J. Biophotonics 2(6-7), 389–397 (2009).
[CrossRef] [PubMed]

König, K.

K. König, M. Speicher, R. Bückle, J. Reckfort, G. McKenzie, J. Welzel, M. J. Koehler, P. Elsner, and M. Kaatz, “Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases,” J. Biophotonics 2(6-7), 389–397 (2009).
[CrossRef] [PubMed]

Ku, C.

Lee, S. J.

S. J. Lee, J. Sun, J. J. Flint, S. Guo, H. K. Xie, M. A. King, and M. Sarntinoranont, “Optically based-indentation technique for acute rat brain tissue slices and thin biomaterials,” J. Biomed. Mater. Res., Part B: Appl. Biomater. 97B(1), 84–95 (2011).
[CrossRef] [PubMed]

Léger, J. F.

Lessard, M. D.

Li, H.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, L.

Lue, N.

Magistretti, P.

Marquet, P.

McKenzie, G.

K. König, M. Speicher, R. Bückle, J. Reckfort, G. McKenzie, J. Welzel, M. J. Koehler, P. Elsner, and M. Kaatz, “Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases,” J. Biophotonics 2(6-7), 389–397 (2009).
[CrossRef] [PubMed]

Michalak, R.

Miga, M. I.

D. W. Roberts, A. Hartov, F. E. Kennedy, M. I. Miga, and K. D. Paulsen, “Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases,” Neurosurgery 43(4), 749–758, discussion 758–760 (1998).
[CrossRef] [PubMed]

Minet, O.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41(3), 369–382 (1996).
[CrossRef] [PubMed]

Müller, G.

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41(3), 369–382 (1996).
[CrossRef] [PubMed]

Nicholson, C.

C. Nicholson and E. Syková, “Extracellular space structure revealed by diffusion analysis,” Trends Neurosci. 21(5), 207–215 (1998).
[CrossRef] [PubMed]

Nikitin, A. Y.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Paulsen, K. D.

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48(16), 2713–2727 (2003).
[CrossRef] [PubMed]

D. W. Roberts, A. Hartov, F. E. Kennedy, M. I. Miga, and K. D. Paulsen, “Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases,” Neurosurgery 43(4), 749–758, discussion 758–760 (1998).
[CrossRef] [PubMed]

Pogue, B. W.

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48(16), 2713–2727 (2003).
[CrossRef] [PubMed]

Popescu, G.

Potma, E. O.

Preuss, L. E.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Rappaz, B.

Reckfort, J.

K. König, M. Speicher, R. Bückle, J. Reckfort, G. McKenzie, J. Welzel, M. J. Koehler, P. Elsner, and M. Kaatz, “Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases,” J. Biophotonics 2(6-7), 389–397 (2009).
[CrossRef] [PubMed]

Roberts, D. W.

D. W. Roberts, A. Hartov, F. E. Kennedy, M. I. Miga, and K. D. Paulsen, “Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases,” Neurosurgery 43(4), 749–758, discussion 758–760 (1998).
[CrossRef] [PubMed]

Sarntinoranont, M.

S. J. Lee, J. Sun, J. J. Flint, S. Guo, H. K. Xie, M. A. King, and M. Sarntinoranont, “Optically based-indentation technique for acute rat brain tissue slices and thin biomaterials,” J. Biomed. Mater. Res., Part B: Appl. Biomater. 97B(1), 84–95 (2011).
[CrossRef] [PubMed]

Schmitt, J.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Shigeno, S.

T. Shigeno, M. Brock, S. Shigeno, E. Fritschka, and J. Cervós-Navarro, “The determination of brain water content: microgravimetry versus drying-weighing method,” J. Neurosurg. 57(1), 99–107 (1982).
[CrossRef] [PubMed]

Shigeno, T.

T. Shigeno, M. Brock, S. Shigeno, E. Fritschka, and J. Cervós-Navarro, “The determination of brain water content: microgravimetry versus drying-weighing method,” J. Neurosurg. 57(1), 99–107 (1982).
[CrossRef] [PubMed]

Song, Q. W.

Sorg, B. S.

Southern, J. F.

Speicher, M.

K. König, M. Speicher, R. Bückle, J. Reckfort, G. McKenzie, J. Welzel, M. J. Koehler, P. Elsner, and M. Kaatz, “Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases,” J. Biophotonics 2(6-7), 389–397 (2009).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sun, J.

S. J. Lee, J. Sun, J. J. Flint, S. Guo, H. K. Xie, M. A. King, and M. Sarntinoranont, “Optically based-indentation technique for acute rat brain tissue slices and thin biomaterials,” J. Biomed. Mater. Res., Part B: Appl. Biomater. 97B(1), 84–95 (2011).
[CrossRef] [PubMed]

J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Syková, E.

C. Nicholson and E. Syková, “Extracellular space structure revealed by diffusion analysis,” Trends Neurosci. 21(5), 207–215 (1998).
[CrossRef] [PubMed]

Taber, L. A.

G. Xu, P. V. Bayly, and L. A. Taber, “Residual stress in the adult mouse brain,” Biomech. Model. Mechanobiol. 8(4), 253–262 (2009).
[CrossRef] [PubMed]

Taylor, R. C.

Tearney, G. J.

Thomas, D. G. T.

N. L. Dorward, O. Alberti, B. Velani, F. A. Gerritsen, W. F. J. Harkness, N. D. Kitchen, and D. G. T. Thomas, “Postimaging brain distortion: magnitude, correlates, and impact on neuronavigation,” J. Neurosurg. 88(4), 656–662 (1998).
[CrossRef] [PubMed]

Velani, B.

N. L. Dorward, O. Alberti, B. Velani, F. A. Gerritsen, W. F. J. Harkness, N. D. Kitchen, and D. G. T. Thomas, “Postimaging brain distortion: magnitude, correlates, and impact on neuronavigation,” J. Neurosurg. 88(4), 656–662 (1998).
[CrossRef] [PubMed]

Vishwanath, K.

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48(16), 2713–2727 (2003).
[CrossRef] [PubMed]

Webb, W. W.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Welzel, J.

K. König, M. Speicher, R. Bückle, J. Reckfort, G. McKenzie, J. Welzel, M. J. Koehler, P. Elsner, and M. Kaatz, “Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases,” J. Biophotonics 2(6-7), 389–397 (2009).
[CrossRef] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Wu, L.

Xie, H.

Xie, H. K.

S. J. Lee, J. Sun, J. J. Flint, S. Guo, H. K. Xie, M. A. King, and M. Sarntinoranont, “Optically based-indentation technique for acute rat brain tissue slices and thin biomaterials,” J. Biomed. Mater. Res., Part B: Appl. Biomater. 97B(1), 84–95 (2011).
[CrossRef] [PubMed]

Xie, S.

Xie, X. S.

Xu, G.

G. Xu, P. V. Bayly, and L. A. Taber, “Residual stress in the adult mouse brain,” Biomech. Model. Mechanobiol. 8(4), 253–262 (2009).
[CrossRef] [PubMed]

Xu, M. G.

M. Gu, X. Gan, A. Kisteman, and M. G. Xu, “Comparison of penetration depth between two-photon excitation and single-photon excitation in imaging through turbid tissue media,” Appl. Phys. Lett. 77(10), 1551–1553 (2000).
[CrossRef]

Zhang, C.

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Actas Dermosifiliogr. (1)

S. González, Aplicaciones clínicas de la microscopía confocal de reflectancia en el manejo de los tumores cutáneos,” Actas Dermosifiliogr. 99(7), 528–531 (2008).
[PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. Gu, X. Gan, A. Kisteman, and M. G. Xu, “Comparison of penetration depth between two-photon excitation and single-photon excitation in imaging through turbid tissue media,” Appl. Phys. Lett. 77(10), 1551–1553 (2000).
[CrossRef]

Biomech. Model. Mechanobiol. (1)

G. Xu, P. V. Bayly, and L. A. Taber, “Residual stress in the adult mouse brain,” Biomech. Model. Mechanobiol. 8(4), 253–262 (2009).
[CrossRef] [PubMed]

J. Biomech. Eng. (1)

S. Cheng and L. E. Bilston, “Computational model of the cerebral ventricles in hydrocephalus,” J. Biomech. Eng. 132(5), 054501 (2010).
[CrossRef] [PubMed]

J. Biomed. Mater. Res., Part B: Appl. Biomater. (1)

S. J. Lee, J. Sun, J. J. Flint, S. Guo, H. K. Xie, M. A. King, and M. Sarntinoranont, “Optically based-indentation technique for acute rat brain tissue slices and thin biomaterials,” J. Biomed. Mater. Res., Part B: Appl. Biomater. 97B(1), 84–95 (2011).
[CrossRef] [PubMed]

J. Biophotonics (1)

K. König, M. Speicher, R. Bückle, J. Reckfort, G. McKenzie, J. Welzel, M. J. Koehler, P. Elsner, and M. Kaatz, “Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases,” J. Biophotonics 2(6-7), 389–397 (2009).
[CrossRef] [PubMed]

J. Neurosurg. (2)

N. L. Dorward, O. Alberti, B. Velani, F. A. Gerritsen, W. F. J. Harkness, N. D. Kitchen, and D. G. T. Thomas, “Postimaging brain distortion: magnitude, correlates, and impact on neuronavigation,” J. Neurosurg. 88(4), 656–662 (1998).
[CrossRef] [PubMed]

T. Shigeno, M. Brock, S. Shigeno, E. Fritschka, and J. Cervós-Navarro, “The determination of brain water content: microgravimetry versus drying-weighing method,” J. Neurosurg. 57(1), 99–107 (1982).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Neurosurgery (1)

D. W. Roberts, A. Hartov, F. E. Kennedy, M. I. Miga, and K. D. Paulsen, “Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases,” Neurosurgery 43(4), 749–758, discussion 758–760 (1998).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Phys. Med. Biol. (3)

J. Beuthan, O. Minet, J. Helfmann, M. Herrig, and G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41(3), 369–382 (1996).
[CrossRef] [PubMed]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997).
[CrossRef] [PubMed]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48(16), 2713–2727 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Trends Neurosci. (1)

C. Nicholson and E. Syková, “Extracellular space structure revealed by diffusion analysis,” Trends Neurosci. 21(5), 207–215 (1998).
[CrossRef] [PubMed]

Other (2)

N. Claxton, T. Fellers, and M. Davidson, “Laser scanning confocal microscopy,” Olympus, (2006). Available online at http://www.olympusconfocal.com/theory/LSCMIntro.pdf .

T. Enatsu, H. Kitahara, K. Takano, and T. Nagashima, Terahertz spectroscopic imaging of paraffin-embedded liver cancer samples,” Infrared and Millimeter Waves, 2007 and the 2007 15th International Conference on Terahertz Electronics. IRMMW-THz. Joint 32nd International Conference 557–558, 2–9 Sept. (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

MEMS mirror based - OCT setup used for refractive index measurements.

Fig. 2
Fig. 2

MEMS mirror used for lateral scans. (a) Bending motion of the bimorph beam. (b) LSF-LVD actuator design. (c) SEM of the front side of the MEMS mirror. (d) SEM of the back side of the MEMS mirror showing the Si ribs structure.

Fig. 3
Fig. 3

Anatomical regions of rat brain tissue slices tested. Medial sections from excised rat brains were sliced into coronal sections of 300 µm thickness.

Fig. 4
Fig. 4

Measurement of optical and physical thickness of various anatomical regions in rat brain tissue slices. The optical thicknesses (toptical) of each target region was measured by touching a 2mm stainless steel (SS) ball at the surface of the cerebral cortex (a-1), thalamus (b-1), corpus callosum (c-1), hippocampus (d-1) and putamen (e-1). The physical thicknesses (tphysical) which is shown on right side of picture were measured as the distance from the glass bottom to the 2mm SS ball after gently removed the brain tissue slice and aCSF (a-2 to e-2).

Fig. 5
Fig. 5

OCT images of brain tissue slices under compression for (a) cerebral cortex (grey matter) and (b) corpus callosum (white matter, bundle of myelinated axons). (a-1, b-1) no compression, (a-2,b-2) 20%, (a-3, b-3) 40%, (a-4, b-4) 60% and (a-5,b-5) 80% compression.

Fig. 6
Fig. 6

Measured RI in various anatomical regions in brain and aCSF. 10 samples were measured at each region. Bars correspond to 1SD (CC = corpus callosum, Thal = thalamus, CCt=cerebral cortex, Hip=hippocampus, Put=putamen, and aCSF=artificial cerebral spinal fluid). RI of corpus callosum was statistically different compared to other regions.

Fig. 7
Fig. 7

RI in rat brain tissue slices under uniform compression. 7 rat brain tissue slices were test for cerebral cortex and 8 tissue slices were tested for corpus callosum measurements. Bars correspond to ±1SE.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

RI= t optical t physical

Metrics