Abstract

A new fluorescence enhancement technical platform based on anodic aluminum oxide (AAO) nanostructure substrate is reported for the first time. Several fluorophores have been examined on the AAO nanostructure substrates. Systematic experiments found that the enhancement factor can be up to two orders of magnitude compared to the fluorescence signals on a glass substrate, indicating its great potential for ultrasensitive fluorescence detection. Given the simple and cost-effective fabrication process of lithographically patterned AAO nanostructure, this type of AAO nanostructure platform has great potential applications, especially its integration with microdevices and microfluidic devices for fluorescence-based biological analysis.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Q. Emili and G. Cagney, “Large-scale functional analysis using peptide or protein arrays,” Nat. Biotechnol.18(4), 393–397 (2000).
    [CrossRef] [PubMed]
  2. Y. Li, Y. T. Cu, and D. Luo, “Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes,” Nat. Biotechnol.23(7), 885–889 (2005).
    [CrossRef] [PubMed]
  3. M. Zimmer, “Green fluorescent protein (GFP): applications, structure, and related photophysical behavior,” Chem. Rev.102(3), 759–782 (2002).
    [CrossRef] [PubMed]
  4. J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond)1(2), 219–228 (2006).
    [CrossRef] [PubMed]
  5. C. Geddes and J. R. Lakowicz, “Metal-enhanced fluorescence,” J. Fluoresc.12(2), 121–129 (2002).
    [CrossRef] [PubMed]
  6. E. M. Goldys, K. Drozdowicz-Tomsia, F. Xie, T. Shtoyko, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Fluorescence amplification by electrochemically deposited silver nanowires with fractal architecture,” J. Am. Chem. Soc.129(40), 12117–12122 (2007).
    [CrossRef] [PubMed]
  7. Y. J. Hung, I. I. Smolyaninov, C. C. Davis, and H. C. Wu, “Fluorescence enhancement by surface gratings,” Opt. Express14(22), 10825–10830 (2006).
    [CrossRef] [PubMed]
  8. G. Lu, W. Li, T. Zhang, S. Yue, J. Liu, L. Hou, Z. Li, and Q. Gong, “Plasmonic-enhanced molecular fluorescence within isolated bowtie nano-apertures,” ACS Nano6(2), 1438–1448 (2012).
    [CrossRef] [PubMed]
  9. A. Dorfman, N. Kumar, and J. I. Hahm, “Highly sensitive biomolecular fluorescence detection using nanoscale ZnO platforms,” Langmuir22(11), 4890–4895 (2006).
    [CrossRef] [PubMed]
  10. V. Adalsteinsson, O. Parajuli, S. Kepics, A. Gupta, W. B. Reeves, and J. I. Hahm, “Ultrasensitive detection of cytokines enabled by nanoscale ZnO arrays,” Anal. Chem.80(17), 6594–6601 (2008).
    [CrossRef] [PubMed]
  11. J. Zhao, L. Wu, and J. Zhi, “Fabrication of micropatterned ZnO/SiO2 core/shell nanorod arrays on a nanocrystalline diamond film and their application to DNA hybridization detection,” J. Mater. Chem.18(21), 2459–2465 (2008).
    [CrossRef]
  12. C. Gu, J. Huang, N. Ni, M. Li, and J. Liu, “Detection of DNA hybridization based on SnO2 nanomaterial enhanced fluorescence,” J. Phys. D Appl. Phys.41(17), 175103 (2008).
    [CrossRef]
  13. S. Cloutier, A. Lazareck, and J. Xu, “Detection of nano-confined DNA using surface-plasmon enhanced fluorescence,” Appl. Phys. Lett.88(1), 0139041–0139043 (2006).
    [CrossRef]
  14. R. Li and H. Grebel, “Surface enhanced fluorescence: polarization characteristics,” IEEE Sens. J.10(3), 465–468 (2010).
    [CrossRef]
  15. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science268(5216), 1466–1468 (1995).
    [CrossRef] [PubMed]
  16. G. Sulka, S. Stroobants, V. Moshchalkov, G. Borghs, and J. P. Celis, “Synthesis of well-ordered nanopores by anodizing aluminum foils in sulfuric acid,” J. Electrochem. Soc.149(7), D97–D103 (2002).
    [CrossRef]
  17. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
    [CrossRef] [PubMed]
  18. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett.84(6), 855–857 (2004).
    [CrossRef]

2012

G. Lu, W. Li, T. Zhang, S. Yue, J. Liu, L. Hou, Z. Li, and Q. Gong, “Plasmonic-enhanced molecular fluorescence within isolated bowtie nano-apertures,” ACS Nano6(2), 1438–1448 (2012).
[CrossRef] [PubMed]

2010

R. Li and H. Grebel, “Surface enhanced fluorescence: polarization characteristics,” IEEE Sens. J.10(3), 465–468 (2010).
[CrossRef]

2008

V. Adalsteinsson, O. Parajuli, S. Kepics, A. Gupta, W. B. Reeves, and J. I. Hahm, “Ultrasensitive detection of cytokines enabled by nanoscale ZnO arrays,” Anal. Chem.80(17), 6594–6601 (2008).
[CrossRef] [PubMed]

J. Zhao, L. Wu, and J. Zhi, “Fabrication of micropatterned ZnO/SiO2 core/shell nanorod arrays on a nanocrystalline diamond film and their application to DNA hybridization detection,” J. Mater. Chem.18(21), 2459–2465 (2008).
[CrossRef]

C. Gu, J. Huang, N. Ni, M. Li, and J. Liu, “Detection of DNA hybridization based on SnO2 nanomaterial enhanced fluorescence,” J. Phys. D Appl. Phys.41(17), 175103 (2008).
[CrossRef]

2007

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

E. M. Goldys, K. Drozdowicz-Tomsia, F. Xie, T. Shtoyko, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Fluorescence amplification by electrochemically deposited silver nanowires with fractal architecture,” J. Am. Chem. Soc.129(40), 12117–12122 (2007).
[CrossRef] [PubMed]

2006

Y. J. Hung, I. I. Smolyaninov, C. C. Davis, and H. C. Wu, “Fluorescence enhancement by surface gratings,” Opt. Express14(22), 10825–10830 (2006).
[CrossRef] [PubMed]

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond)1(2), 219–228 (2006).
[CrossRef] [PubMed]

S. Cloutier, A. Lazareck, and J. Xu, “Detection of nano-confined DNA using surface-plasmon enhanced fluorescence,” Appl. Phys. Lett.88(1), 0139041–0139043 (2006).
[CrossRef]

A. Dorfman, N. Kumar, and J. I. Hahm, “Highly sensitive biomolecular fluorescence detection using nanoscale ZnO platforms,” Langmuir22(11), 4890–4895 (2006).
[CrossRef] [PubMed]

2005

Y. Li, Y. T. Cu, and D. Luo, “Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes,” Nat. Biotechnol.23(7), 885–889 (2005).
[CrossRef] [PubMed]

2004

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett.84(6), 855–857 (2004).
[CrossRef]

2002

M. Zimmer, “Green fluorescent protein (GFP): applications, structure, and related photophysical behavior,” Chem. Rev.102(3), 759–782 (2002).
[CrossRef] [PubMed]

C. Geddes and J. R. Lakowicz, “Metal-enhanced fluorescence,” J. Fluoresc.12(2), 121–129 (2002).
[CrossRef] [PubMed]

G. Sulka, S. Stroobants, V. Moshchalkov, G. Borghs, and J. P. Celis, “Synthesis of well-ordered nanopores by anodizing aluminum foils in sulfuric acid,” J. Electrochem. Soc.149(7), D97–D103 (2002).
[CrossRef]

2000

A. Q. Emili and G. Cagney, “Large-scale functional analysis using peptide or protein arrays,” Nat. Biotechnol.18(4), 393–397 (2000).
[CrossRef] [PubMed]

1995

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

Adalsteinsson, V.

V. Adalsteinsson, O. Parajuli, S. Kepics, A. Gupta, W. B. Reeves, and J. I. Hahm, “Ultrasensitive detection of cytokines enabled by nanoscale ZnO arrays,” Anal. Chem.80(17), 6594–6601 (2008).
[CrossRef] [PubMed]

Borghs, G.

G. Sulka, S. Stroobants, V. Moshchalkov, G. Borghs, and J. P. Celis, “Synthesis of well-ordered nanopores by anodizing aluminum foils in sulfuric acid,” J. Electrochem. Soc.149(7), D97–D103 (2002).
[CrossRef]

Cagney, G.

A. Q. Emili and G. Cagney, “Large-scale functional analysis using peptide or protein arrays,” Nat. Biotechnol.18(4), 393–397 (2000).
[CrossRef] [PubMed]

Celis, J. P.

G. Sulka, S. Stroobants, V. Moshchalkov, G. Borghs, and J. P. Celis, “Synthesis of well-ordered nanopores by anodizing aluminum foils in sulfuric acid,” J. Electrochem. Soc.149(7), D97–D103 (2002).
[CrossRef]

Chow, E.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Cloutier, S.

S. Cloutier, A. Lazareck, and J. Xu, “Detection of nano-confined DNA using surface-plasmon enhanced fluorescence,” Appl. Phys. Lett.88(1), 0139041–0139043 (2006).
[CrossRef]

Cu, Y. T.

Y. Li, Y. T. Cu, and D. Luo, “Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes,” Nat. Biotechnol.23(7), 885–889 (2005).
[CrossRef] [PubMed]

Cunningham, B. T.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Davis, C. C.

DenBaars, S. P.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett.84(6), 855–857 (2004).
[CrossRef]

Dorfman, A.

A. Dorfman, N. Kumar, and J. I. Hahm, “Highly sensitive biomolecular fluorescence detection using nanoscale ZnO platforms,” Langmuir22(11), 4890–4895 (2006).
[CrossRef] [PubMed]

Drozdowicz-Tomsia, K.

E. M. Goldys, K. Drozdowicz-Tomsia, F. Xie, T. Shtoyko, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Fluorescence amplification by electrochemically deposited silver nanowires with fractal architecture,” J. Am. Chem. Soc.129(40), 12117–12122 (2007).
[CrossRef] [PubMed]

Emili, A. Q.

A. Q. Emili and G. Cagney, “Large-scale functional analysis using peptide or protein arrays,” Nat. Biotechnol.18(4), 393–397 (2000).
[CrossRef] [PubMed]

Fujii, T.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett.84(6), 855–857 (2004).
[CrossRef]

Fukuda, K.

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

Ganesh, N.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Gao, Y.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett.84(6), 855–857 (2004).
[CrossRef]

Geddes, C.

C. Geddes and J. R. Lakowicz, “Metal-enhanced fluorescence,” J. Fluoresc.12(2), 121–129 (2002).
[CrossRef] [PubMed]

Goldys, E. M.

E. M. Goldys, K. Drozdowicz-Tomsia, F. Xie, T. Shtoyko, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Fluorescence amplification by electrochemically deposited silver nanowires with fractal architecture,” J. Am. Chem. Soc.129(40), 12117–12122 (2007).
[CrossRef] [PubMed]

Gong, Q.

G. Lu, W. Li, T. Zhang, S. Yue, J. Liu, L. Hou, Z. Li, and Q. Gong, “Plasmonic-enhanced molecular fluorescence within isolated bowtie nano-apertures,” ACS Nano6(2), 1438–1448 (2012).
[CrossRef] [PubMed]

Grebel, H.

R. Li and H. Grebel, “Surface enhanced fluorescence: polarization characteristics,” IEEE Sens. J.10(3), 465–468 (2010).
[CrossRef]

Gryczynski, I.

E. M. Goldys, K. Drozdowicz-Tomsia, F. Xie, T. Shtoyko, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Fluorescence amplification by electrochemically deposited silver nanowires with fractal architecture,” J. Am. Chem. Soc.129(40), 12117–12122 (2007).
[CrossRef] [PubMed]

Gryczynski, Z.

E. M. Goldys, K. Drozdowicz-Tomsia, F. Xie, T. Shtoyko, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Fluorescence amplification by electrochemically deposited silver nanowires with fractal architecture,” J. Am. Chem. Soc.129(40), 12117–12122 (2007).
[CrossRef] [PubMed]

Gu, C.

C. Gu, J. Huang, N. Ni, M. Li, and J. Liu, “Detection of DNA hybridization based on SnO2 nanomaterial enhanced fluorescence,” J. Phys. D Appl. Phys.41(17), 175103 (2008).
[CrossRef]

Gupta, A.

V. Adalsteinsson, O. Parajuli, S. Kepics, A. Gupta, W. B. Reeves, and J. I. Hahm, “Ultrasensitive detection of cytokines enabled by nanoscale ZnO arrays,” Anal. Chem.80(17), 6594–6601 (2008).
[CrossRef] [PubMed]

Haes, A. J.

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond)1(2), 219–228 (2006).
[CrossRef] [PubMed]

Hahm, J. I.

V. Adalsteinsson, O. Parajuli, S. Kepics, A. Gupta, W. B. Reeves, and J. I. Hahm, “Ultrasensitive detection of cytokines enabled by nanoscale ZnO arrays,” Anal. Chem.80(17), 6594–6601 (2008).
[CrossRef] [PubMed]

A. Dorfman, N. Kumar, and J. I. Hahm, “Highly sensitive biomolecular fluorescence detection using nanoscale ZnO platforms,” Langmuir22(11), 4890–4895 (2006).
[CrossRef] [PubMed]

Hou, L.

G. Lu, W. Li, T. Zhang, S. Yue, J. Liu, L. Hou, Z. Li, and Q. Gong, “Plasmonic-enhanced molecular fluorescence within isolated bowtie nano-apertures,” ACS Nano6(2), 1438–1448 (2012).
[CrossRef] [PubMed]

Hu, E. L.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett.84(6), 855–857 (2004).
[CrossRef]

Huang, J.

C. Gu, J. Huang, N. Ni, M. Li, and J. Liu, “Detection of DNA hybridization based on SnO2 nanomaterial enhanced fluorescence,” J. Phys. D Appl. Phys.41(17), 175103 (2008).
[CrossRef]

Hung, Y. J.

Kepics, S.

V. Adalsteinsson, O. Parajuli, S. Kepics, A. Gupta, W. B. Reeves, and J. I. Hahm, “Ultrasensitive detection of cytokines enabled by nanoscale ZnO arrays,” Anal. Chem.80(17), 6594–6601 (2008).
[CrossRef] [PubMed]

Kumar, N.

A. Dorfman, N. Kumar, and J. I. Hahm, “Highly sensitive biomolecular fluorescence detection using nanoscale ZnO platforms,” Langmuir22(11), 4890–4895 (2006).
[CrossRef] [PubMed]

Lakowicz, J. R.

C. Geddes and J. R. Lakowicz, “Metal-enhanced fluorescence,” J. Fluoresc.12(2), 121–129 (2002).
[CrossRef] [PubMed]

Lazareck, A.

S. Cloutier, A. Lazareck, and J. Xu, “Detection of nano-confined DNA using surface-plasmon enhanced fluorescence,” Appl. Phys. Lett.88(1), 0139041–0139043 (2006).
[CrossRef]

Li, M.

C. Gu, J. Huang, N. Ni, M. Li, and J. Liu, “Detection of DNA hybridization based on SnO2 nanomaterial enhanced fluorescence,” J. Phys. D Appl. Phys.41(17), 175103 (2008).
[CrossRef]

Li, R.

R. Li and H. Grebel, “Surface enhanced fluorescence: polarization characteristics,” IEEE Sens. J.10(3), 465–468 (2010).
[CrossRef]

Li, W.

G. Lu, W. Li, T. Zhang, S. Yue, J. Liu, L. Hou, Z. Li, and Q. Gong, “Plasmonic-enhanced molecular fluorescence within isolated bowtie nano-apertures,” ACS Nano6(2), 1438–1448 (2012).
[CrossRef] [PubMed]

Li, Y.

Y. Li, Y. T. Cu, and D. Luo, “Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes,” Nat. Biotechnol.23(7), 885–889 (2005).
[CrossRef] [PubMed]

Li, Z.

G. Lu, W. Li, T. Zhang, S. Yue, J. Liu, L. Hou, Z. Li, and Q. Gong, “Plasmonic-enhanced molecular fluorescence within isolated bowtie nano-apertures,” ACS Nano6(2), 1438–1448 (2012).
[CrossRef] [PubMed]

Liu, J.

G. Lu, W. Li, T. Zhang, S. Yue, J. Liu, L. Hou, Z. Li, and Q. Gong, “Plasmonic-enhanced molecular fluorescence within isolated bowtie nano-apertures,” ACS Nano6(2), 1438–1448 (2012).
[CrossRef] [PubMed]

C. Gu, J. Huang, N. Ni, M. Li, and J. Liu, “Detection of DNA hybridization based on SnO2 nanomaterial enhanced fluorescence,” J. Phys. D Appl. Phys.41(17), 175103 (2008).
[CrossRef]

Lu, G.

G. Lu, W. Li, T. Zhang, S. Yue, J. Liu, L. Hou, Z. Li, and Q. Gong, “Plasmonic-enhanced molecular fluorescence within isolated bowtie nano-apertures,” ACS Nano6(2), 1438–1448 (2012).
[CrossRef] [PubMed]

Luo, D.

Y. Li, Y. T. Cu, and D. Luo, “Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes,” Nat. Biotechnol.23(7), 885–889 (2005).
[CrossRef] [PubMed]

Malyarchuk, V.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Masuda, H.

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

Mathias, P. C.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Matveeva, E.

E. M. Goldys, K. Drozdowicz-Tomsia, F. Xie, T. Shtoyko, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Fluorescence amplification by electrochemically deposited silver nanowires with fractal architecture,” J. Am. Chem. Soc.129(40), 12117–12122 (2007).
[CrossRef] [PubMed]

Moshchalkov, V.

G. Sulka, S. Stroobants, V. Moshchalkov, G. Borghs, and J. P. Celis, “Synthesis of well-ordered nanopores by anodizing aluminum foils in sulfuric acid,” J. Electrochem. Soc.149(7), D97–D103 (2002).
[CrossRef]

Nakamura, S.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett.84(6), 855–857 (2004).
[CrossRef]

Ni, N.

C. Gu, J. Huang, N. Ni, M. Li, and J. Liu, “Detection of DNA hybridization based on SnO2 nanomaterial enhanced fluorescence,” J. Phys. D Appl. Phys.41(17), 175103 (2008).
[CrossRef]

Parajuli, O.

V. Adalsteinsson, O. Parajuli, S. Kepics, A. Gupta, W. B. Reeves, and J. I. Hahm, “Ultrasensitive detection of cytokines enabled by nanoscale ZnO arrays,” Anal. Chem.80(17), 6594–6601 (2008).
[CrossRef] [PubMed]

Reeves, W. B.

V. Adalsteinsson, O. Parajuli, S. Kepics, A. Gupta, W. B. Reeves, and J. I. Hahm, “Ultrasensitive detection of cytokines enabled by nanoscale ZnO arrays,” Anal. Chem.80(17), 6594–6601 (2008).
[CrossRef] [PubMed]

Sharma, R.

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett.84(6), 855–857 (2004).
[CrossRef]

Shtoyko, T.

E. M. Goldys, K. Drozdowicz-Tomsia, F. Xie, T. Shtoyko, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Fluorescence amplification by electrochemically deposited silver nanowires with fractal architecture,” J. Am. Chem. Soc.129(40), 12117–12122 (2007).
[CrossRef] [PubMed]

Smith, A. D.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Smolyaninov, I. I.

Soares, J. A.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Stroobants, S.

G. Sulka, S. Stroobants, V. Moshchalkov, G. Borghs, and J. P. Celis, “Synthesis of well-ordered nanopores by anodizing aluminum foils in sulfuric acid,” J. Electrochem. Soc.149(7), D97–D103 (2002).
[CrossRef]

Sulka, G.

G. Sulka, S. Stroobants, V. Moshchalkov, G. Borghs, and J. P. Celis, “Synthesis of well-ordered nanopores by anodizing aluminum foils in sulfuric acid,” J. Electrochem. Soc.149(7), D97–D103 (2002).
[CrossRef]

Van Duyne, R. P.

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond)1(2), 219–228 (2006).
[CrossRef] [PubMed]

Wu, H. C.

Wu, L.

J. Zhao, L. Wu, and J. Zhi, “Fabrication of micropatterned ZnO/SiO2 core/shell nanorod arrays on a nanocrystalline diamond film and their application to DNA hybridization detection,” J. Mater. Chem.18(21), 2459–2465 (2008).
[CrossRef]

Xie, F.

E. M. Goldys, K. Drozdowicz-Tomsia, F. Xie, T. Shtoyko, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Fluorescence amplification by electrochemically deposited silver nanowires with fractal architecture,” J. Am. Chem. Soc.129(40), 12117–12122 (2007).
[CrossRef] [PubMed]

Xu, J.

S. Cloutier, A. Lazareck, and J. Xu, “Detection of nano-confined DNA using surface-plasmon enhanced fluorescence,” Appl. Phys. Lett.88(1), 0139041–0139043 (2006).
[CrossRef]

Yonzon, C. R.

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond)1(2), 219–228 (2006).
[CrossRef] [PubMed]

Yue, S.

G. Lu, W. Li, T. Zhang, S. Yue, J. Liu, L. Hou, Z. Li, and Q. Gong, “Plasmonic-enhanced molecular fluorescence within isolated bowtie nano-apertures,” ACS Nano6(2), 1438–1448 (2012).
[CrossRef] [PubMed]

Zhang, T.

G. Lu, W. Li, T. Zhang, S. Yue, J. Liu, L. Hou, Z. Li, and Q. Gong, “Plasmonic-enhanced molecular fluorescence within isolated bowtie nano-apertures,” ACS Nano6(2), 1438–1448 (2012).
[CrossRef] [PubMed]

Zhang, W.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Zhang, X.

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond)1(2), 219–228 (2006).
[CrossRef] [PubMed]

Zhao, J.

J. Zhao, L. Wu, and J. Zhi, “Fabrication of micropatterned ZnO/SiO2 core/shell nanorod arrays on a nanocrystalline diamond film and their application to DNA hybridization detection,” J. Mater. Chem.18(21), 2459–2465 (2008).
[CrossRef]

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond)1(2), 219–228 (2006).
[CrossRef] [PubMed]

Zhi, J.

J. Zhao, L. Wu, and J. Zhi, “Fabrication of micropatterned ZnO/SiO2 core/shell nanorod arrays on a nanocrystalline diamond film and their application to DNA hybridization detection,” J. Mater. Chem.18(21), 2459–2465 (2008).
[CrossRef]

Zimmer, M.

M. Zimmer, “Green fluorescent protein (GFP): applications, structure, and related photophysical behavior,” Chem. Rev.102(3), 759–782 (2002).
[CrossRef] [PubMed]

ACS Nano

G. Lu, W. Li, T. Zhang, S. Yue, J. Liu, L. Hou, Z. Li, and Q. Gong, “Plasmonic-enhanced molecular fluorescence within isolated bowtie nano-apertures,” ACS Nano6(2), 1438–1448 (2012).
[CrossRef] [PubMed]

Anal. Chem.

V. Adalsteinsson, O. Parajuli, S. Kepics, A. Gupta, W. B. Reeves, and J. I. Hahm, “Ultrasensitive detection of cytokines enabled by nanoscale ZnO arrays,” Anal. Chem.80(17), 6594–6601 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett.

S. Cloutier, A. Lazareck, and J. Xu, “Detection of nano-confined DNA using surface-plasmon enhanced fluorescence,” Appl. Phys. Lett.88(1), 0139041–0139043 (2006).
[CrossRef]

T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett.84(6), 855–857 (2004).
[CrossRef]

Chem. Rev.

M. Zimmer, “Green fluorescent protein (GFP): applications, structure, and related photophysical behavior,” Chem. Rev.102(3), 759–782 (2002).
[CrossRef] [PubMed]

IEEE Sens. J.

R. Li and H. Grebel, “Surface enhanced fluorescence: polarization characteristics,” IEEE Sens. J.10(3), 465–468 (2010).
[CrossRef]

J. Am. Chem. Soc.

E. M. Goldys, K. Drozdowicz-Tomsia, F. Xie, T. Shtoyko, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Fluorescence amplification by electrochemically deposited silver nanowires with fractal architecture,” J. Am. Chem. Soc.129(40), 12117–12122 (2007).
[CrossRef] [PubMed]

J. Electrochem. Soc.

G. Sulka, S. Stroobants, V. Moshchalkov, G. Borghs, and J. P. Celis, “Synthesis of well-ordered nanopores by anodizing aluminum foils in sulfuric acid,” J. Electrochem. Soc.149(7), D97–D103 (2002).
[CrossRef]

J. Fluoresc.

C. Geddes and J. R. Lakowicz, “Metal-enhanced fluorescence,” J. Fluoresc.12(2), 121–129 (2002).
[CrossRef] [PubMed]

J. Mater. Chem.

J. Zhao, L. Wu, and J. Zhi, “Fabrication of micropatterned ZnO/SiO2 core/shell nanorod arrays on a nanocrystalline diamond film and their application to DNA hybridization detection,” J. Mater. Chem.18(21), 2459–2465 (2008).
[CrossRef]

J. Phys. D Appl. Phys.

C. Gu, J. Huang, N. Ni, M. Li, and J. Liu, “Detection of DNA hybridization based on SnO2 nanomaterial enhanced fluorescence,” J. Phys. D Appl. Phys.41(17), 175103 (2008).
[CrossRef]

Langmuir

A. Dorfman, N. Kumar, and J. I. Hahm, “Highly sensitive biomolecular fluorescence detection using nanoscale ZnO platforms,” Langmuir22(11), 4890–4895 (2006).
[CrossRef] [PubMed]

Nanomedicine (Lond)

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond)1(2), 219–228 (2006).
[CrossRef] [PubMed]

Nat. Biotechnol.

A. Q. Emili and G. Cagney, “Large-scale functional analysis using peptide or protein arrays,” Nat. Biotechnol.18(4), 393–397 (2000).
[CrossRef] [PubMed]

Y. Li, Y. T. Cu, and D. Luo, “Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes,” Nat. Biotechnol.23(7), 885–889 (2005).
[CrossRef] [PubMed]

Nat. Nanotechnol.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Opt. Express

Science

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics