T. Aihara, Y. Takeda, K. Takeda, W. Yasuda, T. Sato, Y. Otaka, T. Hanakawa, M. Honda, M. Liu, M. Kawato, M. Sato, and R. Osu, “Cortical current source estimation from electroencephalography in combination with near-infrared spectroscopy as a hierarchical prior,” NeuroImage 59, 4006–4021 (2012).

[CrossRef]

H. Akaike, “Likelihood and the Bayes procedure,” in Bayesian Statistics, J. M. Bernardo, M. H. De Groot, D. V. Lindley, and A. F. M. Smith, eds. (Univ. Press, Valencia, 1980), 143–166.

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25, 123010 (2009).

[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]
[PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).

[CrossRef]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).

[CrossRef]
[PubMed]

H. Attias, “Inferring parameters and structure of latent variable models by variational Bayes,” Proc. 15th Conf. on Uncertainty in Artificial Intelligence, Morgan Kaufmann, 21–30 (1999).

C. M. Bishop, Pattern Recognition and Machine Learning (Springer, New York, 2006).

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258, 89–97 (2011).

[CrossRef]

Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17, 20178–20190 (2009).

[CrossRef]
[PubMed]

J. Selb, A. M. Dale, and D. A. Boas, “Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution,” Opt. Express 15, 16400–16412 (2007).

[CrossRef]
[PubMed]

D. A. Boas and A. M. Dale, “Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function,” Appl. Opt. 44, 1957–1968 (2005).

[CrossRef]
[PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42, 5181–5190 (2003).

[CrossRef]
[PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).

[CrossRef]

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258, 89–97 (2011).

[CrossRef]

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258, 89–97 (2011).

[CrossRef]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42, 5181–5190 (2003).

[CrossRef]
[PubMed]

F. Lucka, S. Pursiainen, M. Burger, and C. H. Wolters, “Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: depth localization and source separation for focal primary currents,” Neuroimage 61, 1364–1382 (2012).

[CrossRef]
[PubMed]

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258, 89–97 (2011).

[CrossRef]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25, 711–732 (2008).

[CrossRef]
[PubMed]

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837–2858 (2005).

[CrossRef]
[PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).

[CrossRef]
[PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).

[CrossRef]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42, 5181–5190 (2003).

[CrossRef]
[PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911–924 (2003).

[CrossRef]
[PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).

[CrossRef]
[PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42, 5181–5190 (2003).

[CrossRef]
[PubMed]

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48, D137–D143 (2009).

[CrossRef]
[PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104, 12169–12174 (2007).

[CrossRef]
[PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).

[CrossRef]
[PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911–924 (2003).

[CrossRef]
[PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25, 711–732 (2008).

[CrossRef]
[PubMed]

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48, D137–D143 (2009).

[CrossRef]
[PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25, 711–732 (2008).

[CrossRef]
[PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104, 12169–12174 (2007).

[CrossRef]
[PubMed]

H. Niu, Z. J. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt. 15, 046005 (2010).

[CrossRef]
[PubMed]

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett. 154, 101–104 (1993).

[CrossRef]
[PubMed]

M. Sato, T. Yoshioka, S. Kajihara, K. Toyama, N. Goda, K. Doya, and M. Kawato, “Hierarchical Bayesian estimation for MEG inverse problem,” NeuroImage 23, 806–826 (2004).

[CrossRef]
[PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).

[CrossRef]
[PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911–924 (2003).

[CrossRef]
[PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25, 711–732 (2008).

[CrossRef]
[PubMed]

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258, 89–97 (2011).

[CrossRef]

Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17, 20178–20190 (2009).

[CrossRef]
[PubMed]

A. C. Faul and M. E. Tipping, “Analysis of sparse Bayesian learning,” Adv. Neural Inf. Process. Syst. 14, 383–389 (2002).

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911–924 (2003).

[CrossRef]
[PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]
[PubMed]

M. Sato, T. Yoshioka, S. Kajihara, K. Toyama, N. Goda, K. Doya, and M. Kawato, “Hierarchical Bayesian estimation for MEG inverse problem,” NeuroImage 23, 806–826 (2004).

[CrossRef]
[PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911–924 (2003).

[CrossRef]
[PubMed]

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837–2858 (2005).

[CrossRef]
[PubMed]

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” NeuroImage 59, 3201–3211 (2011).

[CrossRef]
[PubMed]

T. Aihara, Y. Takeda, K. Takeda, W. Yasuda, T. Sato, Y. Otaka, T. Hanakawa, M. Honda, M. Liu, M. Kawato, M. Sato, and R. Osu, “Cortical current source estimation from electroencephalography in combination with near-infrared spectroscopy as a hierarchical prior,” NeuroImage 59, 4006–4021 (2012).

[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]
[PubMed]

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett. 154, 101–104 (1993).

[CrossRef]
[PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).

[CrossRef]
[PubMed]

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” NeuroImage 59, 3201–3211 (2011).

[CrossRef]
[PubMed]

T. Aihara, Y. Takeda, K. Takeda, W. Yasuda, T. Sato, Y. Otaka, T. Hanakawa, M. Honda, M. Liu, M. Kawato, M. Sato, and R. Osu, “Cortical current source estimation from electroencephalography in combination with near-infrared spectroscopy as a hierarchical prior,” NeuroImage 59, 4006–4021 (2012).

[CrossRef]

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837–2858 (2005).

[CrossRef]
[PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).

[CrossRef]
[PubMed]

M. Sato, T. Yoshioka, S. Kajihara, K. Toyama, N. Goda, K. Doya, and M. Kawato, “Hierarchical Bayesian estimation for MEG inverse problem,” NeuroImage 23, 806–826 (2004).

[CrossRef]
[PubMed]

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).

T. Aihara, Y. Takeda, K. Takeda, W. Yasuda, T. Sato, Y. Otaka, T. Hanakawa, M. Honda, M. Liu, M. Kawato, M. Sato, and R. Osu, “Cortical current source estimation from electroencephalography in combination with near-infrared spectroscopy as a hierarchical prior,” NeuroImage 59, 4006–4021 (2012).

[CrossRef]

M. Sato, T. Yoshioka, S. Kajihara, K. Toyama, N. Goda, K. Doya, and M. Kawato, “Hierarchical Bayesian estimation for MEG inverse problem,” NeuroImage 23, 806–826 (2004).

[CrossRef]
[PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42, 5181–5190 (2003).

[CrossRef]
[PubMed]

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” NeuroImage 59, 3201–3211 (2011).

[CrossRef]
[PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).

[CrossRef]
[PubMed]

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258, 89–97 (2011).

[CrossRef]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42, 5181–5190 (2003).

[CrossRef]
[PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42, 5181–5190 (2003).

[CrossRef]
[PubMed]

H. Niu, Z. J. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt. 15, 046005 (2010).

[CrossRef]
[PubMed]

H. Niu, F. Tian, Z. J. Lin, and H. Liu, “Development of a compensation algorithm for accurate depth localization in diffuse optical tomography,” Opt. Lett. 35, 429–431 (2010).

[CrossRef]
[PubMed]

H. Niu, F. Tian, Z. J. Lin, and H. Liu, “Development of a compensation algorithm for accurate depth localization in diffuse optical tomography,” Opt. Lett. 35, 429–431 (2010).

[CrossRef]
[PubMed]

H. Niu, Z. J. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt. 15, 046005 (2010).

[CrossRef]
[PubMed]

T. Aihara, Y. Takeda, K. Takeda, W. Yasuda, T. Sato, Y. Otaka, T. Hanakawa, M. Honda, M. Liu, M. Kawato, M. Sato, and R. Osu, “Cortical current source estimation from electroencephalography in combination with near-infrared spectroscopy as a hierarchical prior,” NeuroImage 59, 4006–4021 (2012).

[CrossRef]

F. Lucka, S. Pursiainen, M. Burger, and C. H. Wolters, “Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: depth localization and source separation for focal primary currents,” Neuroimage 61, 1364–1382 (2012).

[CrossRef]
[PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).

[CrossRef]
[PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).

[CrossRef]
[PubMed]

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” NeuroImage 59, 3201–3211 (2011).

[CrossRef]
[PubMed]

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258, 89–97 (2011).

[CrossRef]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42, 5181–5190 (2003).

[CrossRef]
[PubMed]

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258, 89–97 (2011).

[CrossRef]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42, 5181–5190 (2003).

[CrossRef]
[PubMed]

D. Wipf and S. Nagarajan, “A unified Bayesian framework for MEG/EEG source imaging,” Neuroimage 44, 947–966 (2009).

[CrossRef]

D. Wipf and S. Nagarajan, “A new view of automatic relevance determination,” Adv. Neural Inf. Process. Syst. 20, 1625–1632 (2008).

H. Niu, F. Tian, Z. J. Lin, and H. Liu, “Development of a compensation algorithm for accurate depth localization in diffuse optical tomography,” Opt. Lett. 35, 429–431 (2010).

[CrossRef]
[PubMed]

H. Niu, Z. J. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt. 15, 046005 (2010).

[CrossRef]
[PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).

[CrossRef]
[PubMed]

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” NeuroImage 59, 3201–3211 (2011).

[CrossRef]
[PubMed]

T. Aihara, Y. Takeda, K. Takeda, W. Yasuda, T. Sato, Y. Otaka, T. Hanakawa, M. Honda, M. Liu, M. Kawato, M. Sato, and R. Osu, “Cortical current source estimation from electroencephalography in combination with near-infrared spectroscopy as a hierarchical prior,” NeuroImage 59, 4006–4021 (2012).

[CrossRef]

T. Aihara, Y. Takeda, K. Takeda, W. Yasuda, T. Sato, Y. Otaka, T. Hanakawa, M. Honda, M. Liu, M. Kawato, M. Sato, and R. Osu, “Cortical current source estimation from electroencephalography in combination with near-infrared spectroscopy as a hierarchical prior,” NeuroImage 59, 4006–4021 (2012).

[CrossRef]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25, 711–732 (2008).

[CrossRef]
[PubMed]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Österberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).

[CrossRef]

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett. 154, 101–104 (1993).

[CrossRef]
[PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25, 711–732 (2008).

[CrossRef]
[PubMed]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Österberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).

[CrossRef]

F. Lucka, S. Pursiainen, M. Burger, and C. H. Wolters, “Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: depth localization and source separation for focal primary currents,” Neuroimage 61, 1364–1382 (2012).

[CrossRef]
[PubMed]

T. Aihara, Y. Takeda, K. Takeda, W. Yasuda, T. Sato, Y. Otaka, T. Hanakawa, M. Honda, M. Liu, M. Kawato, M. Sato, and R. Osu, “Cortical current source estimation from electroencephalography in combination with near-infrared spectroscopy as a hierarchical prior,” NeuroImage 59, 4006–4021 (2012).

[CrossRef]

M. Sato, T. Yoshioka, S. Kajihara, K. Toyama, N. Goda, K. Doya, and M. Kawato, “Hierarchical Bayesian estimation for MEG inverse problem,” NeuroImage 23, 806–826 (2004).

[CrossRef]
[PubMed]

M. Sato, “Online model selection based on the variational Bayes,” Neural Comput. 13, 1649–1681 (2001).

[CrossRef]

T. Aihara, Y. Takeda, K. Takeda, W. Yasuda, T. Sato, Y. Otaka, T. Hanakawa, M. Honda, M. Liu, M. Kawato, M. Sato, and R. Osu, “Cortical current source estimation from electroencephalography in combination with near-infrared spectroscopy as a hierarchical prior,” NeuroImage 59, 4006–4021 (2012).

[CrossRef]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104, 12169–12174 (2007).

[CrossRef]
[PubMed]

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett. 154, 101–104 (1993).

[CrossRef]
[PubMed]

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” NeuroImage 59, 3201–3211 (2011).

[CrossRef]
[PubMed]

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25, 123010 (2009).

[CrossRef]

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258, 89–97 (2011).

[CrossRef]

J. Selb, A. M. Dale, and D. A. Boas, “Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution,” Opt. Express 15, 16400–16412 (2007).

[CrossRef]
[PubMed]

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).

[CrossRef]
[PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25, 711–732 (2008).

[CrossRef]
[PubMed]

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” NeuroImage 59, 3201–3211 (2011).

[CrossRef]
[PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42, 5181–5190 (2003).

[CrossRef]
[PubMed]

T. Aihara, Y. Takeda, K. Takeda, W. Yasuda, T. Sato, Y. Otaka, T. Hanakawa, M. Honda, M. Liu, M. Kawato, M. Sato, and R. Osu, “Cortical current source estimation from electroencephalography in combination with near-infrared spectroscopy as a hierarchical prior,” NeuroImage 59, 4006–4021 (2012).

[CrossRef]

T. Aihara, Y. Takeda, K. Takeda, W. Yasuda, T. Sato, Y. Otaka, T. Hanakawa, M. Honda, M. Liu, M. Kawato, M. Sato, and R. Osu, “Cortical current source estimation from electroencephalography in combination with near-infrared spectroscopy as a hierarchical prior,” NeuroImage 59, 4006–4021 (2012).

[CrossRef]

Y. Hoshi and M. Tamura, “Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man,” Neurosci. Lett. 150, 5–8 (1993).

[CrossRef]
[PubMed]

H. Niu, Z. J. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt. 15, 046005 (2010).

[CrossRef]
[PubMed]

H. Niu, F. Tian, Z. J. Lin, and H. Liu, “Development of a compensation algorithm for accurate depth localization in diffuse optical tomography,” Opt. Lett. 35, 429–431 (2010).

[CrossRef]
[PubMed]

A. C. Faul and M. E. Tipping, “Analysis of sparse Bayesian learning,” Adv. Neural Inf. Process. Syst. 14, 383–389 (2002).

M. Sato, T. Yoshioka, S. Kajihara, K. Toyama, N. Goda, K. Doya, and M. Kawato, “Hierarchical Bayesian estimation for MEG inverse problem,” NeuroImage 23, 806–826 (2004).

[CrossRef]
[PubMed]

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett. 154, 101–104 (1993).

[CrossRef]
[PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).

[CrossRef]
[PubMed]

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48, D137–D143 (2009).

[CrossRef]
[PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104, 12169–12174 (2007).

[CrossRef]
[PubMed]

D. Wipf and S. Nagarajan, “A unified Bayesian framework for MEG/EEG source imaging,” Neuroimage 44, 947–966 (2009).

[CrossRef]

D. Wipf and S. Nagarajan, “A new view of automatic relevance determination,” Adv. Neural Inf. Process. Syst. 20, 1625–1632 (2008).

F. Lucka, S. Pursiainen, M. Burger, and C. H. Wolters, “Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: depth localization and source separation for focal primary currents,” Neuroimage 61, 1364–1382 (2012).

[CrossRef]
[PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42, 5181–5190 (2003).

[CrossRef]
[PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25, 711–732 (2008).

[CrossRef]
[PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).

[CrossRef]
[PubMed]

T. Aihara, Y. Takeda, K. Takeda, W. Yasuda, T. Sato, Y. Otaka, T. Hanakawa, M. Honda, M. Liu, M. Kawato, M. Sato, and R. Osu, “Cortical current source estimation from electroencephalography in combination with near-infrared spectroscopy as a hierarchical prior,” NeuroImage 59, 4006–4021 (2012).

[CrossRef]

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837–2858 (2005).

[CrossRef]
[PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911–924 (2003).

[CrossRef]
[PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).

[CrossRef]
[PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).

[CrossRef]

M. Sato, T. Yoshioka, S. Kajihara, K. Toyama, N. Goda, K. Doya, and M. Kawato, “Hierarchical Bayesian estimation for MEG inverse problem,” NeuroImage 23, 806–826 (2004).

[CrossRef]
[PubMed]

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48, D137–D143 (2009).

[CrossRef]
[PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104, 12169–12174 (2007).

[CrossRef]
[PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42, 5181–5190 (2003).

[CrossRef]
[PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).

[CrossRef]
[PubMed]

D. Wipf and S. Nagarajan, “A new view of automatic relevance determination,” Adv. Neural Inf. Process. Syst. 20, 1625–1632 (2008).

A. C. Faul and M. E. Tipping, “Analysis of sparse Bayesian learning,” Adv. Neural Inf. Process. Syst. 14, 383–389 (2002).

P. Mohajerani, A. A. Eftekhar, J. Huang, and A. Adibi, “Optimal sparse solution for fluorescent diffuse optical tomography: theory and phantom experimental results,” Appl. Opt. 46, 1679–1685 (2007).

[CrossRef]
[PubMed]

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48, D137–D143 (2009).

[CrossRef]
[PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997).

[CrossRef]
[PubMed]

D. A. Boas and A. M. Dale, “Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function,” Appl. Opt. 44, 1957–1968 (2005).

[CrossRef]
[PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42, 5181–5190 (2003).

[CrossRef]
[PubMed]

F. Gao, H. Zhao, and Y Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 778–791 (2002).

[CrossRef]
[PubMed]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Österberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999).

[CrossRef]

F. Abdelnour, C. Genovese, and T. Huppert, “Hierarchical Bayesian regularization of reconstructions for diffuse optical tomography using multiple priors,” Biomed. Opt. Express 1, 1084–1103 (2010).

[CrossRef]

S. Okawa, Y. Hoshi, and Y. Yamada, “Improvement of image quality of time-domain diffuse optical tomography with lp sparsity regularization,” Biomed. Opt. Express 2, 3334–3348 (2011).

[CrossRef]
[PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25, 711–732 (2008).

[CrossRef]
[PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).

[CrossRef]

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25, 123010 (2009).

[CrossRef]

H. Niu, Z. J. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt. 15, 046005 (2010).

[CrossRef]
[PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911–924 (2003).

[CrossRef]
[PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003).

[CrossRef]
[PubMed]

A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).

[CrossRef]
[PubMed]

M. Sato, “Online model selection based on the variational Bayes,” Neural Comput. 13, 1649–1681 (2001).

[CrossRef]

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” NeuroImage 59, 3201–3211 (2011).

[CrossRef]
[PubMed]

D. Wipf and S. Nagarajan, “A unified Bayesian framework for MEG/EEG source imaging,” Neuroimage 44, 947–966 (2009).

[CrossRef]

F. Lucka, S. Pursiainen, M. Burger, and C. H. Wolters, “Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: depth localization and source separation for focal primary currents,” Neuroimage 61, 1364–1382 (2012).

[CrossRef]
[PubMed]

M. Sato, T. Yoshioka, S. Kajihara, K. Toyama, N. Goda, K. Doya, and M. Kawato, “Hierarchical Bayesian estimation for MEG inverse problem,” NeuroImage 23, 806–826 (2004).

[CrossRef]
[PubMed]

T. Aihara, Y. Takeda, K. Takeda, W. Yasuda, T. Sato, Y. Otaka, T. Hanakawa, M. Honda, M. Liu, M. Kawato, M. Sato, and R. Osu, “Cortical current source estimation from electroencephalography in combination with near-infrared spectroscopy as a hierarchical prior,” NeuroImage 59, 4006–4021 (2012).

[CrossRef]

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett. 154, 101–104 (1993).

[CrossRef]
[PubMed]

Y. Hoshi and M. Tamura, “Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man,” Neurosci. Lett. 150, 5–8 (1993).

[CrossRef]
[PubMed]

N. Cao, A. Nehorai, and M. Jacobs, “Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm,” Opt. Express 15, 13695–13708 (2007).

[CrossRef]
[PubMed]

Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source reconstruction for spectrally-resolved bioluminescence tomography with sparse a priori information,” Opt. Express 17, 8062–8080 (2009).

[CrossRef]
[PubMed]

Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17, 20178–20190 (2009).

[CrossRef]
[PubMed]

J. Selb, A. M. Dale, and D. A. Boas, “Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution,” Opt. Express 15, 16400–16412 (2007).

[CrossRef]
[PubMed]

H. Niu, F. Tian, Z. J. Lin, and H. Liu, “Development of a compensation algorithm for accurate depth localization in diffuse optical tomography,” Opt. Lett. 35, 429–431 (2010).

[CrossRef]
[PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).

[CrossRef]

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837–2858 (2005).

[CrossRef]
[PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]
[PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104, 12169–12174 (2007).

[CrossRef]
[PubMed]

Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology 258, 89–97 (2011).

[CrossRef]

C. M. Bishop, Pattern Recognition and Machine Learning (Springer, New York, 2006).

H. Akaike, “Likelihood and the Bayes procedure,” in Bayesian Statistics, J. M. Bernardo, M. H. De Groot, D. V. Lindley, and A. F. M. Smith, eds. (Univ. Press, Valencia, 1980), 143–166.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).

M. A. O’Leary, “Imaging with diffuse photon density waves,” Ph.D. Thesis, Unversity of Pennsylvania (1996).

H. Attias, “Inferring parameters and structure of latent variable models by variational Bayes,” Proc. 15th Conf. on Uncertainty in Artificial Intelligence, Morgan Kaufmann, 21–30 (1999).