Abstract

We report a real-time measurement method of the solution concentration variation during the growth of protein-lysozyme crystals based on digital holographic interferometry. A series of holograms containing the information of the solution concentration variation in the whole crystallization process is recorded by CCD. Based on the principle of double-exposure holographic interferometry and the relationship between the phase difference of the reconstructed object wave and the solution concentration, the solution concentration variation with time for arbitrary point in the solution can be obtained, and then the two-dimensional concentration distribution of the solution during crystallization process can also be figured out under the precondition which the refractive index is constant through the light propagation direction. The experimental results turns out that it is feasible to in situ, full-field and real-time monitor the crystal growth process by using this method.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Verma and P. J. Shlichta, “Imaging techniques for mapping solution parameters, growth rate, and surface features during the growth of crystals from solution,” Prog. Cryst. Growth Charact. Mater.54(1-2), 1–120 (2008).
    [CrossRef]
  2. F. Dubois, L. Joannes, O. Dupont, J. L. Dewandel, and J. C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol.10(10), 934–945 (1999).
    [CrossRef]
  3. S. Verma, “In situ and real-time monitoring of process parameters during growth of KDP crystal, an important ferroic material,” Phase Transit.83(9), 714–727 (2010).
    [CrossRef]
  4. F. Bedarida, “Developments of holographic interferometry applied to crystal growth from solution,” J. Cryst. Growth79(1-3), 43–49 (1986).
    [CrossRef]
  5. E. Plano, G. A. Dall’aglio, R. Chittofrati, S. Crivello, and F. Puppo, “A non-destructive interferometric technique for analysis of crystal growth and fluid dynamics,” Ann. Chim. Sci. Mat.26(1), 23–28 (2001).
    [CrossRef]
  6. E. H. Snell, J. R. Helliwell, T. J. Boggon, P. Lautenschlager, and L. Potthast, “Lysozyme crystal growth kinetics monitored using a Mach-Zehnder interferometer,” Acta Crystallogr. D Biol. Crystallogr.52(3), 529–533 (1996).
    [CrossRef] [PubMed]
  7. D. C. Yin, Y. Inatomi, H. M. Luo, H. S. Li, H. M. Lu, Y. J. Ye, and N. I. Wakayama, “Interferometry measurement of protein concentration evolution during crystallization and dissolution with improved reliability and versatility,” Meas. Sci. Technol.19(4), 045303 (2008).
    [CrossRef]
  8. A. Srivastava, K. Tsukamoto, E. Yokoyama, K. Murayama, and M. Fukuyama, “Fourier analysis based phase shift interferometric tomography for three-dimensional reconstruction of concentration field around a growing crystal,” J. Cryst. Growth312(15), 2254–2262 (2010).
    [CrossRef]
  9. J. Zhao, H. Miao, L. Duan, Q. Kang, and L. H. He, “The mass transfer process and the growth rate of NaCl crystal growth by evaporation based on temporal phase evaluation,” Opt. Lasers Eng.50(4), 540–546 (2012).
    [CrossRef]
  10. S. Maruyama, T. Shibata, and K. Tsukamoto, “Measurement of diffusion fields of solutions using real-time phase-shift interferometer and rapid heat-transfer control system,” Exp. Therm. Fluid Sci.19(1), 34–48 (1999).
    [CrossRef]
  11. S. Seebacher, W. Osten, T. Baumbach, and W. Jüptner, “The determination of material parameters of microcomponents using digital holography,” Opt. Lasers Eng.36(2), 103–126 (2001).
    [CrossRef]
  12. M. Grosse, J. Buehl, H. Babovsky, A. Kiessling, and R. Kowarschik, “3D shape measurement of macroscopic objects in digital off-axis holography using structured illumination,” Opt. Lett.35(8), 1233–1235 (2010).
    [CrossRef] [PubMed]
  13. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express13(23), 9361–9373 (2005).
    [CrossRef] [PubMed]
  14. G. Rajshekhar, S. S. Gorthi, and P. Rastogi, “Estimation of multiple phases from a single fringe pattern in digital holographic interferometry,” Opt. Express20(2), 1281–1291 (2012).
    [CrossRef] [PubMed]
  15. W. Sun, J. Zhao, J. Di, Q. Wang, and L. Wang, “Real-time visualization of Karman vortex street in water flow field by using digital holography,” Opt. Express17(22), 20342–20348 (2009).
    [CrossRef] [PubMed]
  16. M. F. Toy, S. Richard, J. Kühn, A. Franco-Obregón, M. Egli, and C. Depeursinge, “Enhanced robustness digital holographic microscopy for demanding environment of space biology,” Biomed. Opt. Express3(2), 313–326 (2012).
    [CrossRef] [PubMed]
  17. M. M. Hossain and C. Shakher, “Temperature measurement in laminar free convective flow using digital holography,” Appl. Opt.48(10), 1869–1877 (2009).
    [CrossRef] [PubMed]
  18. S. Grilli, P. Ferraro, M. Paturzo, D. Alfieri, P. De Natale, M. de Angelis, S. De Nicola, A. Finizio, and G. Pierattini, “In-situ visualization, monitoring and analysis of electric field domain reversal process in ferroelectric crystals by digital holography,” Opt. Express12(9), 1832–1842 (2004).
    [CrossRef] [PubMed]
  19. J. Wang, J. L. Zhao, C. Qin, J. L. Di, A. Rauf, and H. Z. Jiang, “Digital holographic interferometry based on wavelength and angular multiplexing for measuring the ternary diffusion,” Opt. Lett.37(7), 1211–1213 (2012).
    [CrossRef] [PubMed]
  20. F. Charrière, B. Rappaz, J. Kühn, T. Colomb, P. Marquet, and C. Depeursinge, “Influence of shot noise on phase measurement accuracy in digital holographic microscopy,” Opt. Express15(14), 8818–8831 (2007).
    [CrossRef] [PubMed]

2012 (4)

2010 (3)

M. Grosse, J. Buehl, H. Babovsky, A. Kiessling, and R. Kowarschik, “3D shape measurement of macroscopic objects in digital off-axis holography using structured illumination,” Opt. Lett.35(8), 1233–1235 (2010).
[CrossRef] [PubMed]

S. Verma, “In situ and real-time monitoring of process parameters during growth of KDP crystal, an important ferroic material,” Phase Transit.83(9), 714–727 (2010).
[CrossRef]

A. Srivastava, K. Tsukamoto, E. Yokoyama, K. Murayama, and M. Fukuyama, “Fourier analysis based phase shift interferometric tomography for three-dimensional reconstruction of concentration field around a growing crystal,” J. Cryst. Growth312(15), 2254–2262 (2010).
[CrossRef]

2009 (2)

2008 (2)

D. C. Yin, Y. Inatomi, H. M. Luo, H. S. Li, H. M. Lu, Y. J. Ye, and N. I. Wakayama, “Interferometry measurement of protein concentration evolution during crystallization and dissolution with improved reliability and versatility,” Meas. Sci. Technol.19(4), 045303 (2008).
[CrossRef]

S. Verma and P. J. Shlichta, “Imaging techniques for mapping solution parameters, growth rate, and surface features during the growth of crystals from solution,” Prog. Cryst. Growth Charact. Mater.54(1-2), 1–120 (2008).
[CrossRef]

2007 (1)

2005 (1)

2004 (1)

2001 (2)

S. Seebacher, W. Osten, T. Baumbach, and W. Jüptner, “The determination of material parameters of microcomponents using digital holography,” Opt. Lasers Eng.36(2), 103–126 (2001).
[CrossRef]

E. Plano, G. A. Dall’aglio, R. Chittofrati, S. Crivello, and F. Puppo, “A non-destructive interferometric technique for analysis of crystal growth and fluid dynamics,” Ann. Chim. Sci. Mat.26(1), 23–28 (2001).
[CrossRef]

1999 (2)

F. Dubois, L. Joannes, O. Dupont, J. L. Dewandel, and J. C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol.10(10), 934–945 (1999).
[CrossRef]

S. Maruyama, T. Shibata, and K. Tsukamoto, “Measurement of diffusion fields of solutions using real-time phase-shift interferometer and rapid heat-transfer control system,” Exp. Therm. Fluid Sci.19(1), 34–48 (1999).
[CrossRef]

1996 (1)

E. H. Snell, J. R. Helliwell, T. J. Boggon, P. Lautenschlager, and L. Potthast, “Lysozyme crystal growth kinetics monitored using a Mach-Zehnder interferometer,” Acta Crystallogr. D Biol. Crystallogr.52(3), 529–533 (1996).
[CrossRef] [PubMed]

1986 (1)

F. Bedarida, “Developments of holographic interferometry applied to crystal growth from solution,” J. Cryst. Growth79(1-3), 43–49 (1986).
[CrossRef]

Alfieri, D.

Babovsky, H.

Baumbach, T.

S. Seebacher, W. Osten, T. Baumbach, and W. Jüptner, “The determination of material parameters of microcomponents using digital holography,” Opt. Lasers Eng.36(2), 103–126 (2001).
[CrossRef]

Bedarida, F.

F. Bedarida, “Developments of holographic interferometry applied to crystal growth from solution,” J. Cryst. Growth79(1-3), 43–49 (1986).
[CrossRef]

Boggon, T. J.

E. H. Snell, J. R. Helliwell, T. J. Boggon, P. Lautenschlager, and L. Potthast, “Lysozyme crystal growth kinetics monitored using a Mach-Zehnder interferometer,” Acta Crystallogr. D Biol. Crystallogr.52(3), 529–533 (1996).
[CrossRef] [PubMed]

Buehl, J.

Charrière, F.

Chittofrati, R.

E. Plano, G. A. Dall’aglio, R. Chittofrati, S. Crivello, and F. Puppo, “A non-destructive interferometric technique for analysis of crystal growth and fluid dynamics,” Ann. Chim. Sci. Mat.26(1), 23–28 (2001).
[CrossRef]

Colomb, T.

Crivello, S.

E. Plano, G. A. Dall’aglio, R. Chittofrati, S. Crivello, and F. Puppo, “A non-destructive interferometric technique for analysis of crystal growth and fluid dynamics,” Ann. Chim. Sci. Mat.26(1), 23–28 (2001).
[CrossRef]

Cuche, E.

Dall’aglio, G. A.

E. Plano, G. A. Dall’aglio, R. Chittofrati, S. Crivello, and F. Puppo, “A non-destructive interferometric technique for analysis of crystal growth and fluid dynamics,” Ann. Chim. Sci. Mat.26(1), 23–28 (2001).
[CrossRef]

de Angelis, M.

De Natale, P.

De Nicola, S.

Depeursinge, C.

Dewandel, J. L.

F. Dubois, L. Joannes, O. Dupont, J. L. Dewandel, and J. C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol.10(10), 934–945 (1999).
[CrossRef]

Di, J.

Di, J. L.

Duan, L.

J. Zhao, H. Miao, L. Duan, Q. Kang, and L. H. He, “The mass transfer process and the growth rate of NaCl crystal growth by evaporation based on temporal phase evaluation,” Opt. Lasers Eng.50(4), 540–546 (2012).
[CrossRef]

Dubois, F.

F. Dubois, L. Joannes, O. Dupont, J. L. Dewandel, and J. C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol.10(10), 934–945 (1999).
[CrossRef]

Dupont, O.

F. Dubois, L. Joannes, O. Dupont, J. L. Dewandel, and J. C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol.10(10), 934–945 (1999).
[CrossRef]

Egli, M.

Emery, Y.

Ferraro, P.

Finizio, A.

Franco-Obregón, A.

Fukuyama, M.

A. Srivastava, K. Tsukamoto, E. Yokoyama, K. Murayama, and M. Fukuyama, “Fourier analysis based phase shift interferometric tomography for three-dimensional reconstruction of concentration field around a growing crystal,” J. Cryst. Growth312(15), 2254–2262 (2010).
[CrossRef]

Gorthi, S. S.

Grilli, S.

Grosse, M.

He, L. H.

J. Zhao, H. Miao, L. Duan, Q. Kang, and L. H. He, “The mass transfer process and the growth rate of NaCl crystal growth by evaporation based on temporal phase evaluation,” Opt. Lasers Eng.50(4), 540–546 (2012).
[CrossRef]

Helliwell, J. R.

E. H. Snell, J. R. Helliwell, T. J. Boggon, P. Lautenschlager, and L. Potthast, “Lysozyme crystal growth kinetics monitored using a Mach-Zehnder interferometer,” Acta Crystallogr. D Biol. Crystallogr.52(3), 529–533 (1996).
[CrossRef] [PubMed]

Hossain, M. M.

Inatomi, Y.

D. C. Yin, Y. Inatomi, H. M. Luo, H. S. Li, H. M. Lu, Y. J. Ye, and N. I. Wakayama, “Interferometry measurement of protein concentration evolution during crystallization and dissolution with improved reliability and versatility,” Meas. Sci. Technol.19(4), 045303 (2008).
[CrossRef]

Jiang, H. Z.

Joannes, L.

F. Dubois, L. Joannes, O. Dupont, J. L. Dewandel, and J. C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol.10(10), 934–945 (1999).
[CrossRef]

Jüptner, W.

S. Seebacher, W. Osten, T. Baumbach, and W. Jüptner, “The determination of material parameters of microcomponents using digital holography,” Opt. Lasers Eng.36(2), 103–126 (2001).
[CrossRef]

Kang, Q.

J. Zhao, H. Miao, L. Duan, Q. Kang, and L. H. He, “The mass transfer process and the growth rate of NaCl crystal growth by evaporation based on temporal phase evaluation,” Opt. Lasers Eng.50(4), 540–546 (2012).
[CrossRef]

Kiessling, A.

Kowarschik, R.

Kühn, J.

Lautenschlager, P.

E. H. Snell, J. R. Helliwell, T. J. Boggon, P. Lautenschlager, and L. Potthast, “Lysozyme crystal growth kinetics monitored using a Mach-Zehnder interferometer,” Acta Crystallogr. D Biol. Crystallogr.52(3), 529–533 (1996).
[CrossRef] [PubMed]

Legros, J. C.

F. Dubois, L. Joannes, O. Dupont, J. L. Dewandel, and J. C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol.10(10), 934–945 (1999).
[CrossRef]

Li, H. S.

D. C. Yin, Y. Inatomi, H. M. Luo, H. S. Li, H. M. Lu, Y. J. Ye, and N. I. Wakayama, “Interferometry measurement of protein concentration evolution during crystallization and dissolution with improved reliability and versatility,” Meas. Sci. Technol.19(4), 045303 (2008).
[CrossRef]

Lu, H. M.

D. C. Yin, Y. Inatomi, H. M. Luo, H. S. Li, H. M. Lu, Y. J. Ye, and N. I. Wakayama, “Interferometry measurement of protein concentration evolution during crystallization and dissolution with improved reliability and versatility,” Meas. Sci. Technol.19(4), 045303 (2008).
[CrossRef]

Luo, H. M.

D. C. Yin, Y. Inatomi, H. M. Luo, H. S. Li, H. M. Lu, Y. J. Ye, and N. I. Wakayama, “Interferometry measurement of protein concentration evolution during crystallization and dissolution with improved reliability and versatility,” Meas. Sci. Technol.19(4), 045303 (2008).
[CrossRef]

Magistretti, P. J.

Marquet, P.

Maruyama, S.

S. Maruyama, T. Shibata, and K. Tsukamoto, “Measurement of diffusion fields of solutions using real-time phase-shift interferometer and rapid heat-transfer control system,” Exp. Therm. Fluid Sci.19(1), 34–48 (1999).
[CrossRef]

Miao, H.

J. Zhao, H. Miao, L. Duan, Q. Kang, and L. H. He, “The mass transfer process and the growth rate of NaCl crystal growth by evaporation based on temporal phase evaluation,” Opt. Lasers Eng.50(4), 540–546 (2012).
[CrossRef]

Murayama, K.

A. Srivastava, K. Tsukamoto, E. Yokoyama, K. Murayama, and M. Fukuyama, “Fourier analysis based phase shift interferometric tomography for three-dimensional reconstruction of concentration field around a growing crystal,” J. Cryst. Growth312(15), 2254–2262 (2010).
[CrossRef]

Osten, W.

S. Seebacher, W. Osten, T. Baumbach, and W. Jüptner, “The determination of material parameters of microcomponents using digital holography,” Opt. Lasers Eng.36(2), 103–126 (2001).
[CrossRef]

Paturzo, M.

Pierattini, G.

Plano, E.

E. Plano, G. A. Dall’aglio, R. Chittofrati, S. Crivello, and F. Puppo, “A non-destructive interferometric technique for analysis of crystal growth and fluid dynamics,” Ann. Chim. Sci. Mat.26(1), 23–28 (2001).
[CrossRef]

Potthast, L.

E. H. Snell, J. R. Helliwell, T. J. Boggon, P. Lautenschlager, and L. Potthast, “Lysozyme crystal growth kinetics monitored using a Mach-Zehnder interferometer,” Acta Crystallogr. D Biol. Crystallogr.52(3), 529–533 (1996).
[CrossRef] [PubMed]

Puppo, F.

E. Plano, G. A. Dall’aglio, R. Chittofrati, S. Crivello, and F. Puppo, “A non-destructive interferometric technique for analysis of crystal growth and fluid dynamics,” Ann. Chim. Sci. Mat.26(1), 23–28 (2001).
[CrossRef]

Qin, C.

Rajshekhar, G.

Rappaz, B.

Rastogi, P.

Rauf, A.

Richard, S.

Seebacher, S.

S. Seebacher, W. Osten, T. Baumbach, and W. Jüptner, “The determination of material parameters of microcomponents using digital holography,” Opt. Lasers Eng.36(2), 103–126 (2001).
[CrossRef]

Shakher, C.

Shibata, T.

S. Maruyama, T. Shibata, and K. Tsukamoto, “Measurement of diffusion fields of solutions using real-time phase-shift interferometer and rapid heat-transfer control system,” Exp. Therm. Fluid Sci.19(1), 34–48 (1999).
[CrossRef]

Shlichta, P. J.

S. Verma and P. J. Shlichta, “Imaging techniques for mapping solution parameters, growth rate, and surface features during the growth of crystals from solution,” Prog. Cryst. Growth Charact. Mater.54(1-2), 1–120 (2008).
[CrossRef]

Snell, E. H.

E. H. Snell, J. R. Helliwell, T. J. Boggon, P. Lautenschlager, and L. Potthast, “Lysozyme crystal growth kinetics monitored using a Mach-Zehnder interferometer,” Acta Crystallogr. D Biol. Crystallogr.52(3), 529–533 (1996).
[CrossRef] [PubMed]

Srivastava, A.

A. Srivastava, K. Tsukamoto, E. Yokoyama, K. Murayama, and M. Fukuyama, “Fourier analysis based phase shift interferometric tomography for three-dimensional reconstruction of concentration field around a growing crystal,” J. Cryst. Growth312(15), 2254–2262 (2010).
[CrossRef]

Sun, W.

Toy, M. F.

Tsukamoto, K.

A. Srivastava, K. Tsukamoto, E. Yokoyama, K. Murayama, and M. Fukuyama, “Fourier analysis based phase shift interferometric tomography for three-dimensional reconstruction of concentration field around a growing crystal,” J. Cryst. Growth312(15), 2254–2262 (2010).
[CrossRef]

S. Maruyama, T. Shibata, and K. Tsukamoto, “Measurement of diffusion fields of solutions using real-time phase-shift interferometer and rapid heat-transfer control system,” Exp. Therm. Fluid Sci.19(1), 34–48 (1999).
[CrossRef]

Verma, S.

S. Verma, “In situ and real-time monitoring of process parameters during growth of KDP crystal, an important ferroic material,” Phase Transit.83(9), 714–727 (2010).
[CrossRef]

S. Verma and P. J. Shlichta, “Imaging techniques for mapping solution parameters, growth rate, and surface features during the growth of crystals from solution,” Prog. Cryst. Growth Charact. Mater.54(1-2), 1–120 (2008).
[CrossRef]

Wakayama, N. I.

D. C. Yin, Y. Inatomi, H. M. Luo, H. S. Li, H. M. Lu, Y. J. Ye, and N. I. Wakayama, “Interferometry measurement of protein concentration evolution during crystallization and dissolution with improved reliability and versatility,” Meas. Sci. Technol.19(4), 045303 (2008).
[CrossRef]

Wang, J.

Wang, L.

Wang, Q.

Ye, Y. J.

D. C. Yin, Y. Inatomi, H. M. Luo, H. S. Li, H. M. Lu, Y. J. Ye, and N. I. Wakayama, “Interferometry measurement of protein concentration evolution during crystallization and dissolution with improved reliability and versatility,” Meas. Sci. Technol.19(4), 045303 (2008).
[CrossRef]

Yin, D. C.

D. C. Yin, Y. Inatomi, H. M. Luo, H. S. Li, H. M. Lu, Y. J. Ye, and N. I. Wakayama, “Interferometry measurement of protein concentration evolution during crystallization and dissolution with improved reliability and versatility,” Meas. Sci. Technol.19(4), 045303 (2008).
[CrossRef]

Yokoyama, E.

A. Srivastava, K. Tsukamoto, E. Yokoyama, K. Murayama, and M. Fukuyama, “Fourier analysis based phase shift interferometric tomography for three-dimensional reconstruction of concentration field around a growing crystal,” J. Cryst. Growth312(15), 2254–2262 (2010).
[CrossRef]

Zhao, J.

J. Zhao, H. Miao, L. Duan, Q. Kang, and L. H. He, “The mass transfer process and the growth rate of NaCl crystal growth by evaporation based on temporal phase evaluation,” Opt. Lasers Eng.50(4), 540–546 (2012).
[CrossRef]

W. Sun, J. Zhao, J. Di, Q. Wang, and L. Wang, “Real-time visualization of Karman vortex street in water flow field by using digital holography,” Opt. Express17(22), 20342–20348 (2009).
[CrossRef] [PubMed]

Zhao, J. L.

Acta Crystallogr. D Biol. Crystallogr. (1)

E. H. Snell, J. R. Helliwell, T. J. Boggon, P. Lautenschlager, and L. Potthast, “Lysozyme crystal growth kinetics monitored using a Mach-Zehnder interferometer,” Acta Crystallogr. D Biol. Crystallogr.52(3), 529–533 (1996).
[CrossRef] [PubMed]

Ann. Chim. Sci. Mat. (1)

E. Plano, G. A. Dall’aglio, R. Chittofrati, S. Crivello, and F. Puppo, “A non-destructive interferometric technique for analysis of crystal growth and fluid dynamics,” Ann. Chim. Sci. Mat.26(1), 23–28 (2001).
[CrossRef]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Exp. Therm. Fluid Sci. (1)

S. Maruyama, T. Shibata, and K. Tsukamoto, “Measurement of diffusion fields of solutions using real-time phase-shift interferometer and rapid heat-transfer control system,” Exp. Therm. Fluid Sci.19(1), 34–48 (1999).
[CrossRef]

J. Cryst. Growth (2)

A. Srivastava, K. Tsukamoto, E. Yokoyama, K. Murayama, and M. Fukuyama, “Fourier analysis based phase shift interferometric tomography for three-dimensional reconstruction of concentration field around a growing crystal,” J. Cryst. Growth312(15), 2254–2262 (2010).
[CrossRef]

F. Bedarida, “Developments of holographic interferometry applied to crystal growth from solution,” J. Cryst. Growth79(1-3), 43–49 (1986).
[CrossRef]

Meas. Sci. Technol. (2)

F. Dubois, L. Joannes, O. Dupont, J. L. Dewandel, and J. C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol.10(10), 934–945 (1999).
[CrossRef]

D. C. Yin, Y. Inatomi, H. M. Luo, H. S. Li, H. M. Lu, Y. J. Ye, and N. I. Wakayama, “Interferometry measurement of protein concentration evolution during crystallization and dissolution with improved reliability and versatility,” Meas. Sci. Technol.19(4), 045303 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lasers Eng. (2)

S. Seebacher, W. Osten, T. Baumbach, and W. Jüptner, “The determination of material parameters of microcomponents using digital holography,” Opt. Lasers Eng.36(2), 103–126 (2001).
[CrossRef]

J. Zhao, H. Miao, L. Duan, Q. Kang, and L. H. He, “The mass transfer process and the growth rate of NaCl crystal growth by evaporation based on temporal phase evaluation,” Opt. Lasers Eng.50(4), 540–546 (2012).
[CrossRef]

Opt. Lett. (2)

Phase Transit. (1)

S. Verma, “In situ and real-time monitoring of process parameters during growth of KDP crystal, an important ferroic material,” Phase Transit.83(9), 714–727 (2010).
[CrossRef]

Prog. Cryst. Growth Charact. Mater. (1)

S. Verma and P. J. Shlichta, “Imaging techniques for mapping solution parameters, growth rate, and surface features during the growth of crystals from solution,” Prog. Cryst. Growth Charact. Mater.54(1-2), 1–120 (2008).
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (4035 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for measuring the solution concentration based on digital holographic interferometry. M: mirror; MO: microscope objective; PH: pinhole; BS: beam-splitter; TL: telecentric lens; L:lens.

Fig. 2
Fig. 2

Reconstructed two-dimensional wrapped phase distributions of the solution region at different time. (a) t = 200min; (b) t = 1000min; (c) t = 1550min; (d) t = 2350min; (e) t = 3050min; (f) t = 3700min; (g) t = 4200min; (h) t = 4750min (Media 1).

Fig. 3
Fig. 3

Variation of the solution concentration during crystallization. (a) Measurement results of the solution concentration in the top, middle, bottom region; (b) Fitting results corresponding to Fig.(a).

Fig. 4
Fig. 4

Two-dimensional concentration distributions of the solution at different time. (a) t = 200min; (b) t = 1000min; (c) t = 1550min; (d) t = 2350min; (e) t = 3050min; (f) t = 3700min; (g) t = 4200min; (h) t = 4750min.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ φ t (x,y)= φ ot (x,y) φ o0 (x,y).
Δ φ t ( x,y )= 2π λ [ n t ( x,y ) n 0 ]d( x,y )= 2π λ Δn(x,y)d( x,y ).
Δn( x,y )= [ n s T ] C [ T t ( x,y ) T 0 ( x,y ) ]+ [ n s C ] T [ C t ( x,y ) C 0 ( x,y ) ].
Δn( x,y )= [ n s C ] T [ C t ( x,y ) C 0 ( x,y ) ].
C t ( x,y )= C 0 ( x,y )+ { λ 2πd(x,y) Δ φ t ( x,y ) } / [ n s C ] T .

Metrics