Abstract

In order to reduce the radiation exposure caused by Computed Tomography (CT) scanning, low dose CT has gained much interest in research as well as in industry. One fundamental difficulty for low dose CT lies in its heavy noise pollution in the raw data which leads to quality deterioration for reconstructed images. In this paper, we propose a modified ROF model to denoise low dose CT measurement data in light of Poisson noise model. Experimental results indicate that the reconstructed CT images based on measurement data processed by our model are in better quality, compared to the original ROF model or bilateral filtering.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Berrington de Gonzalez, M. Mahesh, K. Kim, M. Bhargavan, R. Lewis, F. Mettler, and C. Land, “Projected cancer risks from computed tomographic scans performed in the united states in 2007,” Arch. Intern Med.169, 2071 (2009).
    [CrossRef] [PubMed]
  2. A. Schilham, B. van Ginneken, H. Gietema, and M. Prokop, “Local noise weighted filtering for emphysema scoring of low-dose ct images,” IEEE Trans. Med. Imaging25, 451–463 (2006).
    [CrossRef] [PubMed]
  3. M. Tabuchi, N. Yamane, and Y. Morikawa, “Adaptive wiener filter based on gaussian mixture model for denoising chest x-ray ct image,” in IEEE Proceedings of SICE 2007 Annual Conference (IEEE, 2007), pp. 682–689.
    [CrossRef]
  4. E. Sidky, C. Kao, and X. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam ct,” J. X-Ray Sci. Technol.14, 119–139 (2006).
  5. P. La Rivière and D. Billmire, “Reduction of noise-induced streak artifacts in x-ray computed tomography through spline-based penalized-likelihood sinogram smoothing,” IEEE Trans. Med. Imaging24, 105–111 (2005).
    [CrossRef] [PubMed]
  6. P. La Rivière, “Penalized-likelihood sinogram smoothing for low-dose ct,” Med. Phys.32, 1676 (2005).
    [CrossRef] [PubMed]
  7. T. Li, X. Li, J. Wang, J. Wen, H. Lu, J. Hsieh, and Z. Liang, “Nonlinear sinogram smoothing for low-dose x-ray ct,” IEEE Trans. Nucl. Sci.51, 2505–2513 (2004).
    [CrossRef]
  8. J. Wang, T. Li, H. Lu, and Z. Liang, “Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose x-ray computed tomography,” IEEE Trans. Med. Imaging25, 1272–1283 (2006).
    [CrossRef] [PubMed]
  9. L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D60, 259–268 (1992).
    [CrossRef]
  10. J. Hsieh, Computed tomography: principles, design, artifacts, and recent advances (Society of Photo Optical, 2003), Vol. 114.
  11. K. Lange, R. Carson, and , “Em reconstruction algorithms for emission and transmission tomography.” J. Comput. Assist. Tomogr.8, 306 (1984).
    [PubMed]
  12. T. Le, R. Chartrand, and T. Asaki, “A variational approach to reconstructing images corrupted by poisson noise,” J. Math. Imaging Vision27, 257–263 (2007).
    [CrossRef]
  13. L. Zhang, L. Zhang, D. Zhang, and H. Zhu, “Computer analysis of images and patterns,” Pattern Recogn.44, 1990–1998 (2011).
    [CrossRef]
  14. F. Luisier, T. Blu, and M. Unser, “Image denoising in mixed poisson-gaussian noise,” IEEE Trans. Image Process.20(3), 696–708 (2011).
    [CrossRef]
  15. B. Zhang, J. Fadili, and J. Starck, “Wavelets, ridgelets, and curvelets for poisson noise removal,” IEEE Trans. Image Process.17, 1093–1108 (2008).
    [CrossRef] [PubMed]
  16. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Service Center, 1988), p. 327.
  17. H. Lu, T. Hsiao, X. Li, and Z. Liang, “Noise properties of low-dose ct projections and noise treatment by scale transformations,” in in the IEEE Nuclear Science Symposium Conference 2001 Record (IEEE, 2001), Vol. 3, pp. 1662–1666.
  18. A. Chambolle, “An algorithm for total variation minimization and applications,” J. Math. Imaging Vision20, 89–97 (2004).
    [CrossRef]
  19. T. Chan and P. Mulet, “On the convergence of the lagged diffusivity fixed point method in total variation image restoration,” SIAM J. Numer. Anal.36, 354–367 (1999).
    [CrossRef]
  20. M. Unger, T. Pock, and H. Bischof, “Continuous globally optimal image segmentation with local constraints,” in Computer Vision Winter Workshop at Slovenian Pattern Recognition Society, Ljubljana, Slovenia (2008).
  21. T. Goldstein and S. Osher, “The split bregman method for l1 regularized problems,” SIAM J. Imag. Sci.2, 323–343 (2009).
    [CrossRef]
  22. L. Rudin and S. Osher, “Total variation based image restoration with free local constraints,” in Proceedings of the IEEE International Conference on Image Processing1994 (IEEE, 1994), vol. 1, pp. 31–35.
  23. G. Gilboa, N. Sochen, and Y. Zeevi, “Estimation of optimal pde-based denoising in the snr sense,” IEEE Trans. Image Process.15, 2269–2280 (2006).
    [CrossRef] [PubMed]
  24. B. Wohlberg and Y. Lin, “Upre method for total variation parameter selection,” Tech. Report, Los Alamos National Laboratory (LANL) (2008).
  25. S. Babacan, R. Molina, and A. Katsaggelos, “Parameter estimation in tv image restoration using variational distribution approximation,” IEEE Trans. Image Process.17, 326–339 (2008).
    [CrossRef] [PubMed]
  26. H. Gach, C. Tanase, and F. Boada, “2d & 3d shepp-logan phantom standards for mri,” in IEEE 19th International Conference on Systems Engineering 2008 (IEEE, 2008), pp. 521–526.
    [CrossRef]

2011 (2)

L. Zhang, L. Zhang, D. Zhang, and H. Zhu, “Computer analysis of images and patterns,” Pattern Recogn.44, 1990–1998 (2011).
[CrossRef]

F. Luisier, T. Blu, and M. Unser, “Image denoising in mixed poisson-gaussian noise,” IEEE Trans. Image Process.20(3), 696–708 (2011).
[CrossRef]

2009 (2)

A. Berrington de Gonzalez, M. Mahesh, K. Kim, M. Bhargavan, R. Lewis, F. Mettler, and C. Land, “Projected cancer risks from computed tomographic scans performed in the united states in 2007,” Arch. Intern Med.169, 2071 (2009).
[CrossRef] [PubMed]

T. Goldstein and S. Osher, “The split bregman method for l1 regularized problems,” SIAM J. Imag. Sci.2, 323–343 (2009).
[CrossRef]

2008 (2)

S. Babacan, R. Molina, and A. Katsaggelos, “Parameter estimation in tv image restoration using variational distribution approximation,” IEEE Trans. Image Process.17, 326–339 (2008).
[CrossRef] [PubMed]

B. Zhang, J. Fadili, and J. Starck, “Wavelets, ridgelets, and curvelets for poisson noise removal,” IEEE Trans. Image Process.17, 1093–1108 (2008).
[CrossRef] [PubMed]

2007 (1)

T. Le, R. Chartrand, and T. Asaki, “A variational approach to reconstructing images corrupted by poisson noise,” J. Math. Imaging Vision27, 257–263 (2007).
[CrossRef]

2006 (4)

G. Gilboa, N. Sochen, and Y. Zeevi, “Estimation of optimal pde-based denoising in the snr sense,” IEEE Trans. Image Process.15, 2269–2280 (2006).
[CrossRef] [PubMed]

J. Wang, T. Li, H. Lu, and Z. Liang, “Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose x-ray computed tomography,” IEEE Trans. Med. Imaging25, 1272–1283 (2006).
[CrossRef] [PubMed]

A. Schilham, B. van Ginneken, H. Gietema, and M. Prokop, “Local noise weighted filtering for emphysema scoring of low-dose ct images,” IEEE Trans. Med. Imaging25, 451–463 (2006).
[CrossRef] [PubMed]

E. Sidky, C. Kao, and X. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam ct,” J. X-Ray Sci. Technol.14, 119–139 (2006).

2005 (2)

P. La Rivière and D. Billmire, “Reduction of noise-induced streak artifacts in x-ray computed tomography through spline-based penalized-likelihood sinogram smoothing,” IEEE Trans. Med. Imaging24, 105–111 (2005).
[CrossRef] [PubMed]

P. La Rivière, “Penalized-likelihood sinogram smoothing for low-dose ct,” Med. Phys.32, 1676 (2005).
[CrossRef] [PubMed]

2004 (2)

T. Li, X. Li, J. Wang, J. Wen, H. Lu, J. Hsieh, and Z. Liang, “Nonlinear sinogram smoothing for low-dose x-ray ct,” IEEE Trans. Nucl. Sci.51, 2505–2513 (2004).
[CrossRef]

A. Chambolle, “An algorithm for total variation minimization and applications,” J. Math. Imaging Vision20, 89–97 (2004).
[CrossRef]

1999 (1)

T. Chan and P. Mulet, “On the convergence of the lagged diffusivity fixed point method in total variation image restoration,” SIAM J. Numer. Anal.36, 354–367 (1999).
[CrossRef]

1992 (1)

L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D60, 259–268 (1992).
[CrossRef]

1984 (1)

K. Lange, R. Carson, and , “Em reconstruction algorithms for emission and transmission tomography.” J. Comput. Assist. Tomogr.8, 306 (1984).
[PubMed]

Asaki, T.

T. Le, R. Chartrand, and T. Asaki, “A variational approach to reconstructing images corrupted by poisson noise,” J. Math. Imaging Vision27, 257–263 (2007).
[CrossRef]

Babacan, S.

S. Babacan, R. Molina, and A. Katsaggelos, “Parameter estimation in tv image restoration using variational distribution approximation,” IEEE Trans. Image Process.17, 326–339 (2008).
[CrossRef] [PubMed]

Berrington de Gonzalez, A.

A. Berrington de Gonzalez, M. Mahesh, K. Kim, M. Bhargavan, R. Lewis, F. Mettler, and C. Land, “Projected cancer risks from computed tomographic scans performed in the united states in 2007,” Arch. Intern Med.169, 2071 (2009).
[CrossRef] [PubMed]

Bhargavan, M.

A. Berrington de Gonzalez, M. Mahesh, K. Kim, M. Bhargavan, R. Lewis, F. Mettler, and C. Land, “Projected cancer risks from computed tomographic scans performed in the united states in 2007,” Arch. Intern Med.169, 2071 (2009).
[CrossRef] [PubMed]

Billmire, D.

P. La Rivière and D. Billmire, “Reduction of noise-induced streak artifacts in x-ray computed tomography through spline-based penalized-likelihood sinogram smoothing,” IEEE Trans. Med. Imaging24, 105–111 (2005).
[CrossRef] [PubMed]

Bischof, H.

M. Unger, T. Pock, and H. Bischof, “Continuous globally optimal image segmentation with local constraints,” in Computer Vision Winter Workshop at Slovenian Pattern Recognition Society, Ljubljana, Slovenia (2008).

Blu, T.

F. Luisier, T. Blu, and M. Unser, “Image denoising in mixed poisson-gaussian noise,” IEEE Trans. Image Process.20(3), 696–708 (2011).
[CrossRef]

Boada, F.

H. Gach, C. Tanase, and F. Boada, “2d & 3d shepp-logan phantom standards for mri,” in IEEE 19th International Conference on Systems Engineering 2008 (IEEE, 2008), pp. 521–526.
[CrossRef]

Carson, R.

K. Lange, R. Carson, and , “Em reconstruction algorithms for emission and transmission tomography.” J. Comput. Assist. Tomogr.8, 306 (1984).
[PubMed]

Chambolle, A.

A. Chambolle, “An algorithm for total variation minimization and applications,” J. Math. Imaging Vision20, 89–97 (2004).
[CrossRef]

Chan, T.

T. Chan and P. Mulet, “On the convergence of the lagged diffusivity fixed point method in total variation image restoration,” SIAM J. Numer. Anal.36, 354–367 (1999).
[CrossRef]

Chartrand, R.

T. Le, R. Chartrand, and T. Asaki, “A variational approach to reconstructing images corrupted by poisson noise,” J. Math. Imaging Vision27, 257–263 (2007).
[CrossRef]

Fadili, J.

B. Zhang, J. Fadili, and J. Starck, “Wavelets, ridgelets, and curvelets for poisson noise removal,” IEEE Trans. Image Process.17, 1093–1108 (2008).
[CrossRef] [PubMed]

Fatemi, E.

L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D60, 259–268 (1992).
[CrossRef]

Gach, H.

H. Gach, C. Tanase, and F. Boada, “2d & 3d shepp-logan phantom standards for mri,” in IEEE 19th International Conference on Systems Engineering 2008 (IEEE, 2008), pp. 521–526.
[CrossRef]

Gietema, H.

A. Schilham, B. van Ginneken, H. Gietema, and M. Prokop, “Local noise weighted filtering for emphysema scoring of low-dose ct images,” IEEE Trans. Med. Imaging25, 451–463 (2006).
[CrossRef] [PubMed]

Gilboa, G.

G. Gilboa, N. Sochen, and Y. Zeevi, “Estimation of optimal pde-based denoising in the snr sense,” IEEE Trans. Image Process.15, 2269–2280 (2006).
[CrossRef] [PubMed]

Goldstein, T.

T. Goldstein and S. Osher, “The split bregman method for l1 regularized problems,” SIAM J. Imag. Sci.2, 323–343 (2009).
[CrossRef]

Hsiao, T.

H. Lu, T. Hsiao, X. Li, and Z. Liang, “Noise properties of low-dose ct projections and noise treatment by scale transformations,” in in the IEEE Nuclear Science Symposium Conference 2001 Record (IEEE, 2001), Vol. 3, pp. 1662–1666.

Hsieh, J.

T. Li, X. Li, J. Wang, J. Wen, H. Lu, J. Hsieh, and Z. Liang, “Nonlinear sinogram smoothing for low-dose x-ray ct,” IEEE Trans. Nucl. Sci.51, 2505–2513 (2004).
[CrossRef]

J. Hsieh, Computed tomography: principles, design, artifacts, and recent advances (Society of Photo Optical, 2003), Vol. 114.

Kak, A. C.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Service Center, 1988), p. 327.

Kao, C.

E. Sidky, C. Kao, and X. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam ct,” J. X-Ray Sci. Technol.14, 119–139 (2006).

Katsaggelos, A.

S. Babacan, R. Molina, and A. Katsaggelos, “Parameter estimation in tv image restoration using variational distribution approximation,” IEEE Trans. Image Process.17, 326–339 (2008).
[CrossRef] [PubMed]

Kim, K.

A. Berrington de Gonzalez, M. Mahesh, K. Kim, M. Bhargavan, R. Lewis, F. Mettler, and C. Land, “Projected cancer risks from computed tomographic scans performed in the united states in 2007,” Arch. Intern Med.169, 2071 (2009).
[CrossRef] [PubMed]

La Rivière, P.

P. La Rivière and D. Billmire, “Reduction of noise-induced streak artifacts in x-ray computed tomography through spline-based penalized-likelihood sinogram smoothing,” IEEE Trans. Med. Imaging24, 105–111 (2005).
[CrossRef] [PubMed]

P. La Rivière, “Penalized-likelihood sinogram smoothing for low-dose ct,” Med. Phys.32, 1676 (2005).
[CrossRef] [PubMed]

Land, C.

A. Berrington de Gonzalez, M. Mahesh, K. Kim, M. Bhargavan, R. Lewis, F. Mettler, and C. Land, “Projected cancer risks from computed tomographic scans performed in the united states in 2007,” Arch. Intern Med.169, 2071 (2009).
[CrossRef] [PubMed]

Lange, K.

K. Lange, R. Carson, and , “Em reconstruction algorithms for emission and transmission tomography.” J. Comput. Assist. Tomogr.8, 306 (1984).
[PubMed]

Le, T.

T. Le, R. Chartrand, and T. Asaki, “A variational approach to reconstructing images corrupted by poisson noise,” J. Math. Imaging Vision27, 257–263 (2007).
[CrossRef]

Lewis, R.

A. Berrington de Gonzalez, M. Mahesh, K. Kim, M. Bhargavan, R. Lewis, F. Mettler, and C. Land, “Projected cancer risks from computed tomographic scans performed in the united states in 2007,” Arch. Intern Med.169, 2071 (2009).
[CrossRef] [PubMed]

Li, T.

J. Wang, T. Li, H. Lu, and Z. Liang, “Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose x-ray computed tomography,” IEEE Trans. Med. Imaging25, 1272–1283 (2006).
[CrossRef] [PubMed]

T. Li, X. Li, J. Wang, J. Wen, H. Lu, J. Hsieh, and Z. Liang, “Nonlinear sinogram smoothing for low-dose x-ray ct,” IEEE Trans. Nucl. Sci.51, 2505–2513 (2004).
[CrossRef]

Li, X.

T. Li, X. Li, J. Wang, J. Wen, H. Lu, J. Hsieh, and Z. Liang, “Nonlinear sinogram smoothing for low-dose x-ray ct,” IEEE Trans. Nucl. Sci.51, 2505–2513 (2004).
[CrossRef]

H. Lu, T. Hsiao, X. Li, and Z. Liang, “Noise properties of low-dose ct projections and noise treatment by scale transformations,” in in the IEEE Nuclear Science Symposium Conference 2001 Record (IEEE, 2001), Vol. 3, pp. 1662–1666.

Liang, Z.

J. Wang, T. Li, H. Lu, and Z. Liang, “Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose x-ray computed tomography,” IEEE Trans. Med. Imaging25, 1272–1283 (2006).
[CrossRef] [PubMed]

T. Li, X. Li, J. Wang, J. Wen, H. Lu, J. Hsieh, and Z. Liang, “Nonlinear sinogram smoothing for low-dose x-ray ct,” IEEE Trans. Nucl. Sci.51, 2505–2513 (2004).
[CrossRef]

H. Lu, T. Hsiao, X. Li, and Z. Liang, “Noise properties of low-dose ct projections and noise treatment by scale transformations,” in in the IEEE Nuclear Science Symposium Conference 2001 Record (IEEE, 2001), Vol. 3, pp. 1662–1666.

Lin, Y.

B. Wohlberg and Y. Lin, “Upre method for total variation parameter selection,” Tech. Report, Los Alamos National Laboratory (LANL) (2008).

Lu, H.

J. Wang, T. Li, H. Lu, and Z. Liang, “Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose x-ray computed tomography,” IEEE Trans. Med. Imaging25, 1272–1283 (2006).
[CrossRef] [PubMed]

T. Li, X. Li, J. Wang, J. Wen, H. Lu, J. Hsieh, and Z. Liang, “Nonlinear sinogram smoothing for low-dose x-ray ct,” IEEE Trans. Nucl. Sci.51, 2505–2513 (2004).
[CrossRef]

H. Lu, T. Hsiao, X. Li, and Z. Liang, “Noise properties of low-dose ct projections and noise treatment by scale transformations,” in in the IEEE Nuclear Science Symposium Conference 2001 Record (IEEE, 2001), Vol. 3, pp. 1662–1666.

Luisier, F.

F. Luisier, T. Blu, and M. Unser, “Image denoising in mixed poisson-gaussian noise,” IEEE Trans. Image Process.20(3), 696–708 (2011).
[CrossRef]

Mahesh, M.

A. Berrington de Gonzalez, M. Mahesh, K. Kim, M. Bhargavan, R. Lewis, F. Mettler, and C. Land, “Projected cancer risks from computed tomographic scans performed in the united states in 2007,” Arch. Intern Med.169, 2071 (2009).
[CrossRef] [PubMed]

Mettler, F.

A. Berrington de Gonzalez, M. Mahesh, K. Kim, M. Bhargavan, R. Lewis, F. Mettler, and C. Land, “Projected cancer risks from computed tomographic scans performed in the united states in 2007,” Arch. Intern Med.169, 2071 (2009).
[CrossRef] [PubMed]

Molina, R.

S. Babacan, R. Molina, and A. Katsaggelos, “Parameter estimation in tv image restoration using variational distribution approximation,” IEEE Trans. Image Process.17, 326–339 (2008).
[CrossRef] [PubMed]

Morikawa, Y.

M. Tabuchi, N. Yamane, and Y. Morikawa, “Adaptive wiener filter based on gaussian mixture model for denoising chest x-ray ct image,” in IEEE Proceedings of SICE 2007 Annual Conference (IEEE, 2007), pp. 682–689.
[CrossRef]

Mulet, P.

T. Chan and P. Mulet, “On the convergence of the lagged diffusivity fixed point method in total variation image restoration,” SIAM J. Numer. Anal.36, 354–367 (1999).
[CrossRef]

Osher, S.

T. Goldstein and S. Osher, “The split bregman method for l1 regularized problems,” SIAM J. Imag. Sci.2, 323–343 (2009).
[CrossRef]

L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D60, 259–268 (1992).
[CrossRef]

L. Rudin and S. Osher, “Total variation based image restoration with free local constraints,” in Proceedings of the IEEE International Conference on Image Processing1994 (IEEE, 1994), vol. 1, pp. 31–35.

Pan, X.

E. Sidky, C. Kao, and X. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam ct,” J. X-Ray Sci. Technol.14, 119–139 (2006).

Pock, T.

M. Unger, T. Pock, and H. Bischof, “Continuous globally optimal image segmentation with local constraints,” in Computer Vision Winter Workshop at Slovenian Pattern Recognition Society, Ljubljana, Slovenia (2008).

Prokop, M.

A. Schilham, B. van Ginneken, H. Gietema, and M. Prokop, “Local noise weighted filtering for emphysema scoring of low-dose ct images,” IEEE Trans. Med. Imaging25, 451–463 (2006).
[CrossRef] [PubMed]

Rudin, L.

L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D60, 259–268 (1992).
[CrossRef]

L. Rudin and S. Osher, “Total variation based image restoration with free local constraints,” in Proceedings of the IEEE International Conference on Image Processing1994 (IEEE, 1994), vol. 1, pp. 31–35.

Schilham, A.

A. Schilham, B. van Ginneken, H. Gietema, and M. Prokop, “Local noise weighted filtering for emphysema scoring of low-dose ct images,” IEEE Trans. Med. Imaging25, 451–463 (2006).
[CrossRef] [PubMed]

Sidky, E.

E. Sidky, C. Kao, and X. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam ct,” J. X-Ray Sci. Technol.14, 119–139 (2006).

Slaney, M.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Service Center, 1988), p. 327.

Sochen, N.

G. Gilboa, N. Sochen, and Y. Zeevi, “Estimation of optimal pde-based denoising in the snr sense,” IEEE Trans. Image Process.15, 2269–2280 (2006).
[CrossRef] [PubMed]

Starck, J.

B. Zhang, J. Fadili, and J. Starck, “Wavelets, ridgelets, and curvelets for poisson noise removal,” IEEE Trans. Image Process.17, 1093–1108 (2008).
[CrossRef] [PubMed]

Tabuchi, M.

M. Tabuchi, N. Yamane, and Y. Morikawa, “Adaptive wiener filter based on gaussian mixture model for denoising chest x-ray ct image,” in IEEE Proceedings of SICE 2007 Annual Conference (IEEE, 2007), pp. 682–689.
[CrossRef]

Tanase, C.

H. Gach, C. Tanase, and F. Boada, “2d & 3d shepp-logan phantom standards for mri,” in IEEE 19th International Conference on Systems Engineering 2008 (IEEE, 2008), pp. 521–526.
[CrossRef]

Unger, M.

M. Unger, T. Pock, and H. Bischof, “Continuous globally optimal image segmentation with local constraints,” in Computer Vision Winter Workshop at Slovenian Pattern Recognition Society, Ljubljana, Slovenia (2008).

Unser, M.

F. Luisier, T. Blu, and M. Unser, “Image denoising in mixed poisson-gaussian noise,” IEEE Trans. Image Process.20(3), 696–708 (2011).
[CrossRef]

van Ginneken, B.

A. Schilham, B. van Ginneken, H. Gietema, and M. Prokop, “Local noise weighted filtering for emphysema scoring of low-dose ct images,” IEEE Trans. Med. Imaging25, 451–463 (2006).
[CrossRef] [PubMed]

Wang, J.

J. Wang, T. Li, H. Lu, and Z. Liang, “Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose x-ray computed tomography,” IEEE Trans. Med. Imaging25, 1272–1283 (2006).
[CrossRef] [PubMed]

T. Li, X. Li, J. Wang, J. Wen, H. Lu, J. Hsieh, and Z. Liang, “Nonlinear sinogram smoothing for low-dose x-ray ct,” IEEE Trans. Nucl. Sci.51, 2505–2513 (2004).
[CrossRef]

Wen, J.

T. Li, X. Li, J. Wang, J. Wen, H. Lu, J. Hsieh, and Z. Liang, “Nonlinear sinogram smoothing for low-dose x-ray ct,” IEEE Trans. Nucl. Sci.51, 2505–2513 (2004).
[CrossRef]

Wohlberg, B.

B. Wohlberg and Y. Lin, “Upre method for total variation parameter selection,” Tech. Report, Los Alamos National Laboratory (LANL) (2008).

Yamane, N.

M. Tabuchi, N. Yamane, and Y. Morikawa, “Adaptive wiener filter based on gaussian mixture model for denoising chest x-ray ct image,” in IEEE Proceedings of SICE 2007 Annual Conference (IEEE, 2007), pp. 682–689.
[CrossRef]

Zeevi, Y.

G. Gilboa, N. Sochen, and Y. Zeevi, “Estimation of optimal pde-based denoising in the snr sense,” IEEE Trans. Image Process.15, 2269–2280 (2006).
[CrossRef] [PubMed]

Zhang, B.

B. Zhang, J. Fadili, and J. Starck, “Wavelets, ridgelets, and curvelets for poisson noise removal,” IEEE Trans. Image Process.17, 1093–1108 (2008).
[CrossRef] [PubMed]

Zhang, D.

L. Zhang, L. Zhang, D. Zhang, and H. Zhu, “Computer analysis of images and patterns,” Pattern Recogn.44, 1990–1998 (2011).
[CrossRef]

Zhang, L.

L. Zhang, L. Zhang, D. Zhang, and H. Zhu, “Computer analysis of images and patterns,” Pattern Recogn.44, 1990–1998 (2011).
[CrossRef]

L. Zhang, L. Zhang, D. Zhang, and H. Zhu, “Computer analysis of images and patterns,” Pattern Recogn.44, 1990–1998 (2011).
[CrossRef]

Zhu, H.

L. Zhang, L. Zhang, D. Zhang, and H. Zhu, “Computer analysis of images and patterns,” Pattern Recogn.44, 1990–1998 (2011).
[CrossRef]

Arch. Intern Med. (1)

A. Berrington de Gonzalez, M. Mahesh, K. Kim, M. Bhargavan, R. Lewis, F. Mettler, and C. Land, “Projected cancer risks from computed tomographic scans performed in the united states in 2007,” Arch. Intern Med.169, 2071 (2009).
[CrossRef] [PubMed]

IEEE Trans. Image Process. (4)

F. Luisier, T. Blu, and M. Unser, “Image denoising in mixed poisson-gaussian noise,” IEEE Trans. Image Process.20(3), 696–708 (2011).
[CrossRef]

B. Zhang, J. Fadili, and J. Starck, “Wavelets, ridgelets, and curvelets for poisson noise removal,” IEEE Trans. Image Process.17, 1093–1108 (2008).
[CrossRef] [PubMed]

G. Gilboa, N. Sochen, and Y. Zeevi, “Estimation of optimal pde-based denoising in the snr sense,” IEEE Trans. Image Process.15, 2269–2280 (2006).
[CrossRef] [PubMed]

S. Babacan, R. Molina, and A. Katsaggelos, “Parameter estimation in tv image restoration using variational distribution approximation,” IEEE Trans. Image Process.17, 326–339 (2008).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (3)

A. Schilham, B. van Ginneken, H. Gietema, and M. Prokop, “Local noise weighted filtering for emphysema scoring of low-dose ct images,” IEEE Trans. Med. Imaging25, 451–463 (2006).
[CrossRef] [PubMed]

P. La Rivière and D. Billmire, “Reduction of noise-induced streak artifacts in x-ray computed tomography through spline-based penalized-likelihood sinogram smoothing,” IEEE Trans. Med. Imaging24, 105–111 (2005).
[CrossRef] [PubMed]

J. Wang, T. Li, H. Lu, and Z. Liang, “Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose x-ray computed tomography,” IEEE Trans. Med. Imaging25, 1272–1283 (2006).
[CrossRef] [PubMed]

IEEE Trans. Nucl. Sci. (1)

T. Li, X. Li, J. Wang, J. Wen, H. Lu, J. Hsieh, and Z. Liang, “Nonlinear sinogram smoothing for low-dose x-ray ct,” IEEE Trans. Nucl. Sci.51, 2505–2513 (2004).
[CrossRef]

J. Comput. Assist. Tomogr. (1)

K. Lange, R. Carson, and , “Em reconstruction algorithms for emission and transmission tomography.” J. Comput. Assist. Tomogr.8, 306 (1984).
[PubMed]

J. Math. Imaging Vision (2)

T. Le, R. Chartrand, and T. Asaki, “A variational approach to reconstructing images corrupted by poisson noise,” J. Math. Imaging Vision27, 257–263 (2007).
[CrossRef]

A. Chambolle, “An algorithm for total variation minimization and applications,” J. Math. Imaging Vision20, 89–97 (2004).
[CrossRef]

J. X-Ray Sci. Technol. (1)

E. Sidky, C. Kao, and X. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam ct,” J. X-Ray Sci. Technol.14, 119–139 (2006).

Med. Phys. (1)

P. La Rivière, “Penalized-likelihood sinogram smoothing for low-dose ct,” Med. Phys.32, 1676 (2005).
[CrossRef] [PubMed]

Pattern Recogn. (1)

L. Zhang, L. Zhang, D. Zhang, and H. Zhu, “Computer analysis of images and patterns,” Pattern Recogn.44, 1990–1998 (2011).
[CrossRef]

Physica D (1)

L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D60, 259–268 (1992).
[CrossRef]

SIAM J. Imag. Sci. (1)

T. Goldstein and S. Osher, “The split bregman method for l1 regularized problems,” SIAM J. Imag. Sci.2, 323–343 (2009).
[CrossRef]

SIAM J. Numer. Anal. (1)

T. Chan and P. Mulet, “On the convergence of the lagged diffusivity fixed point method in total variation image restoration,” SIAM J. Numer. Anal.36, 354–367 (1999).
[CrossRef]

Other (8)

M. Unger, T. Pock, and H. Bischof, “Continuous globally optimal image segmentation with local constraints,” in Computer Vision Winter Workshop at Slovenian Pattern Recognition Society, Ljubljana, Slovenia (2008).

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Service Center, 1988), p. 327.

H. Lu, T. Hsiao, X. Li, and Z. Liang, “Noise properties of low-dose ct projections and noise treatment by scale transformations,” in in the IEEE Nuclear Science Symposium Conference 2001 Record (IEEE, 2001), Vol. 3, pp. 1662–1666.

J. Hsieh, Computed tomography: principles, design, artifacts, and recent advances (Society of Photo Optical, 2003), Vol. 114.

M. Tabuchi, N. Yamane, and Y. Morikawa, “Adaptive wiener filter based on gaussian mixture model for denoising chest x-ray ct image,” in IEEE Proceedings of SICE 2007 Annual Conference (IEEE, 2007), pp. 682–689.
[CrossRef]

L. Rudin and S. Osher, “Total variation based image restoration with free local constraints,” in Proceedings of the IEEE International Conference on Image Processing1994 (IEEE, 1994), vol. 1, pp. 31–35.

B. Wohlberg and Y. Lin, “Upre method for total variation parameter selection,” Tech. Report, Los Alamos National Laboratory (LANL) (2008).

H. Gach, C. Tanase, and F. Boada, “2d & 3d shepp-logan phantom standards for mri,” in IEEE 19th International Conference on Systems Engineering 2008 (IEEE, 2008), pp. 521–526.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1:
Fig. 1:

The probability density functions of distributions with different means

Fig. 2:
Fig. 2:

The denoised raw data as well as the reconstructed images. In the left column, (a) and (b) are the ideal data and noise data respectively, from (c) to (e) are data filtered by bilateral filtering, ROF model and Poisson-ROF model respectively. In the right column, from (a’) to (e’)are the corresponding reconstructed images.

Fig. 3:
Fig. 3:

The profiles of the reconstructed CT image: (a) is the 256th row of the images; (b) is the 256th column of the images.

Fig. 4:
Fig. 4:

The high dose CT image of volcanic rock

Fig. 5:
Fig. 5:

(a) is CT image reconstructed without noise reduction in 25% dose of high dose data; from (b) to (d) are reconstructed results from raw data filtered by bilateral filtering, ROF model and Poisson-ROF model.

Fig. 6:
Fig. 6:

(a) is CT image reconstructed without noise reduction in 12.5% dose of high dose data; from (b) to (d) are reconstructed results from raw data filtered by bilateral filtering, ROF model and Poisson-ROF model.

Fig. 7:
Fig. 7:

The first row of (a) an (b) are region A of corresponding images in Fig. 5 and Fig. 6; the second row of (a) an (b) are region B of corresponding images in Fig. 5 and Fig. 6.

Fig. 8:
Fig. 8:

Analysis of edge blurring in the reconstructed images

Fig. 9:
Fig. 9:

The high dose CT image of line-pairs phantom

Fig. 10:
Fig. 10:

(a) is CT image reconstructed from the raw data using 12.5% dose; (b) is CT image reconstructed from the same raw data processed by the Poisson-ROF model.

Tables (2)

Tables Icon

Table 1: SNR, NMAD and NRMSE for low dose raw data

Tables Icon

Table 2: SNR, NMAD and NRMSE for CT images reconstructed from the corresponding (denoised) raw data

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

I d ~ Poisson { I 0 exp ( x L f ( x ) d x ) }
p i = log ( I i d / I 0 ) = L i f ( x ) d x
p i p i Ideal + n
σ i 2 = f i e μ i T
{ min Ω | u | d Ω 1 | Ω | Ω ( u f ) 2 d Ω = σ 2
min u { J ( u ) + 1 2 λ Ω ( u f ) 2 d Ω }
J ( u ) = Ω ( u x ) 2 + ( u y ) 2 d Ω
p n + 1 = p n + τ ( ( div ( p n ) ) f / λ ) 1 + τ | ( div ( p n ) ) f / λ |
u n + 1 = ( f λ div ( p n + 1 ) )
f ( x ) = u ( x ) + n
1 | Ω | Ω ( u f ) 2 d Ω = σ 2
1 | Ω | Ω 1 σ 2 ( u f ) 2 d Ω = 1 .
1 | Ω | Ω 1 u ( u f ) 2 d Ω = 1 .
min u { J ( u ) + 1 2 λ Ω 1 u ( u f ) 2 d Ω } ,
1 σ ( f ( x ) u ( x ) )
1 u ( x ) ( f ( x ) u ( x ) )
P { f ( x ) = k } = e u ( x ) ( u ( x ) ) k k ! , k
w ( x ) = f ( x ) u ( x ) u ( x )
P { f ( x ) = s } = { 0 , s 0 e u ( x ) ( u ( x ) ) k k ! , s ( k 1 , k ] , k .
P { w ( x ) = s } = { 0 , s u ( x ) u ( x ) , e u ( x ) ( u ( x ) ) [ u ( x ) + s u ( x ) ] [ u ( x ) + s u ( x ) ] ! , s > u ( x ) u ( x ) .
σ 2 = f N F
min u { J ( u ) + 1 2 λ Ω 1 f N F ( u f ) 2 d Ω }
J ( u ) = Ω ( u x ) 2 + ( u y ) 2 d Ω
0 = div ( u | u | ) + 1 λ f N F ( u f )
u ¯ ( x ) = ε W s ( u ( ε ) , u ( x ) ) c ( ε , x ) u ( ε ) ε W s ( u ( ε ) , u ( x ) ) c ( ε , x )
s ( u ( ε ) , u ( x ) ) = e | u ( ε ) u ( x ) | 2 2 σ r 2 c ( ε , x ) = e | ε x | 2 2 σ d 2
min { u , v } J ( u ) + 1 2 θ Ω ( u v ) 2 d Ω + 1 2 λ Ω 1 f N F ( v f ) 2 d Ω
1 θ ( v u ) + 1 λ u ¯ ( v f ) = 0 v = λ u u ¯ + θ f λ u ¯ + θ
λ = Ω < div ( p ) , 1 u ( u f ) > d Ω Ω | div ( p ) | 2 d Ω
S N R = 10 log 10 ( Ω ( f result f N F ) 2 d Ω / f N F 2 d Ω )
N M A D = Ω | ( f result f N F ) / f N F | d Ω
N R M S E = Ω ( f result f N F ) 2 / σ N F 2 d Ω

Metrics