Abstract

Current non-invasive imaging and manipulation of biological systems heavily rely on using light as the probing tool. However, light propagation through highly turbid media such as biological tissue undergo multiple light scattering which results in significant scrambling of light paths and polarization information. Here we demonstrate the full control of polarization dependent light paths through a highly scattering medium by only shaping the incoming wavefront. The resulting polarized state is independent of the incident beam’s polarization and has no spatial restrictions. We also show that a turbid medium can be used as a dynamic wave plate by controlling the phase of combined orthogonal polarization states. This approach may find direct applications in efficient energy transfer for photothermal therapy and the transfer of angular momentum in optical manipulation of biological systems.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Lazar, A. Bondar, S. Timr, and S. J. Firestein, “Two-photon polarization microscopy reveals protein structure and function,” Nat. Methods 8(8), 684–690 (2011).
    [CrossRef] [PubMed]
  2. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
    [CrossRef]
  3. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
    [CrossRef] [PubMed]
  4. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
    [CrossRef]
  5. G. Biener, E. Vrotsos, K. Sugaya, and A. Dogariu, “Optical torques guiding cell motility,” Opt. Express 17(12), 9724–9732 (2009).
    [CrossRef] [PubMed]
  6. T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nat. Photonics 6(1), 62–67 (2011).
    [CrossRef]
  7. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
    [CrossRef]
  8. I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16(1), 67–80 (2008).
    [CrossRef] [PubMed]
  9. E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
    [CrossRef] [PubMed]
  10. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
    [CrossRef]
  11. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
    [CrossRef] [PubMed]
  12. M. Cui, E. J. McDowell, and C. Yang, “Observation of polarization-gate based reconstruction quality improvement during the process of turbidity suppression by optical phase conjugation,” Appl. Phys. Lett. 95(12), 123702 (2009).
    [CrossRef] [PubMed]
  13. I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
    [CrossRef] [PubMed]
  14. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
    [CrossRef] [PubMed]
  15. S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107(26), 263901 (2011).
    [CrossRef] [PubMed]
  16. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
    [CrossRef] [PubMed]
  17. J. Sorrentini, M. Zerrad, G. Soriano, and C. Amra, “Enpolarization of light by scattering media,” Opt. Express 19(22), 21313–21320 (2011).
    [CrossRef] [PubMed]
  18. T. Kohlgraf-Owens and A. Dogariu, “Finding the field transfer matrix of scattering media,” Opt. Express 16(17), 13225–13232 (2008).
    [CrossRef] [PubMed]
  19. Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012).
    [CrossRef] [PubMed]
  20. J. H. Park, C. H. Park, Y. H. Yu, Y. H. Cho, and Y. K. Park, “Active spectral filtering through turbid media,” Opt. Lett.in press.
  21. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
    [CrossRef]
  22. D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
    [CrossRef] [PubMed]
  23. J. L. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater. (Deerfield Beach Fla.) 20(20), 3866–3871 (2008).
    [CrossRef]
  24. H. Liao and J. H. Hafner, “Gold nanorod bioconjugates,” Chem. Mater. 17(18), 4636–4641 (2005).
    [CrossRef]
  25. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
    [CrossRef]
  26. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
    [CrossRef]
  27. P. S. Frenette and G. F. Atweh, “Sickle cell disease: old discoveries, new concepts, and future promise,” J. Clin. Invest. 117(4), 850–858 (2007).
    [CrossRef] [PubMed]
  28. Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, and Y. K. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
    [CrossRef] [PubMed]

2012 (3)

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012).
[CrossRef] [PubMed]

Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, and Y. K. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
[CrossRef] [PubMed]

2011 (8)

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[CrossRef]

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
[CrossRef] [PubMed]

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nat. Photonics 6(1), 62–67 (2011).
[CrossRef]

J. Lazar, A. Bondar, S. Timr, and S. J. Firestein, “Two-photon polarization microscopy reveals protein structure and function,” Nat. Methods 8(8), 684–690 (2011).
[CrossRef] [PubMed]

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[CrossRef]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[CrossRef] [PubMed]

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107(26), 263901 (2011).
[CrossRef] [PubMed]

J. Sorrentini, M. Zerrad, G. Soriano, and C. Amra, “Enpolarization of light by scattering media,” Opt. Express 19(22), 21313–21320 (2011).
[CrossRef] [PubMed]

2010 (3)

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[CrossRef]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[CrossRef]

2009 (2)

M. Cui, E. J. McDowell, and C. Yang, “Observation of polarization-gate based reconstruction quality improvement during the process of turbidity suppression by optical phase conjugation,” Appl. Phys. Lett. 95(12), 123702 (2009).
[CrossRef] [PubMed]

G. Biener, E. Vrotsos, K. Sugaya, and A. Dogariu, “Optical torques guiding cell motility,” Opt. Express 17(12), 9724–9732 (2009).
[CrossRef] [PubMed]

2008 (4)

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16(1), 67–80 (2008).
[CrossRef] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
[CrossRef] [PubMed]

T. Kohlgraf-Owens and A. Dogariu, “Finding the field transfer matrix of scattering media,” Opt. Express 16(17), 13225–13232 (2008).
[CrossRef] [PubMed]

J. L. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater. (Deerfield Beach Fla.) 20(20), 3866–3871 (2008).
[CrossRef]

2007 (3)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[CrossRef]

P. S. Frenette and G. F. Atweh, “Sickle cell disease: old discoveries, new concepts, and future promise,” J. Clin. Invest. 117(4), 850–858 (2007).
[CrossRef] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[CrossRef] [PubMed]

2006 (1)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

2005 (1)

H. Liao and J. H. Hafner, “Gold nanorod bioconjugates,” Chem. Mater. 17(18), 4636–4641 (2005).
[CrossRef]

2004 (1)

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[CrossRef] [PubMed]

1998 (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

Akbulut, D.

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[CrossRef] [PubMed]

Amra, C.

Atweh, G. F.

P. S. Frenette and G. F. Atweh, “Sickle cell disease: old discoveries, new concepts, and future promise,” J. Clin. Invest. 117(4), 850–858 (2007).
[CrossRef] [PubMed]

Aubry, A.

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107(26), 263901 (2011).
[CrossRef] [PubMed]

Austin, D. R.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
[CrossRef] [PubMed]

Berns, M. W.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nat. Photonics 6(1), 62–67 (2011).
[CrossRef]

Bertolotti, J.

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[CrossRef] [PubMed]

Biener, G.

Bishop, A. I.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[CrossRef] [PubMed]

Boccara, A. C.

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107(26), 263901 (2011).
[CrossRef] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

Bondar, A.

J. Lazar, A. Bondar, S. Timr, and S. J. Firestein, “Two-photon polarization microscopy reveals protein structure and function,” Nat. Methods 8(8), 684–690 (2011).
[CrossRef] [PubMed]

Bondareff, P.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
[CrossRef] [PubMed]

Bromberg, Y.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[CrossRef]

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

Chatel, B.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
[CrossRef] [PubMed]

Cho, Y. H.

J. H. Park, C. H. Park, Y. H. Yu, Y. H. Cho, and Y. K. Park, “Active spectral filtering through turbid media,” Opt. Lett.in press.

Cižmár, T.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[CrossRef]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[CrossRef]

Cui, M.

M. Cui, E. J. McDowell, and C. Yang, “Observation of polarization-gate based reconstruction quality improvement during the process of turbidity suppression by optical phase conjugation,” Appl. Phys. Lett. 95(12), 123702 (2009).
[CrossRef] [PubMed]

Dasari, R. R.

Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, and Y. K. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
[CrossRef] [PubMed]

Day, D.

J. L. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater. (Deerfield Beach Fla.) 20(20), 3866–3871 (2008).
[CrossRef]

Dholakia, K.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[CrossRef]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[CrossRef]

Dogariu, A.

El-Sayed, I. H.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Fink, M.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107(26), 263901 (2011).
[CrossRef] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

Firestein, S. J.

J. Lazar, A. Bondar, S. Timr, and S. J. Firestein, “Two-photon polarization microscopy reveals protein structure and function,” Nat. Methods 8(8), 684–690 (2011).
[CrossRef] [PubMed]

Frenette, P. S.

P. S. Frenette and G. F. Atweh, “Sickle cell disease: old discoveries, new concepts, and future promise,” J. Clin. Invest. 117(4), 850–858 (2007).
[CrossRef] [PubMed]

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

Gigan, S.

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107(26), 263901 (2011).
[CrossRef] [PubMed]

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
[CrossRef] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

Gu, M.

J. L. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater. (Deerfield Beach Fla.) 20(20), 3866–3871 (2008).
[CrossRef]

Hafner, J. H.

H. Liao and J. H. Hafner, “Gold nanorod bioconjugates,” Chem. Mater. 17(18), 4636–4641 (2005).
[CrossRef]

Heckenberg, N. R.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[CrossRef] [PubMed]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

Higgins, J. M.

Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, and Y. K. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
[CrossRef] [PubMed]

Huang, X.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Jang, J.

Jeong, J.

Katz, O.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[CrossRef]

Kim, M. W.

Kim, Y.

Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, and Y. K. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
[CrossRef] [PubMed]

Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012).
[CrossRef] [PubMed]

Kohlgraf-Owens, T.

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[CrossRef] [PubMed]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[CrossRef]

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16(1), 67–80 (2008).
[CrossRef] [PubMed]

Lazar, J.

J. Lazar, A. Bondar, S. Timr, and S. J. Firestein, “Two-photon polarization microscopy reveals protein structure and function,” Nat. Methods 8(8), 684–690 (2011).
[CrossRef] [PubMed]

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107(26), 263901 (2011).
[CrossRef] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

Li, J. L.

J. L. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater. (Deerfield Beach Fla.) 20(20), 3866–3871 (2008).
[CrossRef]

Liao, H.

H. Liao and J. H. Hafner, “Gold nanorod bioconjugates,” Chem. Mater. 17(18), 4636–4641 (2005).
[CrossRef]

Mazilu, M.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[CrossRef]

McCabe, D. J.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
[CrossRef] [PubMed]

McDowell, E. J.

M. Cui, E. J. McDowell, and C. Yang, “Observation of polarization-gate based reconstruction quality improvement during the process of turbidity suppression by optical phase conjugation,” Appl. Phys. Lett. 95(12), 123702 (2009).
[CrossRef] [PubMed]

Meyer, R. L.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nat. Photonics 6(1), 62–67 (2011).
[CrossRef]

Miotke, J.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nat. Photonics 6(1), 62–67 (2011).
[CrossRef]

Mohanty, S.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nat. Photonics 6(1), 62–67 (2011).
[CrossRef]

Molina-Terriza, G.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[CrossRef]

Mosk, A. P.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[CrossRef] [PubMed]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[CrossRef]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
[CrossRef] [PubMed]

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16(1), 67–80 (2008).
[CrossRef] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[CrossRef] [PubMed]

Nieminen, T. A.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nat. Photonics 6(1), 62–67 (2011).
[CrossRef]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[CrossRef] [PubMed]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

Park, C. H.

J. H. Park, C. H. Park, Y. H. Yu, Y. H. Cho, and Y. K. Park, “Active spectral filtering through turbid media,” Opt. Lett.in press.

Park, J. H.

J. H. Park, C. H. Park, Y. H. Yu, Y. H. Cho, and Y. K. Park, “Active spectral filtering through turbid media,” Opt. Lett.in press.

Park, Y.

Park, Y. K.

Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, and Y. K. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
[CrossRef] [PubMed]

J. H. Park, C. H. Park, Y. H. Yu, Y. H. Cho, and Y. K. Park, “Active spectral filtering through turbid media,” Opt. Lett.in press.

Popoff, S. M.

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107(26), 263901 (2011).
[CrossRef] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Rubinsztein-Dunlop, H.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nat. Photonics 6(1), 62–67 (2011).
[CrossRef]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[CrossRef] [PubMed]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

Silberberg, Y.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[CrossRef]

Small, E.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[CrossRef]

Soriano, G.

Sorrentini, J.

Sugaya, K.

Suresh, S.

Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, and Y. K. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
[CrossRef] [PubMed]

Tajalli, A.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
[CrossRef] [PubMed]

Timr, S.

J. Lazar, A. Bondar, S. Timr, and S. J. Firestein, “Two-photon polarization microscopy reveals protein structure and function,” Nat. Methods 8(8), 684–690 (2011).
[CrossRef] [PubMed]

Torner, L.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[CrossRef]

Torres, J. P.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[CrossRef]

van Putten, E. G.

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[CrossRef] [PubMed]

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16(1), 67–80 (2008).
[CrossRef] [PubMed]

Vellekoop, I. M.

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[CrossRef]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
[CrossRef] [PubMed]

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16(1), 67–80 (2008).
[CrossRef] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[CrossRef] [PubMed]

Vos, W. L.

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[CrossRef] [PubMed]

Vrotsos, E.

Walmsley, I. A.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
[CrossRef] [PubMed]

Wu, T.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nat. Photonics 6(1), 62–67 (2011).
[CrossRef]

Yang, C.

M. Cui, E. J. McDowell, and C. Yang, “Observation of polarization-gate based reconstruction quality improvement during the process of turbidity suppression by optical phase conjugation,” Appl. Phys. Lett. 95(12), 123702 (2009).
[CrossRef] [PubMed]

Yu, Y. H.

J. H. Park, C. H. Park, Y. H. Yu, Y. H. Cho, and Y. K. Park, “Active spectral filtering through turbid media,” Opt. Lett.in press.

Zerrad, M.

Adv. Mater. (Deerfield Beach Fla.) (1)

J. L. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater. (Deerfield Beach Fla.) 20(20), 3866–3871 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

M. Cui, E. J. McDowell, and C. Yang, “Observation of polarization-gate based reconstruction quality improvement during the process of turbidity suppression by optical phase conjugation,” Appl. Phys. Lett. 95(12), 123702 (2009).
[CrossRef] [PubMed]

Chem. Mater. (1)

H. Liao and J. H. Hafner, “Gold nanorod bioconjugates,” Chem. Mater. 17(18), 4636–4641 (2005).
[CrossRef]

J. Am. Chem. Soc. (1)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

Y. Kim, J. M. Higgins, R. R. Dasari, S. Suresh, and Y. K. Park, “Anisotropic light scattering of individual sickle red blood cells,” J. Biomed. Opt. 17(4), 040501 (2012).
[CrossRef] [PubMed]

J. Clin. Invest. (1)

P. S. Frenette and G. F. Atweh, “Sickle cell disease: old discoveries, new concepts, and future promise,” J. Clin. Invest. 117(4), 850–858 (2007).
[CrossRef] [PubMed]

Nat. Commun. (1)

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat. Commun. 2, 447 (2011).
[CrossRef] [PubMed]

Nat. Methods (1)

J. Lazar, A. Bondar, S. Timr, and S. J. Firestein, “Two-photon polarization microscopy reveals protein structure and function,” Nat. Methods 8(8), 684–690 (2011).
[CrossRef] [PubMed]

Nat. Photonics (6)

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[CrossRef]

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fibre growth,” Nat. Photonics 6(1), 62–67 (2011).
[CrossRef]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[CrossRef]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[CrossRef]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[CrossRef]

Nat. Phys. (1)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[CrossRef]

Nature (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

J. H. Park, C. H. Park, Y. H. Yu, Y. H. Cho, and Y. K. Park, “Active spectral filtering through turbid media,” Opt. Lett.in press.

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[CrossRef] [PubMed]

Phys. Rev. Lett. (5)

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
[CrossRef] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[CrossRef] [PubMed]

S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107(26), 263901 (2011).
[CrossRef] [PubMed]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106(19), 193905 (2011).
[CrossRef] [PubMed]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental scheme for controlling polarization in turbid media. (a) Scrambling of polarization and propagation paths through multiple scattering. (b) Shaping the wavefront to make constructive interference at a focus point without polarization control. (c) With polarization taken into account, both polarization control and spatial focusing of light can be achieved. The different polarization states of light paths are illustrated with different colors for ease of visualization.

Fig. 2
Fig. 2

Experimental setup. L1,L2:plano-convex lens. BS: non-polarizing beam splitter. (inset) Scanning electron micrograph of scattering particles. Scale bar 1 µm.

Fig. 3
Fig. 3

Demonstration of polarization control in optimized focusing. (a),(e), Phase maps of the complex wavefront displayed on the SLM resulting in optimized (b-d) p polarized and (f-h) s polarized focuses, respectively. (b-c), Images of an optimized p-pol focus taken with the analyzer oriented in horizontal (b) and vertical (c) directions. (f-g), Images of an optimized s-pol focus taken with the analyzer oriented in horizontal (f) and vertical (g) directions. (d),(h) Normalized intensity as a function of analyzer angle for the polarized focuses and a random background speckle. Solid blue lines are theoretical curves of cos2ϕ and sin2ϕ, respectively. Solid red lines are sinusoidal fits to the data. Scale bar, 2 µm.

Fig. 4
Fig. 4

Using the linear combination of two orthogonally polarized focuses to achieve full control of polarization states. (a) Intensity of the coherent sum of p- and s-polarized focuses as a function of phase shift given to the p-polarized focus. Analyzer is placed at + 45 degrees. (b) Intensity plot for the various polarization states as a function of the analyzer angle. (c) Polar plot clearly demonstrates the transition from linear to circular polarization and the reversal in linear polarization direction. Solid lines in (a), (b), are sinusoidal fits to the data.

Fig. 5
Fig. 5

Multiple focuses with differently controlled polarization states. Image (a) without analyzer, (b) with horizontally and (c) vertically aligned analyzer. (d), Normalized intensity plot for each focus as a function of analyzer angle. Solid lines are sinusoidal fits to the data. Scale bar, 2 µm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E m = n=1 N [ ( t mn r E n r e i ϕ n ) r ^ +( t mn l E n l e i ϕ n ) l ^ ]

Metrics