Abstract

Plasmon-enhanced fluorescence is attributable to two independent processes: 1) excitation enhancement due to an increased electric field near metallic nanostructures and 2) emission enhancement from a surface plasmon resonance-coupled excited state of fluorophores. Using semiconductor nanocrystals (quantum dots) on disordered plasmonic nanostructures and a mesoscopic imaging approach, we demonstrate that increased excitation can diminish the fluorescence emission enhancement efficiency. Thus, our experimental evidence on this competitive behavior has critical implications for better developing plasmon-enhanced photoluminescence.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7(3), 690–696 (2007).
    [CrossRef] [PubMed]
  2. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
    [CrossRef] [PubMed]
  3. Y. Zhang, A. Dragan, and C. D. Geddes, “Wavelength dependence of metal-enhanced fluorescence,” J. Phys. Chem. C 113(28), 12095–12100 (2009).
    [CrossRef]
  4. Y. C. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. N. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
    [CrossRef]
  5. K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
    [CrossRef] [PubMed]
  6. V. I. Klimov, ed., Semiconductor and Metal Nanocrystals (CRC Press, 2003).
  7. D. Tonti, F. van Mourik, and M. Chergui, “On the excitation wavelength dependence of the luminescence yield of colloidal CdSe quantum dots,” Nano Lett. 4(12), 2483–2487 (2004).
    [CrossRef]
  8. Z. Xu, X. Sun, J. Liu, Q. Song, M. Muckley, O. Akkus, and Y. L. Kim, “Spectroscopic visualization of nanoscale deformation in bone: interaction of light with partially disordered nanostructure,” J. Biomed. Opt. 15(6), 060503 (2010).
    [CrossRef] [PubMed]
  9. Z. Xu, J. Liu, D. H. Hong, V. Q. Nguyen, M. R. Kim, S. I. Mohammed, and Y. L. Kim, “Back-directional gated spectroscopic imaging for diffuse light suppression in high anisotropic media and its preclinical applications for microvascular imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 815–823 (2010).
    [CrossRef]
  10. Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
    [CrossRef]
  11. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [CrossRef] [PubMed]
  12. L. N. Xu, B. J. Lee, W. L. Hanson, and B. Han, “Brownian motion induced dynamic near-field interaction between quantum dots and plasmonic nanoparticles in aqueous medium,” Appl. Phys. Lett. 96(17), 174101 (2010).
    [CrossRef]
  13. E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5(4), 585–589 (2005).
    [CrossRef] [PubMed]
  14. J. Kim, G. Dantelle, A. Revaux, M. Bérard, A. Huignard, T. Gacoin, and J. P. Boilot, “Plasmon-induced modification of fluorescent thin film emission nearby gold nanoparticle monolayers,” Langmuir 26(11), 8842–8849 (2010).
    [CrossRef] [PubMed]
  15. http://www.horiba.com/scientific/products/fluorescence-spectroscopy/application-notes/quantum-yields
  16. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
    [CrossRef] [PubMed]
  17. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
    [CrossRef] [PubMed]
  18. J. H. Song, T. Atay, S. F. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5(8), 1557–1561 (2005).
    [CrossRef] [PubMed]
  19. D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
    [CrossRef] [PubMed]
  20. W. Jacak, J. Krasnyj, J. Jacak, W. Donderowicz, and L. Jacak, “Mechanism of plasmon-mediated enhancement of photovoltaic efficiency,” J. Phys. D Appl. Phys. 44(5), 055301 (2011).
    [CrossRef]
  21. S. M. Sadeghi, R. G. West, and A. Nejat, “Photo-induced suppression of plasmonic emission enhancement of CdSe/ZnS quantum dots,” Nanotechnology 22(40), 405202 (2011).
    [CrossRef] [PubMed]

2011 (2)

W. Jacak, J. Krasnyj, J. Jacak, W. Donderowicz, and L. Jacak, “Mechanism of plasmon-mediated enhancement of photovoltaic efficiency,” J. Phys. D Appl. Phys. 44(5), 055301 (2011).
[CrossRef]

S. M. Sadeghi, R. G. West, and A. Nejat, “Photo-induced suppression of plasmonic emission enhancement of CdSe/ZnS quantum dots,” Nanotechnology 22(40), 405202 (2011).
[CrossRef] [PubMed]

2010 (6)

L. N. Xu, B. J. Lee, W. L. Hanson, and B. Han, “Brownian motion induced dynamic near-field interaction between quantum dots and plasmonic nanoparticles in aqueous medium,” Appl. Phys. Lett. 96(17), 174101 (2010).
[CrossRef]

J. Kim, G. Dantelle, A. Revaux, M. Bérard, A. Huignard, T. Gacoin, and J. P. Boilot, “Plasmon-induced modification of fluorescent thin film emission nearby gold nanoparticle monolayers,” Langmuir 26(11), 8842–8849 (2010).
[CrossRef] [PubMed]

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
[CrossRef] [PubMed]

Z. Xu, X. Sun, J. Liu, Q. Song, M. Muckley, O. Akkus, and Y. L. Kim, “Spectroscopic visualization of nanoscale deformation in bone: interaction of light with partially disordered nanostructure,” J. Biomed. Opt. 15(6), 060503 (2010).
[CrossRef] [PubMed]

Z. Xu, J. Liu, D. H. Hong, V. Q. Nguyen, M. R. Kim, S. I. Mohammed, and Y. L. Kim, “Back-directional gated spectroscopic imaging for diffuse light suppression in high anisotropic media and its preclinical applications for microvascular imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 815–823 (2010).
[CrossRef]

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[CrossRef] [PubMed]

2009 (1)

Y. Zhang, A. Dragan, and C. D. Geddes, “Wavelength dependence of metal-enhanced fluorescence,” J. Phys. Chem. C 113(28), 12095–12100 (2009).
[CrossRef]

2008 (1)

Y. C. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. N. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
[CrossRef]

2007 (3)

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7(3), 690–696 (2007).
[CrossRef] [PubMed]

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
[CrossRef] [PubMed]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

2006 (1)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

2005 (2)

J. H. Song, T. Atay, S. F. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5(8), 1557–1561 (2005).
[CrossRef] [PubMed]

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5(4), 585–589 (2005).
[CrossRef] [PubMed]

2004 (1)

D. Tonti, F. van Mourik, and M. Chergui, “On the excitation wavelength dependence of the luminescence yield of colloidal CdSe quantum dots,” Nano Lett. 4(12), 2483–2487 (2004).
[CrossRef]

2003 (1)

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[CrossRef]

2002 (1)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Akkus, O.

Z. Xu, X. Sun, J. Liu, Q. Song, M. Muckley, O. Akkus, and Y. L. Kim, “Spectroscopic visualization of nanoscale deformation in bone: interaction of light with partially disordered nanostructure,” J. Biomed. Opt. 15(6), 060503 (2010).
[CrossRef] [PubMed]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Atay, T.

J. H. Song, T. Atay, S. F. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5(8), 1557–1561 (2005).
[CrossRef] [PubMed]

Backman, V.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[CrossRef]

Bérard, M.

J. Kim, G. Dantelle, A. Revaux, M. Bérard, A. Huignard, T. Gacoin, and J. P. Boilot, “Plasmon-induced modification of fluorescent thin film emission nearby gold nanoparticle monolayers,” Langmuir 26(11), 8842–8849 (2010).
[CrossRef] [PubMed]

Bharadwaj, P.

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Boilot, J. P.

J. Kim, G. Dantelle, A. Revaux, M. Bérard, A. Huignard, T. Gacoin, and J. P. Boilot, “Plasmon-induced modification of fluorescent thin film emission nearby gold nanoparticle monolayers,” Langmuir 26(11), 8842–8849 (2010).
[CrossRef] [PubMed]

Chen, K.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[CrossRef]

Chen, Y.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
[CrossRef] [PubMed]

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7(3), 690–696 (2007).
[CrossRef] [PubMed]

Chen, Y. C.

Y. C. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. N. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
[CrossRef]

Chergui, M.

D. Tonti, F. van Mourik, and M. Chergui, “On the excitation wavelength dependence of the luminescence yield of colloidal CdSe quantum dots,” Nano Lett. 4(12), 2483–2487 (2004).
[CrossRef]

Dantelle, G.

J. Kim, G. Dantelle, A. Revaux, M. Bérard, A. Huignard, T. Gacoin, and J. P. Boilot, “Plasmon-induced modification of fluorescent thin film emission nearby gold nanoparticle monolayers,” Langmuir 26(11), 8842–8849 (2010).
[CrossRef] [PubMed]

Davis, T. J.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[CrossRef] [PubMed]

Donderowicz, W.

W. Jacak, J. Krasnyj, J. Jacak, W. Donderowicz, and L. Jacak, “Mechanism of plasmon-mediated enhancement of photovoltaic efficiency,” J. Phys. D Appl. Phys. 44(5), 055301 (2011).
[CrossRef]

Dragan, A.

Y. Zhang, A. Dragan, and C. D. Geddes, “Wavelength dependence of metal-enhanced fluorescence,” J. Phys. Chem. C 113(28), 12095–12100 (2009).
[CrossRef]

Dulkeith, E.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5(4), 585–589 (2005).
[CrossRef] [PubMed]

Feldmann, J.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5(4), 585–589 (2005).
[CrossRef] [PubMed]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Gacoin, T.

J. Kim, G. Dantelle, A. Revaux, M. Bérard, A. Huignard, T. Gacoin, and J. P. Boilot, “Plasmon-induced modification of fluorescent thin film emission nearby gold nanoparticle monolayers,” Langmuir 26(11), 8842–8849 (2010).
[CrossRef] [PubMed]

Geddes, C. D.

Y. Zhang, A. Dragan, and C. D. Geddes, “Wavelength dependence of metal-enhanced fluorescence,” J. Phys. Chem. C 113(28), 12095–12100 (2009).
[CrossRef]

Ginger, D. S.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
[CrossRef] [PubMed]

Y. C. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. N. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
[CrossRef]

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7(3), 690–696 (2007).
[CrossRef] [PubMed]

Goldberg, M. J.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[CrossRef]

Gómez, D. E.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[CrossRef] [PubMed]

Goodrich, G. P.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

Halas, N. J.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

Han, B.

L. N. Xu, B. J. Lee, W. L. Hanson, and B. Han, “Brownian motion induced dynamic near-field interaction between quantum dots and plasmonic nanoparticles in aqueous medium,” Appl. Phys. Lett. 96(17), 174101 (2010).
[CrossRef]

Hanson, W. L.

L. N. Xu, B. J. Lee, W. L. Hanson, and B. Han, “Brownian motion induced dynamic near-field interaction between quantum dots and plasmonic nanoparticles in aqueous medium,” Appl. Phys. Lett. 96(17), 174101 (2010).
[CrossRef]

Hong, D. H.

Z. Xu, J. Liu, D. H. Hong, V. Q. Nguyen, M. R. Kim, S. I. Mohammed, and Y. L. Kim, “Back-directional gated spectroscopic imaging for diffuse light suppression in high anisotropic media and its preclinical applications for microvascular imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 815–823 (2010).
[CrossRef]

Huignard, A.

J. Kim, G. Dantelle, A. Revaux, M. Bérard, A. Huignard, T. Gacoin, and J. P. Boilot, “Plasmon-induced modification of fluorescent thin film emission nearby gold nanoparticle monolayers,” Langmuir 26(11), 8842–8849 (2010).
[CrossRef] [PubMed]

Jacak, J.

W. Jacak, J. Krasnyj, J. Jacak, W. Donderowicz, and L. Jacak, “Mechanism of plasmon-mediated enhancement of photovoltaic efficiency,” J. Phys. D Appl. Phys. 44(5), 055301 (2011).
[CrossRef]

Jacak, L.

W. Jacak, J. Krasnyj, J. Jacak, W. Donderowicz, and L. Jacak, “Mechanism of plasmon-mediated enhancement of photovoltaic efficiency,” J. Phys. D Appl. Phys. 44(5), 055301 (2011).
[CrossRef]

Jacak, W.

W. Jacak, J. Krasnyj, J. Jacak, W. Donderowicz, and L. Jacak, “Mechanism of plasmon-mediated enhancement of photovoltaic efficiency,” J. Phys. D Appl. Phys. 44(5), 055301 (2011).
[CrossRef]

Jen-La Plante, I.

Y. C. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. N. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
[CrossRef]

Johnson, B. R.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

Kim, J.

J. Kim, G. Dantelle, A. Revaux, M. Bérard, A. Huignard, T. Gacoin, and J. P. Boilot, “Plasmon-induced modification of fluorescent thin film emission nearby gold nanoparticle monolayers,” Langmuir 26(11), 8842–8849 (2010).
[CrossRef] [PubMed]

Kim, M. R.

Z. Xu, J. Liu, D. H. Hong, V. Q. Nguyen, M. R. Kim, S. I. Mohammed, and Y. L. Kim, “Back-directional gated spectroscopic imaging for diffuse light suppression in high anisotropic media and its preclinical applications for microvascular imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 815–823 (2010).
[CrossRef]

Kim, Y. L.

Z. Xu, X. Sun, J. Liu, Q. Song, M. Muckley, O. Akkus, and Y. L. Kim, “Spectroscopic visualization of nanoscale deformation in bone: interaction of light with partially disordered nanostructure,” J. Biomed. Opt. 15(6), 060503 (2010).
[CrossRef] [PubMed]

Z. Xu, J. Liu, D. H. Hong, V. Q. Nguyen, M. R. Kim, S. I. Mohammed, and Y. L. Kim, “Back-directional gated spectroscopic imaging for diffuse light suppression in high anisotropic media and its preclinical applications for microvascular imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 815–823 (2010).
[CrossRef]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[CrossRef]

Klar, T. A.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5(4), 585–589 (2005).
[CrossRef] [PubMed]

Krasnyj, J.

W. Jacak, J. Krasnyj, J. Jacak, W. Donderowicz, and L. Jacak, “Mechanism of plasmon-mediated enhancement of photovoltaic efficiency,” J. Phys. D Appl. Phys. 44(5), 055301 (2011).
[CrossRef]

Kromin, A. K.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[CrossRef]

Kulkarni, A. P.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
[CrossRef] [PubMed]

Lee, B. J.

L. N. Xu, B. J. Lee, W. L. Hanson, and B. Han, “Brownian motion induced dynamic near-field interaction between quantum dots and plasmonic nanoparticles in aqueous medium,” Appl. Phys. Lett. 96(17), 174101 (2010).
[CrossRef]

Liu, J.

Z. Xu, J. Liu, D. H. Hong, V. Q. Nguyen, M. R. Kim, S. I. Mohammed, and Y. L. Kim, “Back-directional gated spectroscopic imaging for diffuse light suppression in high anisotropic media and its preclinical applications for microvascular imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 815–823 (2010).
[CrossRef]

Z. Xu, X. Sun, J. Liu, Q. Song, M. Muckley, O. Akkus, and Y. L. Kim, “Spectroscopic visualization of nanoscale deformation in bone: interaction of light with partially disordered nanostructure,” J. Biomed. Opt. 15(6), 060503 (2010).
[CrossRef] [PubMed]

Liu, Y.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[CrossRef]

Mohammed, S. I.

Z. Xu, J. Liu, D. H. Hong, V. Q. Nguyen, M. R. Kim, S. I. Mohammed, and Y. L. Kim, “Back-directional gated spectroscopic imaging for diffuse light suppression in high anisotropic media and its preclinical applications for microvascular imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 815–823 (2010).
[CrossRef]

Muckley, M.

Z. Xu, X. Sun, J. Liu, Q. Song, M. Muckley, O. Akkus, and Y. L. Kim, “Spectroscopic visualization of nanoscale deformation in bone: interaction of light with partially disordered nanostructure,” J. Biomed. Opt. 15(6), 060503 (2010).
[CrossRef] [PubMed]

Mulvaney, P.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[CrossRef] [PubMed]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Munechika, K.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
[CrossRef] [PubMed]

Y. C. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. N. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
[CrossRef]

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7(3), 690–696 (2007).
[CrossRef] [PubMed]

Muñoz Javier, A.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5(4), 585–589 (2005).
[CrossRef] [PubMed]

Munro, A. M.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
[CrossRef] [PubMed]

Y. C. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. N. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
[CrossRef]

Nejat, A.

S. M. Sadeghi, R. G. West, and A. Nejat, “Photo-induced suppression of plasmonic emission enhancement of CdSe/ZnS quantum dots,” Nanotechnology 22(40), 405202 (2011).
[CrossRef] [PubMed]

Nguyen, V. Q.

Z. Xu, J. Liu, D. H. Hong, V. Q. Nguyen, M. R. Kim, S. I. Mohammed, and Y. L. Kim, “Back-directional gated spectroscopic imaging for diffuse light suppression in high anisotropic media and its preclinical applications for microvascular imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 815–823 (2010).
[CrossRef]

Novotny, L.

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Nurmikko, A. V.

J. H. Song, T. Atay, S. F. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5(8), 1557–1561 (2005).
[CrossRef] [PubMed]

Parak, W. J.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5(4), 585–589 (2005).
[CrossRef] [PubMed]

Plante, I. J.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
[CrossRef] [PubMed]

Revaux, A.

J. Kim, G. Dantelle, A. Revaux, M. Bérard, A. Huignard, T. Gacoin, and J. P. Boilot, “Plasmon-induced modification of fluorescent thin film emission nearby gold nanoparticle monolayers,” Langmuir 26(11), 8842–8849 (2010).
[CrossRef] [PubMed]

Ringler, M.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5(4), 585–589 (2005).
[CrossRef] [PubMed]

Roy, H. K.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[CrossRef]

Sadeghi, S. M.

S. M. Sadeghi, R. G. West, and A. Nejat, “Photo-induced suppression of plasmonic emission enhancement of CdSe/ZnS quantum dots,” Nanotechnology 22(40), 405202 (2011).
[CrossRef] [PubMed]

Shi, S. F.

J. H. Song, T. Atay, S. F. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5(8), 1557–1561 (2005).
[CrossRef] [PubMed]

Skrabalak, S. E.

Y. C. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. N. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
[CrossRef]

Song, J. H.

J. H. Song, T. Atay, S. F. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5(8), 1557–1561 (2005).
[CrossRef] [PubMed]

Song, Q.

Z. Xu, X. Sun, J. Liu, Q. Song, M. Muckley, O. Akkus, and Y. L. Kim, “Spectroscopic visualization of nanoscale deformation in bone: interaction of light with partially disordered nanostructure,” J. Biomed. Opt. 15(6), 060503 (2010).
[CrossRef] [PubMed]

Sönnichsen, C.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Sun, X.

Z. Xu, X. Sun, J. Liu, Q. Song, M. Muckley, O. Akkus, and Y. L. Kim, “Spectroscopic visualization of nanoscale deformation in bone: interaction of light with partially disordered nanostructure,” J. Biomed. Opt. 15(6), 060503 (2010).
[CrossRef] [PubMed]

Tam, F.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

Tillack, A. F.

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
[CrossRef] [PubMed]

Tonti, D.

D. Tonti, F. van Mourik, and M. Chergui, “On the excitation wavelength dependence of the luminescence yield of colloidal CdSe quantum dots,” Nano Lett. 4(12), 2483–2487 (2004).
[CrossRef]

Urabe, H.

J. H. Song, T. Atay, S. F. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5(8), 1557–1561 (2005).
[CrossRef] [PubMed]

van Mourik, F.

D. Tonti, F. van Mourik, and M. Chergui, “On the excitation wavelength dependence of the luminescence yield of colloidal CdSe quantum dots,” Nano Lett. 4(12), 2483–2487 (2004).
[CrossRef]

Vernon, K. C.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[CrossRef] [PubMed]

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Wali, R. K.

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[CrossRef]

West, R. G.

S. M. Sadeghi, R. G. West, and A. Nejat, “Photo-induced suppression of plasmonic emission enhancement of CdSe/ZnS quantum dots,” Nanotechnology 22(40), 405202 (2011).
[CrossRef] [PubMed]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Wilson, O.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Xia, Y. N.

Y. C. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. N. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
[CrossRef]

Xu, L. N.

L. N. Xu, B. J. Lee, W. L. Hanson, and B. Han, “Brownian motion induced dynamic near-field interaction between quantum dots and plasmonic nanoparticles in aqueous medium,” Appl. Phys. Lett. 96(17), 174101 (2010).
[CrossRef]

Xu, Z.

Z. Xu, J. Liu, D. H. Hong, V. Q. Nguyen, M. R. Kim, S. I. Mohammed, and Y. L. Kim, “Back-directional gated spectroscopic imaging for diffuse light suppression in high anisotropic media and its preclinical applications for microvascular imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 815–823 (2010).
[CrossRef]

Z. Xu, X. Sun, J. Liu, Q. Song, M. Muckley, O. Akkus, and Y. L. Kim, “Spectroscopic visualization of nanoscale deformation in bone: interaction of light with partially disordered nanostructure,” J. Biomed. Opt. 15(6), 060503 (2010).
[CrossRef] [PubMed]

Zhang, Y.

Y. Zhang, A. Dragan, and C. D. Geddes, “Wavelength dependence of metal-enhanced fluorescence,” J. Phys. Chem. C 113(28), 12095–12100 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

Y. C. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. N. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
[CrossRef]

L. N. Xu, B. J. Lee, W. L. Hanson, and B. Han, “Brownian motion induced dynamic near-field interaction between quantum dots and plasmonic nanoparticles in aqueous medium,” Appl. Phys. Lett. 96(17), 174101 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

Z. Xu, J. Liu, D. H. Hong, V. Q. Nguyen, M. R. Kim, S. I. Mohammed, and Y. L. Kim, “Back-directional gated spectroscopic imaging for diffuse light suppression in high anisotropic media and its preclinical applications for microvascular imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 815–823 (2010).
[CrossRef]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[CrossRef]

J. Biomed. Opt. (1)

Z. Xu, X. Sun, J. Liu, Q. Song, M. Muckley, O. Akkus, and Y. L. Kim, “Spectroscopic visualization of nanoscale deformation in bone: interaction of light with partially disordered nanostructure,” J. Biomed. Opt. 15(6), 060503 (2010).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

Y. Zhang, A. Dragan, and C. D. Geddes, “Wavelength dependence of metal-enhanced fluorescence,” J. Phys. Chem. C 113(28), 12095–12100 (2009).
[CrossRef]

J. Phys. D Appl. Phys. (1)

W. Jacak, J. Krasnyj, J. Jacak, W. Donderowicz, and L. Jacak, “Mechanism of plasmon-mediated enhancement of photovoltaic efficiency,” J. Phys. D Appl. Phys. 44(5), 055301 (2011).
[CrossRef]

Langmuir (1)

J. Kim, G. Dantelle, A. Revaux, M. Bérard, A. Huignard, T. Gacoin, and J. P. Boilot, “Plasmon-induced modification of fluorescent thin film emission nearby gold nanoparticle monolayers,” Langmuir 26(11), 8842–8849 (2010).
[CrossRef] [PubMed]

Nano Lett. (7)

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5(4), 585–589 (2005).
[CrossRef] [PubMed]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

J. H. Song, T. Atay, S. F. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5(8), 1557–1561 (2005).
[CrossRef] [PubMed]

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[CrossRef] [PubMed]

D. Tonti, F. van Mourik, and M. Chergui, “On the excitation wavelength dependence of the luminescence yield of colloidal CdSe quantum dots,” Nano Lett. 4(12), 2483–2487 (2004).
[CrossRef]

K. Munechika, Y. Chen, A. F. Tillack, A. P. Kulkarni, I. J. Plante, A. M. Munro, and D. S. Ginger, “Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms,” Nano Lett. 10(7), 2598–2603 (2010).
[CrossRef] [PubMed]

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7(3), 690–696 (2007).
[CrossRef] [PubMed]

Nanotechnology (1)

S. M. Sadeghi, R. G. West, and A. Nejat, “Photo-induced suppression of plasmonic emission enhancement of CdSe/ZnS quantum dots,” Nanotechnology 22(40), 405202 (2011).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. Lett. (2)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Other (2)

http://www.horiba.com/scientific/products/fluorescence-spectroscopy/application-notes/quantum-yields

V. I. Klimov, ed., Semiconductor and Metal Nanocrystals (CRC Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the fabrication procedure of QD-embedded SU8 on the disordered Au nanostructures. (b) (Left) Representative SEM image of self-assembled Au clusters in an area similar to the optical imaging pixel. (Right) 50-nm Au nanoparticles can be seen in individual Au clusters. (c) Schematic of our mesoscopic spectroscopic imaging setup of capable of imaging a relative large area with a small cone of backscattering angle via back-directional gating. (d) Typical reflectance spectra from the Au nanostructures before QD-embedded SU8 is spin-coated, along a line as illustrated in (a).

Fig. 2
Fig. 2

(a) SEM of typical Au nanoparticle clusters. Different sizes of Au clusters are closed positioned among others. (b) Calculated scattering cross-sections Qsca of single Au nanospheres (diameter = 50, 100, 300, and 500 nm) using Mie calculations and representative reflectance spectrum of the Au nanostructures (shaded area curve). The multiple peaks in the Au reflectance spectrum can be considered to be the superposition of Au clusters in different sizes. (c) The intensity distribution of the reflectance from the Au structures at 430 nm (= R430nm) over the reflectance from the Au structures at 655 nm (= R655nm). Such a large data set allows us to statistically investigate the effects of Au reflectance intensities at the excitation and emission bands of QDs. On the each box, the central mark is the median and the edges of the box are the 25th and 75th percentiles. (d) and (e) Visualization of representative reflectance images of the Au nanostructures without QD-embedded SU8 at 430 nm and 655 nm, respectively.

Fig. 3
Fig. 3

(a) Visualization of the plasmonic fluorescence enhancement factor E after QD-doped SU8 is spin-coated on the top of the Au nanostructures. (b) Plot using the reflectance data at 430 nm R430nm, the reflectance image at 655 nm R655nm, and the fluorescence enhancement factor E. The x- and y-axes are R430nm and R655nm, while E is visualized in different colors at each data point. Inset: Illustration of the origins of the data set. R430nm and R655nm are obtained from the Au reflectance intensities (before the coating of QD-embedded SU8) at the different wavelengths λ, while E is obtained from the emission spectra after the coating of QD-embedded SU8 at 655 nm.

Fig. 4
Fig. 4

Changes in E as R655nm increases at different R430nm. Each data set at different R430nm can be captured as a linear relationship between E and R655nm. In each panel, the emission enhancement efficiency βem is defined as the slope in each linear fit. The excitation enhancement factor αex is defined as the y-intercept, because it corresponds to a value of E when R655nm = 0.

Fig. 5
Fig. 5

(a) Correlation of the emission enhancement efficiency βem with R430nm. The negative linear correlation coefficient reveals that the fluorescence emission rate is reduced by the enhanced excitation (or absorption) at 430 nm, indicating a competitive coupling between the excitation and emission enhancements in QD plasmonic systems. The gray band in the graph shows the 95% confidence intervals of the expected βem. (b) Correlation of the excitation enhancement factor αex with R430nm. The gray band in the graph shows the 95% confidence intervals of the expected αex. E linearly increases with the enhanced excitation (or absorption) at 430 nm when R655nm = 0, which is in good agreement with the previous results that E is linearly proportional to the scattering cross-section of metallic nanostructures [4,5].

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E= I FL I 0 FL
β em = dE d R 655nm .
E= α ex + β em R 655nm .
E= γ ex γ ex 0 ( λ ex ) q q 0 ( λ em ),

Metrics