Abstract

We report numerical and experimental results on the optical response of transparent metal coated wedges arrays for plasmonic nanofocusing. Light normally impinging from the dielectric side is coupled to Surface Plasmon Polaritons (SPPs) at the oblique metal-air interfaces. A dielectric phase shifter has been implemented in the structure in order to allow constructive interference of SPPs at the wedge apex. Finite Elements simulations were used to design the system. Focused Ion Beam (FIB) milling, chemical etching and replica molding were used for the fabrication. NSOM and Raman measurements demonstrate that plasmonic nanofocusing actually takes place in the structure.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
    [CrossRef]
  2. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
    [CrossRef] [PubMed]
  3. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B68(15), 155427 (2003).
    [CrossRef]
  4. E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire Plasmon Excitation by Adiabatic Mode Transformation,” Phys. Rev. Lett.102(20), 203904 (2009).
    [CrossRef] [PubMed]
  5. K. Kato, A. Ono, W. Inami, and Y. Kawata, “Plasmonic nanofocusing using a metal-coated axicon prism,” Opt. Express18(13), 13580–13585 (2010).
    [CrossRef] [PubMed]
  6. N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S.-H. Oh, “Three-Dimensional Plasmonic Nanofocusing,” Nano Lett.10(4), 1369–1373 (2010).
    [CrossRef] [PubMed]
  7. P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth Patterned Metals for Plasmonics and Metamaterials,” Science325(5940), 594–597 (2009).
    [CrossRef] [PubMed]
  8. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron.8(4), 839–862 (2002).
    [CrossRef]
  9. D. K. Gramotnev and K. C. Vernon, “Adiabatic nano-focusing of plasmons by sharp metallic wedges,” Appl. Phys. B86(1), 7–17 (2006).
    [CrossRef]
  10. M. I. Stockman, “Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
    [CrossRef] [PubMed]
  11. M. W. Vogel and D. K. Gramotnev, “Shape effects in tapered metal rods during adiabatic nanofocusing of plasmons,” J. Appl. Phys.107(4), 044303–044311 (2010).
    [CrossRef]
  12. D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys.104(3), 034311–034319 (2008).
    [CrossRef]
  13. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett.87(6), 061106 (2005).
    [CrossRef]
  14. A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express16(8), 5252–5260 (2008).
    [CrossRef] [PubMed]
  15. F. De Angelis, R. P. Zaccaria, M. Francardi, C. Liberale, and E. Di Fabrizio, “Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers,” Opt. Express19(22), 22268–22279 (2011).
    [CrossRef] [PubMed]
  16. D. O’Connor, M. McCurry, B. Lafferty, and A. V. Zayats, “Plasmonic waveguide as an efficient transducer for high-density data storage,” Appl. Phys. Lett.95(17), 171112 (2009).
    [CrossRef]
  17. K. C. Vernon, D. K. Gramotnev, and D. F. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys.101(10), 104312 (2007).
    [CrossRef]
  18. E. Verhagen, L. K. Kuipers, and A. Polman, “Plasmonic nanofocusing in a dielectric wedge,” Nano Lett.10(9), 3665–3669 (2010).
    [CrossRef] [PubMed]
  19. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  20. D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach,” J. Appl. Phys.98(10), 104302 (2005).
    [CrossRef]
  21. D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett.89(4), 041111 (2006).
    [CrossRef]
  22. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and Focusing of Electromagnetic Fields with Wedge Plasmon Polaritons,” Phys. Rev. Lett.100(2), 023901 (2008).
    [CrossRef] [PubMed]
  23. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett.10(6), 2075–2079 (2010).
    [CrossRef] [PubMed]
  24. S. Yamamoto and H. Watarai, “Surface-Enhanced Raman Spectroscopy of Dodecanethiol-Bound Silver Nanoparticles at the Liquid/Liquid Interface,” Langmuir22(15), 6562–6569 (2006).
    [CrossRef] [PubMed]

2011 (1)

2010 (6)

E. Verhagen, L. K. Kuipers, and A. Polman, “Plasmonic nanofocusing in a dielectric wedge,” Nano Lett.10(9), 3665–3669 (2010).
[CrossRef] [PubMed]

M. W. Vogel and D. K. Gramotnev, “Shape effects in tapered metal rods during adiabatic nanofocusing of plasmons,” J. Appl. Phys.107(4), 044303–044311 (2010).
[CrossRef]

K. Kato, A. Ono, W. Inami, and Y. Kawata, “Plasmonic nanofocusing using a metal-coated axicon prism,” Opt. Express18(13), 13580–13585 (2010).
[CrossRef] [PubMed]

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S.-H. Oh, “Three-Dimensional Plasmonic Nanofocusing,” Nano Lett.10(4), 1369–1373 (2010).
[CrossRef] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett.10(6), 2075–2079 (2010).
[CrossRef] [PubMed]

2009 (4)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth Patterned Metals for Plasmonics and Metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire Plasmon Excitation by Adiabatic Mode Transformation,” Phys. Rev. Lett.102(20), 203904 (2009).
[CrossRef] [PubMed]

D. O’Connor, M. McCurry, B. Lafferty, and A. V. Zayats, “Plasmonic waveguide as an efficient transducer for high-density data storage,” Appl. Phys. Lett.95(17), 171112 (2009).
[CrossRef]

2008 (3)

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express16(8), 5252–5260 (2008).
[CrossRef] [PubMed]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys.104(3), 034311–034319 (2008).
[CrossRef]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and Focusing of Electromagnetic Fields with Wedge Plasmon Polaritons,” Phys. Rev. Lett.100(2), 023901 (2008).
[CrossRef] [PubMed]

2007 (1)

K. C. Vernon, D. K. Gramotnev, and D. F. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys.101(10), 104312 (2007).
[CrossRef]

2006 (3)

D. K. Gramotnev and K. C. Vernon, “Adiabatic nano-focusing of plasmons by sharp metallic wedges,” Appl. Phys. B86(1), 7–17 (2006).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett.89(4), 041111 (2006).
[CrossRef]

S. Yamamoto and H. Watarai, “Surface-Enhanced Raman Spectroscopy of Dodecanethiol-Bound Silver Nanoparticles at the Liquid/Liquid Interface,” Langmuir22(15), 6562–6569 (2006).
[CrossRef] [PubMed]

2005 (2)

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach,” J. Appl. Phys.98(10), 104302 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett.87(6), 061106 (2005).
[CrossRef]

2004 (1)

M. I. Stockman, “Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
[CrossRef] [PubMed]

2003 (1)

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B68(15), 155427 (2003).
[CrossRef]

2002 (1)

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron.8(4), 839–862 (2002).
[CrossRef]

Abeysinghe, D. C.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett.10(6), 2075–2079 (2010).
[CrossRef] [PubMed]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Aussenegg, F. R.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B68(15), 155427 (2003).
[CrossRef]

Boltasseva, A.

Boreman, G.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B68(15), 155427 (2003).
[CrossRef]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express16(8), 5252–5260 (2008).
[CrossRef] [PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and Focusing of Electromagnetic Fields with Wedge Plasmon Polaritons,” Phys. Rev. Lett.100(2), 023901 (2008).
[CrossRef] [PubMed]

Chen, W.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett.10(6), 2075–2079 (2010).
[CrossRef] [PubMed]

De Angelis, F.

Di Fabrizio, E.

Ditlbacher, H.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B68(15), 155427 (2003).
[CrossRef]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Francardi, M.

Fukui, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett.87(6), 061106 (2005).
[CrossRef]

García-Vidal, F. J.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and Focusing of Electromagnetic Fields with Wedge Plasmon Polaritons,” Phys. Rev. Lett.100(2), 023901 (2008).
[CrossRef] [PubMed]

Gramotnev, D. K.

M. W. Vogel and D. K. Gramotnev, “Shape effects in tapered metal rods during adiabatic nanofocusing of plasmons,” J. Appl. Phys.107(4), 044303–044311 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys.104(3), 034311–034319 (2008).
[CrossRef]

K. C. Vernon, D. K. Gramotnev, and D. F. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys.101(10), 104312 (2007).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett.89(4), 041111 (2006).
[CrossRef]

D. K. Gramotnev and K. C. Vernon, “Adiabatic nano-focusing of plasmons by sharp metallic wedges,” Appl. Phys. B86(1), 7–17 (2006).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett.87(6), 061106 (2005).
[CrossRef]

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach,” J. Appl. Phys.98(10), 104302 (2005).
[CrossRef]

Haraguchi, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett.87(6), 061106 (2005).
[CrossRef]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Hohenau, A.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B68(15), 155427 (2003).
[CrossRef]

Inami, W.

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Kato, K.

Kawata, Y.

Kawazoe, T.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron.8(4), 839–862 (2002).
[CrossRef]

Kobayashi, K.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron.8(4), 839–862 (2002).
[CrossRef]

Krenn, J. R.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B68(15), 155427 (2003).
[CrossRef]

Kuipers, L. K.

E. Verhagen, L. K. Kuipers, and A. Polman, “Plasmonic nanofocusing in a dielectric wedge,” Nano Lett.10(9), 3665–3669 (2010).
[CrossRef] [PubMed]

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire Plasmon Excitation by Adiabatic Mode Transformation,” Phys. Rev. Lett.102(20), 203904 (2009).
[CrossRef] [PubMed]

Lafferty, B.

D. O’Connor, M. McCurry, B. Lafferty, and A. V. Zayats, “Plasmonic waveguide as an efficient transducer for high-density data storage,” Appl. Phys. Lett.95(17), 171112 (2009).
[CrossRef]

Leitner, A.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B68(15), 155427 (2003).
[CrossRef]

Lesuffleur, A.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S.-H. Oh, “Three-Dimensional Plasmonic Nanofocusing,” Nano Lett.10(4), 1369–1373 (2010).
[CrossRef] [PubMed]

Liberale, C.

Lindquist, N. C.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S.-H. Oh, “Three-Dimensional Plasmonic Nanofocusing,” Nano Lett.10(4), 1369–1373 (2010).
[CrossRef] [PubMed]

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth Patterned Metals for Plasmonics and Metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

Martín-Moreno, L.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and Focusing of Electromagnetic Fields with Wedge Plasmon Polaritons,” Phys. Rev. Lett.100(2), 023901 (2008).
[CrossRef] [PubMed]

Matsuo, S.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett.87(6), 061106 (2005).
[CrossRef]

McCurry, M.

D. O’Connor, M. McCurry, B. Lafferty, and A. V. Zayats, “Plasmonic waveguide as an efficient transducer for high-density data storage,” Appl. Phys. Lett.95(17), 171112 (2009).
[CrossRef]

Monacelli, B.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B68(15), 155427 (2003).
[CrossRef]

Moreno, E.

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express16(8), 5252–5260 (2008).
[CrossRef] [PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and Focusing of Electromagnetic Fields with Wedge Plasmon Polaritons,” Phys. Rev. Lett.100(2), 023901 (2008).
[CrossRef] [PubMed]

Nagpal, P.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S.-H. Oh, “Three-Dimensional Plasmonic Nanofocusing,” Nano Lett.10(4), 1369–1373 (2010).
[CrossRef] [PubMed]

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth Patterned Metals for Plasmonics and Metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

Nelson, R. L.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett.10(6), 2075–2079 (2010).
[CrossRef] [PubMed]

Nielsen, R. B.

Norris, D. J.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S.-H. Oh, “Three-Dimensional Plasmonic Nanofocusing,” Nano Lett.10(4), 1369–1373 (2010).
[CrossRef] [PubMed]

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth Patterned Metals for Plasmonics and Metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

O’Connor, D.

D. O’Connor, M. McCurry, B. Lafferty, and A. V. Zayats, “Plasmonic waveguide as an efficient transducer for high-density data storage,” Appl. Phys. Lett.95(17), 171112 (2009).
[CrossRef]

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett.87(6), 061106 (2005).
[CrossRef]

Oh, S.-H.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S.-H. Oh, “Three-Dimensional Plasmonic Nanofocusing,” Nano Lett.10(4), 1369–1373 (2010).
[CrossRef] [PubMed]

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth Patterned Metals for Plasmonics and Metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

Ohtsu, M.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron.8(4), 839–862 (2002).
[CrossRef]

Okamoto, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett.87(6), 061106 (2005).
[CrossRef]

Ono, A.

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pile, D. F.

K. C. Vernon, D. K. Gramotnev, and D. F. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys.101(10), 104312 (2007).
[CrossRef]

Pile, D. F. P.

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett.89(4), 041111 (2006).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett.87(6), 061106 (2005).
[CrossRef]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Polman, A.

E. Verhagen, L. K. Kuipers, and A. Polman, “Plasmonic nanofocusing in a dielectric wedge,” Nano Lett.10(9), 3665–3669 (2010).
[CrossRef] [PubMed]

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire Plasmon Excitation by Adiabatic Mode Transformation,” Phys. Rev. Lett.102(20), 203904 (2009).
[CrossRef] [PubMed]

Puscasu, I.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B68(15), 155427 (2003).
[CrossRef]

Rodrigo, S. G.

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express16(8), 5252–5260 (2008).
[CrossRef] [PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and Focusing of Electromagnetic Fields with Wedge Plasmon Polaritons,” Phys. Rev. Lett.100(2), 023901 (2008).
[CrossRef] [PubMed]

Sangu, S.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron.8(4), 839–862 (2002).
[CrossRef]

Schaich, W. L.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B68(15), 155427 (2003).
[CrossRef]

Schider, G.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B68(15), 155427 (2003).
[CrossRef]

Spasenovic, M.

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire Plasmon Excitation by Adiabatic Mode Transformation,” Phys. Rev. Lett.102(20), 203904 (2009).
[CrossRef] [PubMed]

Stockman, M. I.

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys.104(3), 034311–034319 (2008).
[CrossRef]

M. I. Stockman, “Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
[CrossRef] [PubMed]

Verhagen, E.

E. Verhagen, L. K. Kuipers, and A. Polman, “Plasmonic nanofocusing in a dielectric wedge,” Nano Lett.10(9), 3665–3669 (2010).
[CrossRef] [PubMed]

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire Plasmon Excitation by Adiabatic Mode Transformation,” Phys. Rev. Lett.102(20), 203904 (2009).
[CrossRef] [PubMed]

Vernon, K. C.

K. C. Vernon, D. K. Gramotnev, and D. F. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys.101(10), 104312 (2007).
[CrossRef]

D. K. Gramotnev and K. C. Vernon, “Adiabatic nano-focusing of plasmons by sharp metallic wedges,” Appl. Phys. B86(1), 7–17 (2006).
[CrossRef]

Vogel, M. W.

M. W. Vogel and D. K. Gramotnev, “Shape effects in tapered metal rods during adiabatic nanofocusing of plasmons,” J. Appl. Phys.107(4), 044303–044311 (2010).
[CrossRef]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys.104(3), 034311–034319 (2008).
[CrossRef]

Volkov, V. S.

Watarai, H.

S. Yamamoto and H. Watarai, “Surface-Enhanced Raman Spectroscopy of Dodecanethiol-Bound Silver Nanoparticles at the Liquid/Liquid Interface,” Langmuir22(15), 6562–6569 (2006).
[CrossRef] [PubMed]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Yamamoto, S.

S. Yamamoto and H. Watarai, “Surface-Enhanced Raman Spectroscopy of Dodecanethiol-Bound Silver Nanoparticles at the Liquid/Liquid Interface,” Langmuir22(15), 6562–6569 (2006).
[CrossRef] [PubMed]

Yatsui, T.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron.8(4), 839–862 (2002).
[CrossRef]

Zaccaria, R. P.

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

D. O’Connor, M. McCurry, B. Lafferty, and A. V. Zayats, “Plasmonic waveguide as an efficient transducer for high-density data storage,” Appl. Phys. Lett.95(17), 171112 (2009).
[CrossRef]

Zhan, Q.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett.10(6), 2075–2079 (2010).
[CrossRef] [PubMed]

Appl. Phys. B (1)

D. K. Gramotnev and K. C. Vernon, “Adiabatic nano-focusing of plasmons by sharp metallic wedges,” Appl. Phys. B86(1), 7–17 (2006).
[CrossRef]

Appl. Phys. Lett. (3)

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett.87(6), 061106 (2005).
[CrossRef]

D. O’Connor, M. McCurry, B. Lafferty, and A. V. Zayats, “Plasmonic waveguide as an efficient transducer for high-density data storage,” Appl. Phys. Lett.95(17), 171112 (2009).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett.89(4), 041111 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron.8(4), 839–862 (2002).
[CrossRef]

J. Appl. Phys. (4)

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: Geometrical optics approach,” J. Appl. Phys.98(10), 104302 (2005).
[CrossRef]

K. C. Vernon, D. K. Gramotnev, and D. F. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys.101(10), 104312 (2007).
[CrossRef]

M. W. Vogel and D. K. Gramotnev, “Shape effects in tapered metal rods during adiabatic nanofocusing of plasmons,” J. Appl. Phys.107(4), 044303–044311 (2010).
[CrossRef]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys.104(3), 034311–034319 (2008).
[CrossRef]

Langmuir (1)

S. Yamamoto and H. Watarai, “Surface-Enhanced Raman Spectroscopy of Dodecanethiol-Bound Silver Nanoparticles at the Liquid/Liquid Interface,” Langmuir22(15), 6562–6569 (2006).
[CrossRef] [PubMed]

Nano Lett. (3)

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett.10(6), 2075–2079 (2010).
[CrossRef] [PubMed]

E. Verhagen, L. K. Kuipers, and A. Polman, “Plasmonic nanofocusing in a dielectric wedge,” Nano Lett.10(9), 3665–3669 (2010).
[CrossRef] [PubMed]

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S.-H. Oh, “Three-Dimensional Plasmonic Nanofocusing,” Nano Lett.10(4), 1369–1373 (2010).
[CrossRef] [PubMed]

Nat. Mater. (1)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Nat. Photonics (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Opt. Express (3)

Phys. Rev. B (1)

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B68(15), 155427 (2003).
[CrossRef]

Phys. Rev. Lett. (3)

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire Plasmon Excitation by Adiabatic Mode Transformation,” Phys. Rev. Lett.102(20), 203904 (2009).
[CrossRef] [PubMed]

M. I. Stockman, “Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
[CrossRef] [PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and Focusing of Electromagnetic Fields with Wedge Plasmon Polaritons,” Phys. Rev. Lett.100(2), 023901 (2008).
[CrossRef] [PubMed]

Science (1)

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth Patterned Metals for Plasmonics and Metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

Other (1)

H. Raether, Surface Plasmons (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Devices layouts of the simulated metal coated dielectric nanowedge structures. Configuration without (a) and with (b) phase shifter. TM polarized plane waves impinges normally onto the structures from the top Wedge aperture is 70.4° as reported in the text.

Fig. 2
Fig. 2

(a), (b) Full field simulated x component in the presence and absence of the phase shifter. Insets: zooms on the wedges edge; (c), (d) Field intensity maps. The fields are normalized to the amplitude of the impinging wave in vacuum. Note that in (d) the maximum field value is well above the maximum color scale value. Geometrical parameters of the structure are the following: wedge height: 1.4μm, metal thickness on the wedge sides: 33nm, phase shifter thickness: 238.6nm, curvature radius at the wedge edge: 5nm. TM polarized light with vacuum wavelength λ = 390nm impinges normally on the structures from above.

Fig. 3
Fig. 3

(a) Optical Microscope image of a prepared sample (b) SEM micrographs of the replicated nanowedge sample. (the inset reports a detail of the wedge’s tip).

Fig. 4
Fig. 4

NSOM maps of the prepared sample comprising the digital grating phase shifter (highlighted by the dashed lines). TM polarized 514nm light was used. The darker spots correspond to the intersection between the wedges and the grating below.

Fig. 5
Fig. 5

Simulated transverse magnetic field (Hz) distribution in the presence of a NSOM probe.(a) Configuration with the phase shifter; (b) Configuration without the phase shifter. The geometrical parameters of the simulations match the ones of the best sample fabricated.

Fig. 6
Fig. 6

(a) Comparison between experimental (blue) and simulated (green) NSOM signal along a wedge ridge. (b) Simulated NSOM signal along a wedge ridge at 390nm for the optimized structure.

Fig. 7
Fig. 7

(a) Comparison between the Raman spectra obtained from a functionalized (solid blue line) and a bare sample (dashed red line). (b) Raman map of a wedge. The intersection between the wedge and the digital phase shifter is highlighted and two maximum of intensity are observed in correspondence of the intersection.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2π λ t| n 1 n 2 |=π

Metrics