Abstract

This study presents a novel near-field optics technology. A near-field cover glass slip (NF-CGS) was developed to improve the resolution of optical microscopy beyond the diffraction limit. A multi-layered structure of cover glass/ZnS-SiO2 (130 nm)/AgOx (15 nm)/ ZnS-SiO2 (40 nm) was employed to generate the optical coupling effect for increasing the contrast and enhancing resolution of imaging. This novel innovation is expected to be employed in near-field imaging techniques for samples in different environments because of its simplicity, rapid laser scanning, and minimal costs. Experimental results of 500 nm, 200 nm, and 100 nm standard polystyrene nanospheres on NF-CGS and normal cover glass are demonstrated and imaged by using a laser scanning confocal microscope.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature237(5357), 510–512 (1972).
    [CrossRef] [PubMed]
  2. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett.44(7), 651–653 (1984).
    [CrossRef]
  3. E. Betzig, P. L. Finn, and J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett.60(20), 2484–2486 (1992).
    [CrossRef]
  4. B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
    [CrossRef]
  5. R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett.75(2), 160–162 (1999).
    [CrossRef]
  6. S. Kawata and Y. Inouye, “Scanning probe optical microscopy using a metallic probe tip,” Ultramicroscopy57(2-3), 313–317 (1995).
    [CrossRef]
  7. F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning Interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science269(5227), 1083–1085 (1995).
    [CrossRef] [PubMed]
  8. R. Hillenbrand and F. Keilmann, “Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy,” Appl. Phys. Lett.80(1), 25–27 (2002).
    [CrossRef]
  9. F. M. Huang, Y. Chen, F. J. Garcia de Abajo, and N. I. Zheludev, “Optical super-resolution through super-oscillations,” J. Opt. A, Pure Appl. Opt.9(9), S285–S288 (2007).
    [CrossRef]
  10. F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett.9(3), 1249–1254 (2009).
    [CrossRef] [PubMed]
  11. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,” Science315(5819), 1686–1686 (2007).
    [CrossRef] [PubMed]
  12. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  13. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
    [CrossRef] [PubMed]
  14. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 218 (2011), doi:.
    [CrossRef] [PubMed]
  15. J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett.73(15), 2078–2080 (1998).
    [CrossRef]
  16. H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, and N. Atoda, “A near-field recording and readout technology using a metallic probe in an optical disk,” Jpn. J. Appl. Phys.39(Part 1, No. 2B), 980–981 (2000).
    [CrossRef]
  17. J. Tominaga, “The application of silver oxide thin film to plasmon photonic devices,” J. Phys. Condens. Matter15(25), R1101–R1122 (2003).
    [CrossRef]
  18. D. P. Tsai and W. C. Lin, “Probing the near fields of the super-resolution near-field optical structure,” Appl. Phys. Lett.77(10), 1413–1415 (2000).
    [CrossRef]
  19. T. Shima and J. Tominaga, “Optical transmittance study of silver partcles formed by AgOx thermal decomposition,” J. Vac. Sci. Technol. A21(3), 634–637 (2003).
    [CrossRef]
  20. F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W. C. Liu, and D. P. Tsai, “Nonlinear optical absorption in the AgOx-type super-resolution near-field structure,” Jpn. J. Appl. Phys.40(Part 1, No. 6A), 4101–4102 (2001).
    [CrossRef]
  21. F. H. Ho, H. H. Chang, Y. H. Lin, B.-M. Chen, S.-Y. Wang, and D. P. Tsai, “Functional structures of AgOx thin film for near-field recording,” Jpn. J. Appl. Phys.42(Part 1, No. 2B), 1000–1004 (2003).
    [CrossRef]
  22. W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett.78, 685–687 (2001).
    [CrossRef]
  23. K. P. Chiu, K. F. Lai, and D. P. Tsai, “Application of surface polariton coupling between nano recording marks to optical data storage,” Opt. Express16(18), 13885–13892 (2008).
    [CrossRef] [PubMed]
  24. D. P. Tsai and Y. H. Lin, “Near-field super-resolution optical cover glass slip or mount,” U.S. Patent 6,737,167 (May 18, 2004).

2011

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 218 (2011), doi:.
[CrossRef] [PubMed]

2009

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett.9(3), 1249–1254 (2009).
[CrossRef] [PubMed]

2008

2007

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,” Science315(5819), 1686–1686 (2007).
[CrossRef] [PubMed]

F. M. Huang, Y. Chen, F. J. Garcia de Abajo, and N. I. Zheludev, “Optical super-resolution through super-oscillations,” J. Opt. A, Pure Appl. Opt.9(9), S285–S288 (2007).
[CrossRef]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

2005

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

2003

J. Tominaga, “The application of silver oxide thin film to plasmon photonic devices,” J. Phys. Condens. Matter15(25), R1101–R1122 (2003).
[CrossRef]

T. Shima and J. Tominaga, “Optical transmittance study of silver partcles formed by AgOx thermal decomposition,” J. Vac. Sci. Technol. A21(3), 634–637 (2003).
[CrossRef]

F. H. Ho, H. H. Chang, Y. H. Lin, B.-M. Chen, S.-Y. Wang, and D. P. Tsai, “Functional structures of AgOx thin film for near-field recording,” Jpn. J. Appl. Phys.42(Part 1, No. 2B), 1000–1004 (2003).
[CrossRef]

2002

R. Hillenbrand and F. Keilmann, “Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy,” Appl. Phys. Lett.80(1), 25–27 (2002).
[CrossRef]

2001

W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett.78, 685–687 (2001).
[CrossRef]

F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W. C. Liu, and D. P. Tsai, “Nonlinear optical absorption in the AgOx-type super-resolution near-field structure,” Jpn. J. Appl. Phys.40(Part 1, No. 6A), 4101–4102 (2001).
[CrossRef]

2000

H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, and N. Atoda, “A near-field recording and readout technology using a metallic probe in an optical disk,” Jpn. J. Appl. Phys.39(Part 1, No. 2B), 980–981 (2000).
[CrossRef]

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

D. P. Tsai and W. C. Lin, “Probing the near fields of the super-resolution near-field optical structure,” Appl. Phys. Lett.77(10), 1413–1415 (2000).
[CrossRef]

1999

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett.75(2), 160–162 (1999).
[CrossRef]

1998

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett.73(15), 2078–2080 (1998).
[CrossRef]

1995

S. Kawata and Y. Inouye, “Scanning probe optical microscopy using a metallic probe tip,” Ultramicroscopy57(2-3), 313–317 (1995).
[CrossRef]

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning Interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science269(5227), 1083–1085 (1995).
[CrossRef] [PubMed]

1992

E. Betzig, P. L. Finn, and J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett.60(20), 2484–2486 (1992).
[CrossRef]

1984

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett.44(7), 651–653 (1984).
[CrossRef]

1972

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature237(5357), 510–512 (1972).
[CrossRef] [PubMed]

Ash, E. A.

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature237(5357), 510–512 (1972).
[CrossRef] [PubMed]

Atoda, N.

H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, and N. Atoda, “A near-field recording and readout technology using a metallic probe in an optical disk,” Jpn. J. Appl. Phys.39(Part 1, No. 2B), 980–981 (2000).
[CrossRef]

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett.73(15), 2078–2080 (1998).
[CrossRef]

Betzig, E.

E. Betzig, P. L. Finn, and J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett.60(20), 2484–2486 (1992).
[CrossRef]

Chang, H. H.

F. H. Ho, H. H. Chang, Y. H. Lin, B.-M. Chen, S.-Y. Wang, and D. P. Tsai, “Functional structures of AgOx thin film for near-field recording,” Jpn. J. Appl. Phys.42(Part 1, No. 2B), 1000–1004 (2003).
[CrossRef]

F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W. C. Liu, and D. P. Tsai, “Nonlinear optical absorption in the AgOx-type super-resolution near-field structure,” Jpn. J. Appl. Phys.40(Part 1, No. 6A), 4101–4102 (2001).
[CrossRef]

Chen, B.-M.

F. H. Ho, H. H. Chang, Y. H. Lin, B.-M. Chen, S.-Y. Wang, and D. P. Tsai, “Functional structures of AgOx thin film for near-field recording,” Jpn. J. Appl. Phys.42(Part 1, No. 2B), 1000–1004 (2003).
[CrossRef]

Chen, K.-H.

W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett.78, 685–687 (2001).
[CrossRef]

Chen, Y.

F. M. Huang, Y. Chen, F. J. Garcia de Abajo, and N. I. Zheludev, “Optical super-resolution through super-oscillations,” J. Opt. A, Pure Appl. Opt.9(9), S285–S288 (2007).
[CrossRef]

Chen, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 218 (2011), doi:.
[CrossRef] [PubMed]

Chiu, K. P.

Deckert, V.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett.75(2), 160–162 (1999).
[CrossRef]

Denk, W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett.44(7), 651–653 (1984).
[CrossRef]

Durant, S.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Fang, N.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Finn, P. L.

E. Betzig, P. L. Finn, and J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett.60(20), 2484–2486 (1992).
[CrossRef]

Fokas, C.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett.75(2), 160–162 (1999).
[CrossRef]

Fuji, H.

H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, and N. Atoda, “A near-field recording and readout technology using a metallic probe in an optical disk,” Jpn. J. Appl. Phys.39(Part 1, No. 2B), 980–981 (2000).
[CrossRef]

Garcia de Abajo, F. J.

F. M. Huang, Y. Chen, F. J. Garcia de Abajo, and N. I. Zheludev, “Optical super-resolution through super-oscillations,” J. Opt. A, Pure Appl. Opt.9(9), S285–S288 (2007).
[CrossRef]

Guo, W.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 218 (2011), doi:.
[CrossRef] [PubMed]

Hecht, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett.75(2), 160–162 (1999).
[CrossRef]

Hillenbrand, R.

R. Hillenbrand and F. Keilmann, “Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy,” Appl. Phys. Lett.80(1), 25–27 (2002).
[CrossRef]

Ho, F. H.

F. H. Ho, H. H. Chang, Y. H. Lin, B.-M. Chen, S.-Y. Wang, and D. P. Tsai, “Functional structures of AgOx thin film for near-field recording,” Jpn. J. Appl. Phys.42(Part 1, No. 2B), 1000–1004 (2003).
[CrossRef]

F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W. C. Liu, and D. P. Tsai, “Nonlinear optical absorption in the AgOx-type super-resolution near-field structure,” Jpn. J. Appl. Phys.40(Part 1, No. 6A), 4101–4102 (2001).
[CrossRef]

Hong, M.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 218 (2011), doi:.
[CrossRef] [PubMed]

Huang, F. M.

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett.9(3), 1249–1254 (2009).
[CrossRef] [PubMed]

F. M. Huang, Y. Chen, F. J. Garcia de Abajo, and N. I. Zheludev, “Optical super-resolution through super-oscillations,” J. Opt. A, Pure Appl. Opt.9(9), S285–S288 (2007).
[CrossRef]

Inouye, Y.

S. Kawata and Y. Inouye, “Scanning probe optical microscopy using a metallic probe tip,” Ultramicroscopy57(2-3), 313–317 (1995).
[CrossRef]

Katayama, H.

H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, and N. Atoda, “A near-field recording and readout technology using a metallic probe in an optical disk,” Jpn. J. Appl. Phys.39(Part 1, No. 2B), 980–981 (2000).
[CrossRef]

Kawata, S.

S. Kawata and Y. Inouye, “Scanning probe optical microscopy using a metallic probe tip,” Ultramicroscopy57(2-3), 313–317 (1995).
[CrossRef]

Keilmann, F.

R. Hillenbrand and F. Keilmann, “Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy,” Appl. Phys. Lett.80(1), 25–27 (2002).
[CrossRef]

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 218 (2011), doi:.
[CrossRef] [PubMed]

Lai, K. F.

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett.44(7), 651–653 (1984).
[CrossRef]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,” Science315(5819), 1686–1686 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Li, L.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 218 (2011), doi:.
[CrossRef] [PubMed]

Lin, W. C.

W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett.78, 685–687 (2001).
[CrossRef]

D. P. Tsai and W. C. Lin, “Probing the near fields of the super-resolution near-field optical structure,” Appl. Phys. Lett.77(10), 1413–1415 (2000).
[CrossRef]

Lin, W. Y.

F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W. C. Liu, and D. P. Tsai, “Nonlinear optical absorption in the AgOx-type super-resolution near-field structure,” Jpn. J. Appl. Phys.40(Part 1, No. 6A), 4101–4102 (2001).
[CrossRef]

Lin, Y. H.

F. H. Ho, H. H. Chang, Y. H. Lin, B.-M. Chen, S.-Y. Wang, and D. P. Tsai, “Functional structures of AgOx thin film for near-field recording,” Jpn. J. Appl. Phys.42(Part 1, No. 2B), 1000–1004 (2003).
[CrossRef]

F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W. C. Liu, and D. P. Tsai, “Nonlinear optical absorption in the AgOx-type super-resolution near-field structure,” Jpn. J. Appl. Phys.40(Part 1, No. 6A), 4101–4102 (2001).
[CrossRef]

Liu, W. C.

F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W. C. Liu, and D. P. Tsai, “Nonlinear optical absorption in the AgOx-type super-resolution near-field structure,” Jpn. J. Appl. Phys.40(Part 1, No. 6A), 4101–4102 (2001).
[CrossRef]

Liu, W.-C.

W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett.78, 685–687 (2001).
[CrossRef]

Liu, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 218 (2011), doi:.
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,” Science315(5819), 1686–1686 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Luk’yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 218 (2011), doi:.
[CrossRef] [PubMed]

Martin, O. J. F.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Martin, Y.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning Interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science269(5227), 1083–1085 (1995).
[CrossRef] [PubMed]

Men, L.

H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, and N. Atoda, “A near-field recording and readout technology using a metallic probe in an optical disk,” Jpn. J. Appl. Phys.39(Part 1, No. 2B), 980–981 (2000).
[CrossRef]

Nakano, T.

H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, and N. Atoda, “A near-field recording and readout technology using a metallic probe in an optical disk,” Jpn. J. Appl. Phys.39(Part 1, No. 2B), 980–981 (2000).
[CrossRef]

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett.73(15), 2078–2080 (1998).
[CrossRef]

Nicholls, G.

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature237(5357), 510–512 (1972).
[CrossRef] [PubMed]

Pikus, Y.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Pohl, D. W.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett.44(7), 651–653 (1984).
[CrossRef]

Shima, T.

T. Shima and J. Tominaga, “Optical transmittance study of silver partcles formed by AgOx thermal decomposition,” J. Vac. Sci. Technol. A21(3), 634–637 (2003).
[CrossRef]

Sick, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett.75(2), 160–162 (1999).
[CrossRef]

Stöckle, R.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett.75(2), 160–162 (1999).
[CrossRef]

Sun, C.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,” Science315(5819), 1686–1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Tominaga, J.

T. Shima and J. Tominaga, “Optical transmittance study of silver partcles formed by AgOx thermal decomposition,” J. Vac. Sci. Technol. A21(3), 634–637 (2003).
[CrossRef]

J. Tominaga, “The application of silver oxide thin film to plasmon photonic devices,” J. Phys. Condens. Matter15(25), R1101–R1122 (2003).
[CrossRef]

H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, and N. Atoda, “A near-field recording and readout technology using a metallic probe in an optical disk,” Jpn. J. Appl. Phys.39(Part 1, No. 2B), 980–981 (2000).
[CrossRef]

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett.73(15), 2078–2080 (1998).
[CrossRef]

Tsai, D. P.

K. P. Chiu, K. F. Lai, and D. P. Tsai, “Application of surface polariton coupling between nano recording marks to optical data storage,” Opt. Express16(18), 13885–13892 (2008).
[CrossRef] [PubMed]

F. H. Ho, H. H. Chang, Y. H. Lin, B.-M. Chen, S.-Y. Wang, and D. P. Tsai, “Functional structures of AgOx thin film for near-field recording,” Jpn. J. Appl. Phys.42(Part 1, No. 2B), 1000–1004 (2003).
[CrossRef]

W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett.78, 685–687 (2001).
[CrossRef]

F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W. C. Liu, and D. P. Tsai, “Nonlinear optical absorption in the AgOx-type super-resolution near-field structure,” Jpn. J. Appl. Phys.40(Part 1, No. 6A), 4101–4102 (2001).
[CrossRef]

D. P. Tsai and W. C. Lin, “Probing the near fields of the super-resolution near-field optical structure,” Appl. Phys. Lett.77(10), 1413–1415 (2000).
[CrossRef]

Wang, S.-Y.

F. H. Ho, H. H. Chang, Y. H. Lin, B.-M. Chen, S.-Y. Wang, and D. P. Tsai, “Functional structures of AgOx thin film for near-field recording,” Jpn. J. Appl. Phys.42(Part 1, No. 2B), 1000–1004 (2003).
[CrossRef]

Wang, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 218 (2011), doi:.
[CrossRef] [PubMed]

Weiner, J. S.

E. Betzig, P. L. Finn, and J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett.60(20), 2484–2486 (1992).
[CrossRef]

Wen, C.-Y.

W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett.78, 685–687 (2001).
[CrossRef]

Wickramasinghe, H. K.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning Interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science269(5227), 1083–1085 (1995).
[CrossRef] [PubMed]

Wild, U. P.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett.75(2), 160–162 (1999).
[CrossRef]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,” Science315(5819), 1686–1686 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Zenhausern, F.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning Interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science269(5227), 1083–1085 (1995).
[CrossRef] [PubMed]

Zenobi, R.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett.75(2), 160–162 (1999).
[CrossRef]

Zhang, X.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,” Science315(5819), 1686–1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Zheludev, N. I.

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett.9(3), 1249–1254 (2009).
[CrossRef] [PubMed]

F. M. Huang, Y. Chen, F. J. Garcia de Abajo, and N. I. Zheludev, “Optical super-resolution through super-oscillations,” J. Opt. A, Pure Appl. Opt.9(9), S285–S288 (2007).
[CrossRef]

Appl. Phys. Lett.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett.44(7), 651–653 (1984).
[CrossRef]

E. Betzig, P. L. Finn, and J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett.60(20), 2484–2486 (1992).
[CrossRef]

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett.75(2), 160–162 (1999).
[CrossRef]

R. Hillenbrand and F. Keilmann, “Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy,” Appl. Phys. Lett.80(1), 25–27 (2002).
[CrossRef]

D. P. Tsai and W. C. Lin, “Probing the near fields of the super-resolution near-field optical structure,” Appl. Phys. Lett.77(10), 1413–1415 (2000).
[CrossRef]

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett.73(15), 2078–2080 (1998).
[CrossRef]

W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett.78, 685–687 (2001).
[CrossRef]

J. Chem. Phys.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

F. M. Huang, Y. Chen, F. J. Garcia de Abajo, and N. I. Zheludev, “Optical super-resolution through super-oscillations,” J. Opt. A, Pure Appl. Opt.9(9), S285–S288 (2007).
[CrossRef]

J. Phys. Condens. Matter

J. Tominaga, “The application of silver oxide thin film to plasmon photonic devices,” J. Phys. Condens. Matter15(25), R1101–R1122 (2003).
[CrossRef]

J. Vac. Sci. Technol. A

T. Shima and J. Tominaga, “Optical transmittance study of silver partcles formed by AgOx thermal decomposition,” J. Vac. Sci. Technol. A21(3), 634–637 (2003).
[CrossRef]

Jpn. J. Appl. Phys.

F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W. C. Liu, and D. P. Tsai, “Nonlinear optical absorption in the AgOx-type super-resolution near-field structure,” Jpn. J. Appl. Phys.40(Part 1, No. 6A), 4101–4102 (2001).
[CrossRef]

F. H. Ho, H. H. Chang, Y. H. Lin, B.-M. Chen, S.-Y. Wang, and D. P. Tsai, “Functional structures of AgOx thin film for near-field recording,” Jpn. J. Appl. Phys.42(Part 1, No. 2B), 1000–1004 (2003).
[CrossRef]

H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, and N. Atoda, “A near-field recording and readout technology using a metallic probe in an optical disk,” Jpn. J. Appl. Phys.39(Part 1, No. 2B), 980–981 (2000).
[CrossRef]

Nano Lett.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7(2), 403–408 (2007).
[CrossRef] [PubMed]

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett.9(3), 1249–1254 (2009).
[CrossRef] [PubMed]

Nat. Commun.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun.2, 218 (2011), doi:.
[CrossRef] [PubMed]

Nature

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature237(5357), 510–512 (1972).
[CrossRef] [PubMed]

Opt. Express

Science

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning Interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science269(5227), 1083–1085 (1995).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,” Science315(5819), 1686–1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Ultramicroscopy

S. Kawata and Y. Inouye, “Scanning probe optical microscopy using a metallic probe tip,” Ultramicroscopy57(2-3), 313–317 (1995).
[CrossRef]

Other

D. P. Tsai and Y. H. Lin, “Near-field super-resolution optical cover glass slip or mount,” U.S. Patent 6,737,167 (May 18, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Various sample arrangements: 200 nm PS nanospheres and a mixture of 500 nm and 100 nm PS nanospheres placed on cover glass and NF-CGS, respectively. (b) The setup of laser scanning confocal microscopy (LCM) for the optical section of the sample.

Fig. 2
Fig. 2

The working principle of the NF-CGS: The photo-dissociated silver nanoparticles enhance the evanescent waves and perform the function of a near-field apertureless probe to transform the evanescent waves into the propagating waves. The subwavelength information of the nanospheres can be subsequently obtained. The near-field distance between the active layer (AgOx) and the sample (PS nanospheres) is precisely controlled by a ZnS-SiO2 (40 nm) spacer layer. The picture embedded in the bottom right shows the irreversible NF-CGS damage caused by inappropriate laser power.

Fig. 3
Fig. 3

The reflected z-scan spectrum of (a) the cover glass and (b) the NF-CGS.

Fig. 4
Fig. 4

Optical and cross-sectional images of three sizes of nanospheres with varied focal planes (f1, f2, f3, as shown in Fig. 3(a)), using a cover glass substrate.

Fig. 5
Fig. 5

Optical and cross-sectional images of three sizes of nanospheres with varied focal planes (F1, F2, F4, F5, as shown in Fig. 3(b)), using a NF-CGS substrate.

Fig. 6
Fig. 6

(a) Optical and cross-sectional images of the three nanospheres sizes with the F3 focal plane (laser focusing on the AgOx active layer), using a NF-CGS substrate. (b) The geometric relationship among the nanospheres. The region below the red dashed line shows the effective range of the NF-CGS.

Metrics