Abstract

In various microscopy applications spatial light modulators (SLMs) are used as programmable Fourier filters to realize different optical contrast enhancement methods. It is often advantageous to use the SLM in off-axis configuration, where the filtered image wave is sent into the first diffraction order of a blazed grating superposed to the phase mask on the SLM. Because of dispersion this approach is, however, typically limited to spectrally narrowband illumination. Here we suggest a method involving a grating for pre-compensation, which allows one to use spectrally broadband (even thermal) light in SLM-based Fourier filtering. The proposed approach is demonstrated by multicolor imaging of amplitude and phase objects, such as a resolution target, onion epidermal cells and human epithelial cheek cells.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
    [CrossRef]
  2. J. A. Neff, R. A. Athale, and S. H. Lee, “Two-dimensional spatial light modulators: A tutorial,” Proc. IEEE 78(5), 826–855 (1990).
    [CrossRef]
  3. F. Yaras, H. Kang, and L. Onural, “State of the Art in Holographic Displays: A Survey,” J.Disp. Technol. 6(10), 443–454 (2010).
    [CrossRef]
  4. M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).
    [CrossRef]
  5. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express 13(3), 689–694 (2005).
    [CrossRef] [PubMed]
  6. K. D. Wulff, D. G. Cole, R. L. Clark, R. Dileonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express 14(9), 4170–4175 (2006).
    [CrossRef] [PubMed]
  7. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  8. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
    [CrossRef]
  9. J. Glückstad, “Phase contrast image synthesis,” Opt. Commun. 130(4-6), 225–230 (1996).
    [CrossRef]
  10. M. Woerdemann, F. Holtmann, and C. Denz, “Holographic phase contrast for dynamic multiple-beam optical tweezers,” J. Opt. A, Pure Appl. Opt. 11(3), 034010 (2009).
    [CrossRef]
  11. C.-S. Guo, Y.-J. Han, J.-B. Xu, and J. Ding, “Radial Hilbert transform with Laguerre-Gaussian spatial filters,” Opt. Lett. 31(10), 1394–1396 (2006).
    [CrossRef] [PubMed]
  12. P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, and J. Richardson, “Fully complex optical modulation with an analogue ferroelectric liquid crystal spatial light modulator,” Opt. Commun. 175(4-6), 347–352 (2000).
    [CrossRef]
  13. S. E. Schausberger, B. Heise, C. Maurer, S. Bernet, M. Ritsch-Marte, and D. Stifter, “Flexible contrast for low-coherence interference microscopy by Fourier-plane filtering with a spatial light modulator,” Opt. Lett. 35(24), 4154–4156 (2010).
    [CrossRef] [PubMed]
  14. J. Leach and M. J. Padgett, “Observation of chromatic effects near a white-light vortex,” New J. Phys. 5, 154–160 (2003).
    [CrossRef]
  15. S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14(9), 3792–3805 (2006).
    [CrossRef] [PubMed]
  16. H. Ding and G. Popescu, “Instantaneous spatial light interference microscopy,” Opt. Express 18(2), 1569–1575 (2010).
    [CrossRef] [PubMed]
  17. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
    [CrossRef] [PubMed]
  18. C. Kohler, X. Schwab, and W. Osten, “Optimally tuned spatial light modulators for digital holography,” Appl. Opt. 45(5), 960–967 (2006).
    [CrossRef] [PubMed]
  19. T. Ito and K. Okano, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express 12(18), 4320–4325 (2004).
    [CrossRef] [PubMed]

2012 (1)

2011 (2)

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[CrossRef]

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[CrossRef]

2010 (3)

2009 (2)

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).
[CrossRef]

M. Woerdemann, F. Holtmann, and C. Denz, “Holographic phase contrast for dynamic multiple-beam optical tweezers,” J. Opt. A, Pure Appl. Opt. 11(3), 034010 (2009).
[CrossRef]

2006 (4)

2005 (1)

2004 (1)

2003 (2)

J. Leach and M. J. Padgett, “Observation of chromatic effects near a white-light vortex,” New J. Phys. 5, 154–160 (2003).
[CrossRef]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

2000 (1)

P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, and J. Richardson, “Fully complex optical modulation with an analogue ferroelectric liquid crystal spatial light modulator,” Opt. Commun. 175(4-6), 347–352 (2000).
[CrossRef]

1996 (1)

J. Glückstad, “Phase contrast image synthesis,” Opt. Commun. 130(4-6), 225–230 (1996).
[CrossRef]

1990 (1)

J. A. Neff, R. A. Athale, and S. H. Lee, “Two-dimensional spatial light modulators: A tutorial,” Proc. IEEE 78(5), 826–855 (1990).
[CrossRef]

Athale, R. A.

J. A. Neff, R. A. Athale, and S. H. Lee, “Two-dimensional spatial light modulators: A tutorial,” Proc. IEEE 78(5), 826–855 (1990).
[CrossRef]

Bernet, S.

Bhaduri, B.

Birch, P.

P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, and J. Richardson, “Fully complex optical modulation with an analogue ferroelectric liquid crystal spatial light modulator,” Opt. Commun. 175(4-6), 347–352 (2000).
[CrossRef]

Budgett, D.

P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, and J. Richardson, “Fully complex optical modulation with an analogue ferroelectric liquid crystal spatial light modulator,” Opt. Commun. 175(4-6), 347–352 (2000).
[CrossRef]

Chatwin, C.

P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, and J. Richardson, “Fully complex optical modulation with an analogue ferroelectric liquid crystal spatial light modulator,” Opt. Commun. 175(4-6), 347–352 (2000).
[CrossRef]

Cižmár, T.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[CrossRef]

Clark, R. L.

Cole, D. G.

Cooper, J.

Denz, C.

M. Woerdemann, F. Holtmann, and C. Denz, “Holographic phase contrast for dynamic multiple-beam optical tweezers,” J. Opt. A, Pure Appl. Opt. 11(3), 034010 (2009).
[CrossRef]

Dholakia, K.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[CrossRef]

Dileonardo, R.

Ding, H.

Ding, J.

Farsari, M.

P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, and J. Richardson, “Fully complex optical modulation with an analogue ferroelectric liquid crystal spatial light modulator,” Opt. Commun. 175(4-6), 347–352 (2000).
[CrossRef]

Fürhapter, S.

Gibson, G.

Glückstad, J.

J. Glückstad, “Phase contrast image synthesis,” Opt. Commun. 130(4-6), 225–230 (1996).
[CrossRef]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Guo, C.-S.

Haist, T.

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).
[CrossRef]

Han, Y.-J.

Hasler, M.

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).
[CrossRef]

Heise, B.

Holtmann, F.

M. Woerdemann, F. Holtmann, and C. Denz, “Holographic phase contrast for dynamic multiple-beam optical tweezers,” J. Opt. A, Pure Appl. Opt. 11(3), 034010 (2009).
[CrossRef]

Ito, T.

Jesacher, A.

Kang, H.

F. Yaras, H. Kang, and L. Onural, “State of the Art in Holographic Displays: A Survey,” J.Disp. Technol. 6(10), 443–454 (2010).
[CrossRef]

Kohler, C.

Leach, J.

Lee, S. H.

J. A. Neff, R. A. Athale, and S. H. Lee, “Two-dimensional spatial light modulators: A tutorial,” Proc. IEEE 78(5), 826–855 (1990).
[CrossRef]

Maurer, C.

Mir, M.

Neff, J. A.

J. A. Neff, R. A. Athale, and S. H. Lee, “Two-dimensional spatial light modulators: A tutorial,” Proc. IEEE 78(5), 826–855 (1990).
[CrossRef]

Okano, K.

Onural, L.

F. Yaras, H. Kang, and L. Onural, “State of the Art in Holographic Displays: A Survey,” J.Disp. Technol. 6(10), 443–454 (2010).
[CrossRef]

Osten, W.

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).
[CrossRef]

C. Kohler, X. Schwab, and W. Osten, “Optimally tuned spatial light modulators for digital holography,” Appl. Opt. 45(5), 960–967 (2006).
[CrossRef] [PubMed]

Padgett, M. J.

Pham, H.

Popescu, G.

Richardson, J.

P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, and J. Richardson, “Fully complex optical modulation with an analogue ferroelectric liquid crystal spatial light modulator,” Opt. Commun. 175(4-6), 347–352 (2000).
[CrossRef]

Ritsch-Marte, M.

Schausberger, S. E.

Schwab, X.

Stifter, D.

Warber, M.

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).
[CrossRef]

Woerdemann, M.

M. Woerdemann, F. Holtmann, and C. Denz, “Holographic phase contrast for dynamic multiple-beam optical tweezers,” J. Opt. A, Pure Appl. Opt. 11(3), 034010 (2009).
[CrossRef]

Wulff, K. D.

Xu, J.-B.

Yaras, F.

F. Yaras, H. Kang, and L. Onural, “State of the Art in Holographic Displays: A Survey,” J.Disp. Technol. 6(10), 443–454 (2010).
[CrossRef]

Young, R.

P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, and J. Richardson, “Fully complex optical modulation with an analogue ferroelectric liquid crystal spatial light modulator,” Opt. Commun. 175(4-6), 347–352 (2000).
[CrossRef]

Zwick, S.

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).
[CrossRef]

Appl. Opt. (1)

J. Opt. A, Pure Appl. Opt. (1)

M. Woerdemann, F. Holtmann, and C. Denz, “Holographic phase contrast for dynamic multiple-beam optical tweezers,” J. Opt. A, Pure Appl. Opt. 11(3), 034010 (2009).
[CrossRef]

J.Disp. Technol. (1)

F. Yaras, H. Kang, and L. Onural, “State of the Art in Holographic Displays: A Survey,” J.Disp. Technol. 6(10), 443–454 (2010).
[CrossRef]

Laser Photonics Rev. (1)

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[CrossRef]

Nat. Photonics (1)

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[CrossRef]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

New J. Phys. (1)

J. Leach and M. J. Padgett, “Observation of chromatic effects near a white-light vortex,” New J. Phys. 5, 154–160 (2003).
[CrossRef]

Opt. Commun. (2)

P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, and J. Richardson, “Fully complex optical modulation with an analogue ferroelectric liquid crystal spatial light modulator,” Opt. Commun. 175(4-6), 347–352 (2000).
[CrossRef]

J. Glückstad, “Phase contrast image synthesis,” Opt. Commun. 130(4-6), 225–230 (1996).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Proc. IEEE (1)

J. A. Neff, R. A. Athale, and S. H. Lee, “Two-dimensional spatial light modulators: A tutorial,” Proc. IEEE 78(5), 826–855 (1990).
[CrossRef]

Proc. SPIE (1)

M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE 7442, 74420E (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic setup (not to scale) for the combination of a diffraction grating and a reflective SLM, the latter used as a Fourier filter in imaging, for avoiding dispersion effects due to white light illumination.

Fig. 2
Fig. 2

Method for adjusting the dispersion compensation in four steps. (A): sample without any gratings (brightfield), (B): the blazed glass grating is inserted in the optical pathway and causes diffraction of the incoming beam, (C): a grating is displayed on the SLM (grating is phase conjugated to the blazed glass grating), (D): the combination of the glass grating and the SLM leads to a dispersion free image which is at its original position.

Fig. 3
Fig. 3

First row shows the images of a resolution target as an amplitude object, the 2nd and 3rd row show onion epidermal cells and human epithelial cheek cells as phase objects. The insets on the very top of row show the corresponding phase patterns displayed on the SLM. Image illumination was performed with a white light LED.

Fig. 4
Fig. 4

Pseudo-relief structures of a resolution target, recorded with a white light LED illumination sorce. It seems that the object is illuminated from three different directions. These shadow-effect images are obtained by filtering with spiral phase holograms on the SLM.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

x max = 2λ d f ob

Metrics