D. H. Li, J. X. Pu, and X. Q. Wang, “Radiation forces of a dielectric medium plate induced by a Gaussian beam,” Opt. Commun. 285(7), 1680–1683 (2012).
[Crossref]
E. Aspnes, T. D. Milster, and K. Visscher, “Optical force model based on sequential ray tracing,” Appl. Opt. 48(9), 1642–1650 (2009).
[Crossref]
[PubMed]
J. G. Wu, Y. M. Li, D. Lu, Z. Liu, Z. D. Cheng, and L. Q. He, “Mesurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers,” Cryo Lett. 30, 89–95 (2009).
S. H. Simpson and S. Hanna, “Optical trapping of spheroidal particles in Gaussian beams,” J. Opt. Soc. Am. A 24(2), 430–443 (2007).
[Crossref]
[PubMed]
P. B. Bareil, Y. Sheng, Y. Q. Chen, and A. Chiou, “Calculation of spherical red blood cell deformation in a dual-beam optical stretcher,” Opt. Express 15(24), 16029–16034 (2007).
[Crossref]
[PubMed]
P. Liu and B. Lu, “Phase singularities of the transverse field component of high numerical aperture dark-hollow Gaussian beams in the focal region,” Opt. Commun. 272(1), 1–8 (2007).
[Crossref]
Z. Gong, Z. Wang, Y. M. Li, L. R. Lou, and S. H. Xu, “Axial deviation of an optically trapped particle in trapping force calibration using the drag force method,” Opt. Commun. 273(1), 37–42 (2007).
[Crossref]
F. Xu, K. F. Ren, G. Gouesbet, X. S. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026613 (2007).
[Crossref]
[PubMed]
T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. Soc. Am. A 9(8), S196–S203 (2007).
[Crossref]
X. Sheng-Hua, L. Yin-Mei, and L. Li-Ren, “Systematical study of the trapping forces of optical tweezers formed by different types of optical ring beams,” Chin. Phys. 15(6), 1391–1397 (2006).
[Crossref]
G. Volpe, G. P. Singh, and D. Petrov, “Dynamics of a growing cell in an optical trap,” Appl. Phys. Lett. 88(23), 231106 (2006).
[Crossref]
J. C. Loudet, A. G. Yodh, and B. Pouligny, “Wetting and contact lines of micrometer-sized ellipsoids,” Phys. Rev. Lett. 97(1), 018304 (2006).
[Crossref]
[PubMed]
F. Merenda, G. Boer, J. Rohner, G. Delacrétaz, and R. P. Salathé, “Escape trajectories of single-beam optically trapped micro-particles in a transverse fluid flow,” Opt. Express 14(4), 1685–1699 (2006).
[Crossref]
[PubMed]
P. B Bareil, Y. L. Sheng, A. Chiou, P. B Bareil, Y. L. Sheng, and A. Chiou, “Local scattering stress distribution on surface of a spherical cell in optical stretcher,” Opt. Express 14(25), 12503–12509 (2006).
[Crossref]
[PubMed]
D. P. Cherney, T. E. Bridges, and J. M. Harris, “Optical trapping of unilamellar phospholipid vesicles: investigation of the effect of optical forces on the lipid membrane shape by confocal-Raman microscopy,” Anal. Chem. 76(17), 4920–4928 (2004).
[Crossref]
[PubMed]
S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).
T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, and A. I. Bishop, “Numerical modeling of optical trapping,” Comput. Phys. Commun. 142(1-3), 468–471 (2001).
[Crossref]
K. Shima, R. Omori, and A. Suzuki, “Forces of a single-beam gradient-force optical trap on dielectric spheroidal particles in the geometric-optics regime,” Jpn. J. Appl. Phys. 37(Part 1, No. 11), 6012–6015 (1998).
[Crossref]
L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[Crossref]
R. C. Gauthier, “Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,” J. Opt. Soc. Am. B 14(12), 3323–3333 (1997).
[Crossref]
M. Gu, P. C. Ke, and X. S. Gan, “Trapping force by a high numerical-aperture microscope objective obeying the sine condition,” Rev. Sci. Instrum. 68(10), 3666–3668 (1997).
[Crossref]
A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the Ray Optics Regime,” Biophys. J. 61(2), 569–582 (1992).
[Crossref]
[PubMed]
J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: Focal point positioning effects at resonance,” J. Appl. Phys. 65(8), 2900–2906 (1989).
[Crossref]
J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: Focal point positioning effects at resonance,” J. Appl. Phys. 65(8), 2900–2906 (1989).
[Crossref]
Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996).
[Crossref]
A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the Ray Optics Regime,” Biophys. J. 61(2), 569–582 (1992).
[Crossref]
[PubMed]
P. B Bareil, Y. L. Sheng, A. Chiou, P. B Bareil, Y. L. Sheng, and A. Chiou, “Local scattering stress distribution on surface of a spherical cell in optical stretcher,” Opt. Express 14(25), 12503–12509 (2006).
[Crossref]
[PubMed]
P. B Bareil, Y. L. Sheng, A. Chiou, P. B Bareil, Y. L. Sheng, and A. Chiou, “Local scattering stress distribution on surface of a spherical cell in optical stretcher,” Opt. Express 14(25), 12503–12509 (2006).
[Crossref]
[PubMed]
J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: Focal point positioning effects at resonance,” J. Appl. Phys. 65(8), 2900–2906 (1989).
[Crossref]
S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).
L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[Crossref]
T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, and A. I. Bishop, “Numerical modeling of optical trapping,” Comput. Phys. Commun. 142(1-3), 468–471 (2001).
[Crossref]
T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. Soc. Am. A 9(8), S196–S203 (2007).
[Crossref]
D. P. Cherney, T. E. Bridges, and J. M. Harris, “Optical trapping of unilamellar phospholipid vesicles: investigation of the effect of optical forces on the lipid membrane shape by confocal-Raman microscopy,” Anal. Chem. 76(17), 4920–4928 (2004).
[Crossref]
[PubMed]
F. Xu, K. F. Ren, G. Gouesbet, X. S. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026613 (2007).
[Crossref]
[PubMed]
J. G. Wu, Y. M. Li, D. Lu, Z. Liu, Z. D. Cheng, and L. Q. He, “Mesurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers,” Cryo Lett. 30, 89–95 (2009).
D. P. Cherney, T. E. Bridges, and J. M. Harris, “Optical trapping of unilamellar phospholipid vesicles: investigation of the effect of optical forces on the lipid membrane shape by confocal-Raman microscopy,” Anal. Chem. 76(17), 4920–4928 (2004).
[Crossref]
[PubMed]
P. B. Bareil, Y. Sheng, Y. Q. Chen, and A. Chiou, “Calculation of spherical red blood cell deformation in a dual-beam optical stretcher,” Opt. Express 15(24), 16029–16034 (2007).
[Crossref]
[PubMed]
P. B Bareil, Y. L. Sheng, A. Chiou, P. B Bareil, Y. L. Sheng, and A. Chiou, “Local scattering stress distribution on surface of a spherical cell in optical stretcher,” Opt. Express 14(25), 12503–12509 (2006).
[Crossref]
[PubMed]
P. B Bareil, Y. L. Sheng, A. Chiou, P. B Bareil, Y. L. Sheng, and A. Chiou, “Local scattering stress distribution on surface of a spherical cell in optical stretcher,” Opt. Express 14(25), 12503–12509 (2006).
[Crossref]
[PubMed]
M. Gu, P. C. Ke, and X. S. Gan, “Trapping force by a high numerical-aperture microscope objective obeying the sine condition,” Rev. Sci. Instrum. 68(10), 3666–3668 (1997).
[Crossref]
Z. Gong, Z. Wang, Y. M. Li, L. R. Lou, and S. H. Xu, “Axial deviation of an optically trapped particle in trapping force calibration using the drag force method,” Opt. Commun. 273(1), 37–42 (2007).
[Crossref]
F. Xu, K. F. Ren, G. Gouesbet, X. S. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026613 (2007).
[Crossref]
[PubMed]
K. F. Ren, G. Gréhan, and G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz-Mie theory,” Appl. Opt. 35(15), 2702–2710 (1996).
[Crossref]
[PubMed]
F. Xu, K. F. Ren, G. Gouesbet, X. S. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026613 (2007).
[Crossref]
[PubMed]
K. F. Ren, G. Gréhan, and G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz-Mie theory,” Appl. Opt. 35(15), 2702–2710 (1996).
[Crossref]
[PubMed]
M. Gu, P. C. Ke, and X. S. Gan, “Trapping force by a high numerical-aperture microscope objective obeying the sine condition,” Rev. Sci. Instrum. 68(10), 3666–3668 (1997).
[Crossref]
Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996).
[Crossref]
D. P. Cherney, T. E. Bridges, and J. M. Harris, “Optical trapping of unilamellar phospholipid vesicles: investigation of the effect of optical forces on the lipid membrane shape by confocal-Raman microscopy,” Anal. Chem. 76(17), 4920–4928 (2004).
[Crossref]
[PubMed]
J. G. Wu, Y. M. Li, D. Lu, Z. Liu, Z. D. Cheng, and L. Q. He, “Mesurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers,” Cryo Lett. 30, 89–95 (2009).
T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. Soc. Am. A 9(8), S196–S203 (2007).
[Crossref]
S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).
T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, and A. I. Bishop, “Numerical modeling of optical trapping,” Comput. Phys. Commun. 142(1-3), 468–471 (2001).
[Crossref]
M. Gu, P. C. Ke, and X. S. Gan, “Trapping force by a high numerical-aperture microscope objective obeying the sine condition,” Rev. Sci. Instrum. 68(10), 3666–3668 (1997).
[Crossref]
T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. Soc. Am. A 9(8), S196–S203 (2007).
[Crossref]
D. H. Li, J. X. Pu, and X. Q. Wang, “Radiation forces of a dielectric medium plate induced by a Gaussian beam,” Opt. Commun. 285(7), 1680–1683 (2012).
[Crossref]
J. G. Wu, Y. M. Li, D. Lu, Z. Liu, Z. D. Cheng, and L. Q. He, “Mesurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers,” Cryo Lett. 30, 89–95 (2009).
J. H. Zhou, H. L. Ren, J. Cai, and Y. M. Li, “Ray-tracing methodology: application of spatial analytic geometry in the ray-optic model of optical tweezers,” Appl. Opt. 47(33), 6307–6314 (2008).
[Crossref]
[PubMed]
Z. Gong, Z. Wang, Y. M. Li, L. R. Lou, and S. H. Xu, “Axial deviation of an optically trapped particle in trapping force calibration using the drag force method,” Opt. Commun. 273(1), 37–42 (2007).
[Crossref]
S. H. Xu, Y. M. Li, and L. R. Lou, “Axial optical trapping forces on two particles trapped simultaneously by optical tweezers,” Appl. Opt. 44(13), 2667–2672 (2005).
[Crossref]
[PubMed]
X. Sheng-Hua, L. Yin-Mei, and L. Li-Ren, “Systematical study of the trapping forces of optical tweezers formed by different types of optical ring beams,” Chin. Phys. 15(6), 1391–1397 (2006).
[Crossref]
P. Liu and B. Lu, “Phase singularities of the transverse field component of high numerical aperture dark-hollow Gaussian beams in the focal region,” Opt. Commun. 272(1), 1–8 (2007).
[Crossref]
J. G. Wu, Y. M. Li, D. Lu, Z. Liu, Z. D. Cheng, and L. Q. He, “Mesurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers,” Cryo Lett. 30, 89–95 (2009).
T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. Soc. Am. A 9(8), S196–S203 (2007).
[Crossref]
Z. Gong, Z. Wang, Y. M. Li, L. R. Lou, and S. H. Xu, “Axial deviation of an optically trapped particle in trapping force calibration using the drag force method,” Opt. Commun. 273(1), 37–42 (2007).
[Crossref]
S. H. Xu, Y. M. Li, and L. R. Lou, “Axial optical trapping forces on two particles trapped simultaneously by optical tweezers,” Appl. Opt. 44(13), 2667–2672 (2005).
[Crossref]
[PubMed]
J. C. Loudet, A. G. Yodh, and B. Pouligny, “Wetting and contact lines of micrometer-sized ellipsoids,” Phys. Rev. Lett. 97(1), 018304 (2006).
[Crossref]
[PubMed]
P. Liu and B. Lu, “Phase singularities of the transverse field component of high numerical aperture dark-hollow Gaussian beams in the focal region,” Opt. Commun. 272(1), 1–8 (2007).
[Crossref]
J. G. Wu, Y. M. Li, D. Lu, Z. Liu, Z. D. Cheng, and L. Q. He, “Mesurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers,” Cryo Lett. 30, 89–95 (2009).
T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. Soc. Am. A 9(8), S196–S203 (2007).
[Crossref]
S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).
T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, and A. I. Bishop, “Numerical modeling of optical trapping,” Comput. Phys. Commun. 142(1-3), 468–471 (2001).
[Crossref]
L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[Crossref]
K. Shima, R. Omori, and A. Suzuki, “Forces of a single-beam gradient-force optical trap on dielectric spheroidal particles in the geometric-optics regime,” Jpn. J. Appl. Phys. 37(Part 1, No. 11), 6012–6015 (1998).
[Crossref]
G. Volpe, G. P. Singh, and D. Petrov, “Dynamics of a growing cell in an optical trap,” Appl. Phys. Lett. 88(23), 231106 (2006).
[Crossref]
J. C. Loudet, A. G. Yodh, and B. Pouligny, “Wetting and contact lines of micrometer-sized ellipsoids,” Phys. Rev. Lett. 97(1), 018304 (2006).
[Crossref]
[PubMed]
D. H. Li, J. X. Pu, and X. Q. Wang, “Radiation forces of a dielectric medium plate induced by a Gaussian beam,” Opt. Commun. 285(7), 1680–1683 (2012).
[Crossref]
F. Xu, K. F. Ren, G. Gouesbet, X. S. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026613 (2007).
[Crossref]
[PubMed]
K. F. Ren, G. Gréhan, and G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz-Mie theory,” Appl. Opt. 35(15), 2702–2710 (1996).
[Crossref]
[PubMed]
T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. Soc. Am. A 9(8), S196–S203 (2007).
[Crossref]
S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).
T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, and A. I. Bishop, “Numerical modeling of optical trapping,” Comput. Phys. Commun. 142(1-3), 468–471 (2001).
[Crossref]
J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: Focal point positioning effects at resonance,” J. Appl. Phys. 65(8), 2900–2906 (1989).
[Crossref]
P. B Bareil, Y. L. Sheng, A. Chiou, P. B Bareil, Y. L. Sheng, and A. Chiou, “Local scattering stress distribution on surface of a spherical cell in optical stretcher,” Opt. Express 14(25), 12503–12509 (2006).
[Crossref]
[PubMed]
P. B Bareil, Y. L. Sheng, A. Chiou, P. B Bareil, Y. L. Sheng, and A. Chiou, “Local scattering stress distribution on surface of a spherical cell in optical stretcher,” Opt. Express 14(25), 12503–12509 (2006).
[Crossref]
[PubMed]
X. Sheng-Hua, L. Yin-Mei, and L. Li-Ren, “Systematical study of the trapping forces of optical tweezers formed by different types of optical ring beams,” Chin. Phys. 15(6), 1391–1397 (2006).
[Crossref]
K. Shima, R. Omori, and A. Suzuki, “Forces of a single-beam gradient-force optical trap on dielectric spheroidal particles in the geometric-optics regime,” Jpn. J. Appl. Phys. 37(Part 1, No. 11), 6012–6015 (1998).
[Crossref]
G. Volpe, G. P. Singh, and D. Petrov, “Dynamics of a growing cell in an optical trap,” Appl. Phys. Lett. 88(23), 231106 (2006).
[Crossref]
T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. Soc. Am. A 9(8), S196–S203 (2007).
[Crossref]
K. Shima, R. Omori, and A. Suzuki, “Forces of a single-beam gradient-force optical trap on dielectric spheroidal particles in the geometric-optics regime,” Jpn. J. Appl. Phys. 37(Part 1, No. 11), 6012–6015 (1998).
[Crossref]
G. Volpe, G. P. Singh, and D. Petrov, “Dynamics of a growing cell in an optical trap,” Appl. Phys. Lett. 88(23), 231106 (2006).
[Crossref]
D. H. Li, J. X. Pu, and X. Q. Wang, “Radiation forces of a dielectric medium plate induced by a Gaussian beam,” Opt. Commun. 285(7), 1680–1683 (2012).
[Crossref]
Z. Gong, Z. Wang, Y. M. Li, L. R. Lou, and S. H. Xu, “Axial deviation of an optically trapped particle in trapping force calibration using the drag force method,” Opt. Commun. 273(1), 37–42 (2007).
[Crossref]
J. G. Wu, Y. M. Li, D. Lu, Z. Liu, Z. D. Cheng, and L. Q. He, “Mesurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers,” Cryo Lett. 30, 89–95 (2009).
L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[Crossref]
F. Xu, K. F. Ren, G. Gouesbet, X. S. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026613 (2007).
[Crossref]
[PubMed]
Z. Gong, Z. Wang, Y. M. Li, L. R. Lou, and S. H. Xu, “Axial deviation of an optically trapped particle in trapping force calibration using the drag force method,” Opt. Commun. 273(1), 37–42 (2007).
[Crossref]
S. H. Xu, Y. M. Li, and L. R. Lou, “Axial optical trapping forces on two particles trapped simultaneously by optical tweezers,” Appl. Opt. 44(13), 2667–2672 (2005).
[Crossref]
[PubMed]
X. Sheng-Hua, L. Yin-Mei, and L. Li-Ren, “Systematical study of the trapping forces of optical tweezers formed by different types of optical ring beams,” Chin. Phys. 15(6), 1391–1397 (2006).
[Crossref]
J. C. Loudet, A. G. Yodh, and B. Pouligny, “Wetting and contact lines of micrometer-sized ellipsoids,” Phys. Rev. Lett. 97(1), 018304 (2006).
[Crossref]
[PubMed]
D. P. Cherney, T. E. Bridges, and J. M. Harris, “Optical trapping of unilamellar phospholipid vesicles: investigation of the effect of optical forces on the lipid membrane shape by confocal-Raman microscopy,” Anal. Chem. 76(17), 4920–4928 (2004).
[Crossref]
[PubMed]
K. F. Ren, G. Gréhan, and G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz-Mie theory,” Appl. Opt. 35(15), 2702–2710 (1996).
[Crossref]
[PubMed]
J. S. Kim and S. W. Kim, “Dynamic motion analysis of optically trapped nonspherical particles with off-axis position and arbitrary orientation,” Appl. Opt. 39(24), 4327–4332 (2000).
[Crossref]
[PubMed]
S. H. Xu, Y. M. Li, and L. R. Lou, “Axial optical trapping forces on two particles trapped simultaneously by optical tweezers,” Appl. Opt. 44(13), 2667–2672 (2005).
[Crossref]
[PubMed]
J. H. Zhou, H. L. Ren, J. Cai, and Y. M. Li, “Ray-tracing methodology: application of spatial analytic geometry in the ray-optic model of optical tweezers,” Appl. Opt. 47(33), 6307–6314 (2008).
[Crossref]
[PubMed]
E. Aspnes, T. D. Milster, and K. Visscher, “Optical force model based on sequential ray tracing,” Appl. Opt. 48(9), 1642–1650 (2009).
[Crossref]
[PubMed]
G. Volpe, G. P. Singh, and D. Petrov, “Dynamics of a growing cell in an optical trap,” Appl. Phys. Lett. 88(23), 231106 (2006).
[Crossref]
A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the Ray Optics Regime,” Biophys. J. 61(2), 569–582 (1992).
[Crossref]
[PubMed]
X. Sheng-Hua, L. Yin-Mei, and L. Li-Ren, “Systematical study of the trapping forces of optical tweezers formed by different types of optical ring beams,” Chin. Phys. 15(6), 1391–1397 (2006).
[Crossref]
T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, and A. I. Bishop, “Numerical modeling of optical trapping,” Comput. Phys. Commun. 142(1-3), 468–471 (2001).
[Crossref]
J. G. Wu, Y. M. Li, D. Lu, Z. Liu, Z. D. Cheng, and L. Q. He, “Mesurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers,” Cryo Lett. 30, 89–95 (2009).
J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: Focal point positioning effects at resonance,” J. Appl. Phys. 65(8), 2900–2906 (1989).
[Crossref]
S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50, 1581–1590 (2003).
T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. Soc. Am. A 9(8), S196–S203 (2007).
[Crossref]
P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive-indexes - an integral-representation,” J. Opt. Soc. Am. A 12(2), 325–332 (1995).
[Crossref]
S. H. Simpson and S. Hanna, “Optical trapping of spheroidal particles in Gaussian beams,” J. Opt. Soc. Am. A 24(2), 430–443 (2007).
[Crossref]
[PubMed]
K. Shima, R. Omori, and A. Suzuki, “Forces of a single-beam gradient-force optical trap on dielectric spheroidal particles in the geometric-optics regime,” Jpn. J. Appl. Phys. 37(Part 1, No. 11), 6012–6015 (1998).
[Crossref]
D. H. Li, J. X. Pu, and X. Q. Wang, “Radiation forces of a dielectric medium plate induced by a Gaussian beam,” Opt. Commun. 285(7), 1680–1683 (2012).
[Crossref]
Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996).
[Crossref]
P. Liu and B. Lu, “Phase singularities of the transverse field component of high numerical aperture dark-hollow Gaussian beams in the focal region,” Opt. Commun. 272(1), 1–8 (2007).
[Crossref]
Z. Gong, Z. Wang, Y. M. Li, L. R. Lou, and S. H. Xu, “Axial deviation of an optically trapped particle in trapping force calibration using the drag force method,” Opt. Commun. 273(1), 37–42 (2007).
[Crossref]
P. B. Bareil, Y. Sheng, Y. Q. Chen, and A. Chiou, “Calculation of spherical red blood cell deformation in a dual-beam optical stretcher,” Opt. Express 15(24), 16029–16034 (2007).
[Crossref]
[PubMed]
Z. J. Li, Z. S. Wu, and Q. C. Shang, “Calculation of radiation forces exerted on a uniaxial anisotropic sphere by an off-axis incident Gaussian beam,” Opt. Express 19(17), 16044–16057 (2011).
[Crossref]
[PubMed]
F. Merenda, G. Boer, J. Rohner, G. Delacrétaz, and R. P. Salathé, “Escape trajectories of single-beam optically trapped micro-particles in a transverse fluid flow,” Opt. Express 14(4), 1685–1699 (2006).
[Crossref]
[PubMed]
P. B Bareil, Y. L. Sheng, A. Chiou, P. B Bareil, Y. L. Sheng, and A. Chiou, “Local scattering stress distribution on surface of a spherical cell in optical stretcher,” Opt. Express 14(25), 12503–12509 (2006).
[Crossref]
[PubMed]
S. H. Simpson and S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84(5), 053808 (2011).
[Crossref]
F. Xu, K. F. Ren, G. Gouesbet, X. S. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026613 (2007).
[Crossref]
[PubMed]
L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[Crossref]
J. C. Loudet, A. G. Yodh, and B. Pouligny, “Wetting and contact lines of micrometer-sized ellipsoids,” Phys. Rev. Lett. 97(1), 018304 (2006).
[Crossref]
[PubMed]
M. Gu, P. C. Ke, and X. S. Gan, “Trapping force by a high numerical-aperture microscope objective obeying the sine condition,” Rev. Sci. Instrum. 68(10), 3666–3668 (1997).
[Crossref]
M. Born and E. Wolf, “Reflectivity and transmissivity,” in Principles of Optics (Cambridge University Press, 1999).