Abstract

We developed a four-channel photon counting based Stokes-polarimeter for spatial characterization of polarization effects in second harmonic generation (SHG). We have implemented a calibration technique allowing quantitative measurement of polarization parameters, such as the degree of polarization (DOP), degree of linear polarization (DOLP), degree of circular polarization (DOCP), as well as anisotropy from the acquired Stokes parameters. The technique is used as contrast mechanism to characterize the polarization properties from two potassium dihydrogen phosphate (KDP) micro-crystals and collagen type-I in SHG microscopy.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
    [CrossRef] [PubMed]
  2. A. D. Slepkov, A. Ridsdale, H. N. Wan, M. H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F. J. Kao, and A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
    [CrossRef] [PubMed]
  3. E. Bélanger, S. Bégin, S. Laffray, Y. De Koninck, R. Vallée, and D. Côté, “Quantitative myelin imaging with coherent anti-Stokes Raman scattering microscopy: alleviating the excitation polarization dependence with circularly polarized laser beams,” Opt. Express 17(21), 18419–18432 (2009).
    [CrossRef] [PubMed]
  4. F. Lu, W. Zheng, and Z. Huang, “Heterodyne polarization coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92(12), 123901 (2008).
    [CrossRef]
  5. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
    [CrossRef] [PubMed]
  6. D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
    [CrossRef] [PubMed]
  7. R. W. Boyd, Nonlinear Optics(Academic press, San Diego, CA, 1992).
  8. S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
    [CrossRef] [PubMed]
  9. R. Gauderon, P. B. Lukins, and C. J. R. Sheppard, “Three-dimensional second-harmonic generation imaging with femtosecond laser pulses,” Opt. Lett. 23(15), 1209–1211 (1998).
    [CrossRef] [PubMed]
  10. M. Strupler, A. M. Pena, M. Hernest, P. L. Tharaux, J. L. Martin, E. Beaurepaire, and M. C. Schanne-Klein, “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Opt. Express 15(7), 4054–4065 (2007).
    [CrossRef] [PubMed]
  11. Y. Sun, W. L. Chen, S. J. Lin, S. H. Jee, Y. F. Chen, L. C. Lin, P. T. C. So, and C. Y. Dong, “Investigating mechanisms of collagen thermal denaturation by high resolution second-harmonic generation imaging,” Biophys. J. 91(7), 2620–2625 (2006).
    [CrossRef] [PubMed]
  12. V. Da Costa, R. Wei, R. Lim, C. H. Sun, J. J. Brown, and B. J. F. Wong, “Nondestructive imaging of live human keloid and facial tissue using multiphoton microscopy,” Arch. Facial Plast. Surg. 10(1), 38–43 (2008).
    [CrossRef] [PubMed]
  13. M. Han, G. Giese, and J. F. Bille, “Second harmonic generation imaging of collagen fibrils in cornea and sclera,” Opt. Express 13(15), 5791–5797 (2005).
    [CrossRef] [PubMed]
  14. P. Matteini, F. Ratto, F. Rossi, R. Cicchi, C. Stringari, D. Kapsokalyvas, F. S. Pavone, and R. Pini, “Photothermally-induced disordered patterns of corneal collagen revealed by SHG imaging,” Opt. Express 17(6), 4868–4878 (2009).
    [CrossRef] [PubMed]
  15. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
    [CrossRef] [PubMed]
  16. P. J. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal. Chem. 83(9), 3224–3231 (2011).
    [PubMed]
  17. X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7(4), 654–669 (2012).
    [CrossRef] [PubMed]
  18. E. Hecht, Optics, 4th ed. (Addison Wesley, 2002).
  19. M. J. Walker, “Matrix calculus and the Stokes parameters of polarized radiation,” Am. J. Phys. 22(4), 170–174 (1954).
    [CrossRef]
  20. W. Bickel and W. Bailey, “Stokes Vectors, Mueller matrices and polarized scattered light,” Am. J. Phys. 53(5), 468–478 (1985).
    [CrossRef]
  21. M. R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010).
    [CrossRef] [PubMed]
  22. N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissue,” Opt. Commun. 283(6), 1200–1208 (2010).
    [CrossRef]
  23. S. Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13(5), 1106–1113 (1996).
    [CrossRef]
  24. E. Compain, S. Poirier, and B. Drevillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters, and mueller-matrix ellipsometers,” Appl. Opt. 38(16), 3490–3502 (1999).
    [CrossRef] [PubMed]
  25. I. Berezhnyy and A. Dogariu, “Time-resolved Mueller matrix imaging polarimetry,” Opt. Express 12(19), 4635–4649 (2004).
    [CrossRef] [PubMed]
  26. L. M. S. Aas, P. G. Ellingsen, and M. Kildemo, “Near infra-red Mueller matrix imaging system and application to retardance imaging of strain,” Thin Solid Films 519(9), 2737–2741 (2011).
    [CrossRef]
  27. P. Schön, F. Munhoz, A. Gasecka, S. Brustlein, and S. Brasselet, “Polarization distortion effects in polarimetric two-photon microscopy,” Opt. Express 16(25), 20891–20901 (2008).
    [CrossRef] [PubMed]
  28. E. Y. S. Yew and C. R. J. Sheppard, “Effects of axial field components on second harmonic generation microscopy,” Opt. Express 14(3), 1167–1174 (2006).
    [CrossRef] [PubMed]
  29. P. Schön, M. Behrndt, D. Ait-Belkacem, H. Rigneault, and S. Brasselet, “Polarization and phase pulse shaping applied to structural contrast in nonlinear microscopy imaging,” Phys. Rev. A 81(1), 013809 (2010).
    [CrossRef]
  30. R. M. A. Azzam, “Arrangement of four photodetectors for measuring the state of polarization of light,” Opt. Lett. 10(7), 309–311 (1985).
    [CrossRef] [PubMed]
  31. S. Brasselet, D. Aït-Belkacem, A. Gasecka, F. Munhoz, S. Brustlein, and S. Brasselet, “Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging,” Opt. Express 18(14), 14859–14870 (2010).
    [CrossRef] [PubMed]
  32. L. Fu and M. Gu, “Polarization anisotropy in fiber-optic second harmonic generation microscopy,” Opt. Express 16(7), 5000–5006 (2008).
    [CrossRef] [PubMed]
  33. C. W. Sun, C. C. Yang, and Y. W. Kiang, “Optical imaging based on time-resolved Stokes vectors in filamentous tissues,” Appl. Opt. 42(4), 750–754 (2003).
    [CrossRef] [PubMed]
  34. J. G. Webster, “Polarization measurement,” in The Measurement, Instrumentation and Sensors Handbook, (CRC Press, 1998), Chap. 60.
  35. M. Wolman and F. H. Kasten, “Polarized light microscopy in the study of the molecular structure of collagen and reticulin,” Histochemistry 85(1), 41–49 (1986).
    [CrossRef] [PubMed]
  36. M. R. Foreman, C. Macias Romero, and P. Török, “A priori information and optimisation in polarimetry,” Opt. Express 16(19), 15212–15227 (2008).
    [CrossRef] [PubMed]
  37. J. Qiu, Modern Optics Laboratory, National Yang-Ming University, 155 Li-Nong St, Taipei 112, Taiwan and N. Mazumder are preparing a manuscript to be called “Stokes vector formalism based nonlinear optical microscopy.”
  38. S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
    [CrossRef] [PubMed]
  39. R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
    [CrossRef] [PubMed]
  40. E. W. Meijer, E. E. Havinga, and G. L. J. A. Rikken, “Second-harmonic generation in centrosymmetric crystals of chiral molecules,” Phys. Rev. Lett. 65(1), 37–39 (1990).
    [CrossRef] [PubMed]
  41. J. C. Mansfield, C. P. Winlove, J. Moger, and S. J. Matcher, “Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy,” J. Biomed. Opt. 13(4), 044020 (2008).
    [CrossRef] [PubMed]
  42. A. Periasamy, D. H. Burns, D. N. Holdren, G. H. Pollack, and K. Trombitás, “A-band shortening in single fibers of frog skeletal muscle,” Biophys. J. 57(4), 815–828 (1990).
    [CrossRef] [PubMed]
  43. W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009).
    [CrossRef] [PubMed]

2012 (1)

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7(4), 654–669 (2012).
[CrossRef] [PubMed]

2011 (3)

A. D. Slepkov, A. Ridsdale, H. N. Wan, M. H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F. J. Kao, and A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[CrossRef] [PubMed]

L. M. S. Aas, P. G. Ellingsen, and M. Kildemo, “Near infra-red Mueller matrix imaging system and application to retardance imaging of strain,” Thin Solid Films 519(9), 2737–2741 (2011).
[CrossRef]

P. J. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal. Chem. 83(9), 3224–3231 (2011).
[PubMed]

2010 (4)

P. Schön, M. Behrndt, D. Ait-Belkacem, H. Rigneault, and S. Brasselet, “Polarization and phase pulse shaping applied to structural contrast in nonlinear microscopy imaging,” Phys. Rev. A 81(1), 013809 (2010).
[CrossRef]

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissue,” Opt. Commun. 283(6), 1200–1208 (2010).
[CrossRef]

M. R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010).
[CrossRef] [PubMed]

S. Brasselet, D. Aït-Belkacem, A. Gasecka, F. Munhoz, S. Brustlein, and S. Brasselet, “Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging,” Opt. Express 18(14), 14859–14870 (2010).
[CrossRef] [PubMed]

2009 (4)

P. Matteini, F. Ratto, F. Rossi, R. Cicchi, C. Stringari, D. Kapsokalyvas, F. S. Pavone, and R. Pini, “Photothermally-induced disordered patterns of corneal collagen revealed by SHG imaging,” Opt. Express 17(6), 4868–4878 (2009).
[CrossRef] [PubMed]

E. Bélanger, S. Bégin, S. Laffray, Y. De Koninck, R. Vallée, and D. Côté, “Quantitative myelin imaging with coherent anti-Stokes Raman scattering microscopy: alleviating the excitation polarization dependence with circularly polarized laser beams,” Opt. Express 17(21), 18419–18432 (2009).
[CrossRef] [PubMed]

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[CrossRef] [PubMed]

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

2008 (6)

J. C. Mansfield, C. P. Winlove, J. Moger, and S. J. Matcher, “Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy,” J. Biomed. Opt. 13(4), 044020 (2008).
[CrossRef] [PubMed]

L. Fu and M. Gu, “Polarization anisotropy in fiber-optic second harmonic generation microscopy,” Opt. Express 16(7), 5000–5006 (2008).
[CrossRef] [PubMed]

M. R. Foreman, C. Macias Romero, and P. Török, “A priori information and optimisation in polarimetry,” Opt. Express 16(19), 15212–15227 (2008).
[CrossRef] [PubMed]

P. Schön, F. Munhoz, A. Gasecka, S. Brustlein, and S. Brasselet, “Polarization distortion effects in polarimetric two-photon microscopy,” Opt. Express 16(25), 20891–20901 (2008).
[CrossRef] [PubMed]

F. Lu, W. Zheng, and Z. Huang, “Heterodyne polarization coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92(12), 123901 (2008).
[CrossRef]

V. Da Costa, R. Wei, R. Lim, C. H. Sun, J. J. Brown, and B. J. F. Wong, “Nondestructive imaging of live human keloid and facial tissue using multiphoton microscopy,” Arch. Facial Plast. Surg. 10(1), 38–43 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (4)

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[CrossRef] [PubMed]

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[CrossRef] [PubMed]

Y. Sun, W. L. Chen, S. J. Lin, S. H. Jee, Y. F. Chen, L. C. Lin, P. T. C. So, and C. Y. Dong, “Investigating mechanisms of collagen thermal denaturation by high resolution second-harmonic generation imaging,” Biophys. J. 91(7), 2620–2625 (2006).
[CrossRef] [PubMed]

E. Y. S. Yew and C. R. J. Sheppard, “Effects of axial field components on second harmonic generation microscopy,” Opt. Express 14(3), 1167–1174 (2006).
[CrossRef] [PubMed]

2005 (2)

M. Han, G. Giese, and J. F. Bille, “Second harmonic generation imaging of collagen fibrils in cornea and sclera,” Opt. Express 13(15), 5791–5797 (2005).
[CrossRef] [PubMed]

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[CrossRef] [PubMed]

2004 (2)

I. Berezhnyy and A. Dogariu, “Time-resolved Mueller matrix imaging polarimetry,” Opt. Express 12(19), 4635–4649 (2004).
[CrossRef] [PubMed]

S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

2003 (3)

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

C. W. Sun, C. C. Yang, and Y. W. Kiang, “Optical imaging based on time-resolved Stokes vectors in filamentous tissues,” Appl. Opt. 42(4), 750–754 (2003).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

1996 (1)

1990 (2)

E. W. Meijer, E. E. Havinga, and G. L. J. A. Rikken, “Second-harmonic generation in centrosymmetric crystals of chiral molecules,” Phys. Rev. Lett. 65(1), 37–39 (1990).
[CrossRef] [PubMed]

A. Periasamy, D. H. Burns, D. N. Holdren, G. H. Pollack, and K. Trombitás, “A-band shortening in single fibers of frog skeletal muscle,” Biophys. J. 57(4), 815–828 (1990).
[CrossRef] [PubMed]

1986 (1)

M. Wolman and F. H. Kasten, “Polarized light microscopy in the study of the molecular structure of collagen and reticulin,” Histochemistry 85(1), 41–49 (1986).
[CrossRef] [PubMed]

1985 (2)

R. M. A. Azzam, “Arrangement of four photodetectors for measuring the state of polarization of light,” Opt. Lett. 10(7), 309–311 (1985).
[CrossRef] [PubMed]

W. Bickel and W. Bailey, “Stokes Vectors, Mueller matrices and polarized scattered light,” Am. J. Phys. 53(5), 468–478 (1985).
[CrossRef]

1954 (1)

M. J. Walker, “Matrix calculus and the Stokes parameters of polarized radiation,” Am. J. Phys. 22(4), 170–174 (1954).
[CrossRef]

Aas, L. M. S.

L. M. S. Aas, P. G. Ellingsen, and M. Kildemo, “Near infra-red Mueller matrix imaging system and application to retardance imaging of strain,” Thin Solid Films 519(9), 2737–2741 (2011).
[CrossRef]

Ait-Belkacem, D.

P. Schön, M. Behrndt, D. Ait-Belkacem, H. Rigneault, and S. Brasselet, “Polarization and phase pulse shaping applied to structural contrast in nonlinear microscopy imaging,” Phys. Rev. A 81(1), 013809 (2010).
[CrossRef]

Aït-Belkacem, D.

Amat-Roldan, I.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[CrossRef] [PubMed]

Antonelli, M. R.

Artigas, D.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[CrossRef] [PubMed]

Azzam, R. M. A.

Bailey, W.

W. Bickel and W. Bailey, “Stokes Vectors, Mueller matrices and polarized scattered light,” Am. J. Phys. 53(5), 468–478 (1985).
[CrossRef]

Beaurepaire, E.

M. Strupler, A. M. Pena, M. Hernest, P. L. Tharaux, J. L. Martin, E. Beaurepaire, and M. C. Schanne-Klein, “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Opt. Express 15(7), 4054–4065 (2007).
[CrossRef] [PubMed]

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[CrossRef] [PubMed]

Bégin, S.

Behrndt, M.

P. Schön, M. Behrndt, D. Ait-Belkacem, H. Rigneault, and S. Brasselet, “Polarization and phase pulse shaping applied to structural contrast in nonlinear microscopy imaging,” Phys. Rev. A 81(1), 013809 (2010).
[CrossRef]

Bélanger, E.

Benali, A.

Berezhnyy, I.

Bickel, W.

W. Bickel and W. Bailey, “Stokes Vectors, Mueller matrices and polarized scattered light,” Am. J. Phys. 53(5), 468–478 (1985).
[CrossRef]

Bille, J. F.

Brasselet, S.

Brown, J. J.

V. Da Costa, R. Wei, R. Lim, C. H. Sun, J. J. Brown, and B. J. F. Wong, “Nondestructive imaging of live human keloid and facial tissue using multiphoton microscopy,” Arch. Facial Plast. Surg. 10(1), 38–43 (2008).
[CrossRef] [PubMed]

Brustlein, S.

Burns, D. H.

A. Periasamy, D. H. Burns, D. N. Holdren, G. H. Pollack, and K. Trombitás, “A-band shortening in single fibers of frog skeletal muscle,” Biophys. J. 57(4), 815–828 (1990).
[CrossRef] [PubMed]

Campagnola, P. J.

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7(4), 654–669 (2012).
[CrossRef] [PubMed]

P. J. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal. Chem. 83(9), 3224–3231 (2011).
[PubMed]

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[CrossRef] [PubMed]

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

Chen, S. Y.

S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

Chen, W. L.

Y. Sun, W. L. Chen, S. J. Lin, S. H. Jee, Y. F. Chen, L. C. Lin, P. T. C. So, and C. Y. Dong, “Investigating mechanisms of collagen thermal denaturation by high resolution second-harmonic generation imaging,” Biophys. J. 91(7), 2620–2625 (2006).
[CrossRef] [PubMed]

Chen, X.

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7(4), 654–669 (2012).
[CrossRef] [PubMed]

Chen, Y. C.

S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

Chen, Y. F.

Y. Sun, W. L. Chen, S. J. Lin, S. H. Jee, Y. F. Chen, L. C. Lin, P. T. C. So, and C. Y. Dong, “Investigating mechanisms of collagen thermal denaturation by high resolution second-harmonic generation imaging,” Biophys. J. 91(7), 2620–2625 (2006).
[CrossRef] [PubMed]

Chern, G. W.

S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

Chipman, R. A.

Chong, S.

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

Christie, R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Chu, S. W.

S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

Cicchi, R.

Combettes, L.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[CrossRef] [PubMed]

Compain, E.

Côté, D.

Da Costa, V.

V. Da Costa, R. Wei, R. Lim, C. H. Sun, J. J. Brown, and B. J. F. Wong, “Nondestructive imaging of live human keloid and facial tissue using multiphoton microscopy,” Arch. Facial Plast. Surg. 10(1), 38–43 (2008).
[CrossRef] [PubMed]

De Koninck, Y.

De Martino, A.

Débarre, D.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[CrossRef] [PubMed]

Dogariu, A.

Dong, C. Y.

Y. Sun, W. L. Chen, S. J. Lin, S. H. Jee, Y. F. Chen, L. C. Lin, P. T. C. So, and C. Y. Dong, “Investigating mechanisms of collagen thermal denaturation by high resolution second-harmonic generation imaging,” Biophys. J. 91(7), 2620–2625 (2006).
[CrossRef] [PubMed]

Drevillon, B.

Ellingsen, P. G.

L. M. S. Aas, P. G. Ellingsen, and M. Kildemo, “Near infra-red Mueller matrix imaging system and application to retardance imaging of strain,” Thin Solid Films 519(9), 2737–2741 (2011).
[CrossRef]

Fabre, A.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[CrossRef] [PubMed]

Foreman, M. R.

Fu, L.

Gasecka, A.

Gauderon, R.

Gayet, B.

Ghosh, N.

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissue,” Opt. Commun. 283(6), 1200–1208 (2010).
[CrossRef]

Giese, G.

Gu, M.

Han, M.

Havinga, E. E.

E. W. Meijer, E. E. Havinga, and G. L. J. A. Rikken, “Second-harmonic generation in centrosymmetric crystals of chiral molecules,” Phys. Rev. Lett. 65(1), 37–39 (1990).
[CrossRef] [PubMed]

Hernest, M.

Holdren, D. N.

A. Periasamy, D. H. Burns, D. N. Holdren, G. H. Pollack, and K. Trombitás, “A-band shortening in single fibers of frog skeletal muscle,” Biophys. J. 57(4), 815–828 (1990).
[CrossRef] [PubMed]

Holtom, G. R.

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

Huang, Z.

F. Lu, W. Zheng, and Z. Huang, “Heterodyne polarization coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92(12), 123901 (2008).
[CrossRef]

Hyman, B. T.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Jee, S. H.

Y. Sun, W. L. Chen, S. J. Lin, S. H. Jee, Y. F. Chen, L. C. Lin, P. T. C. So, and C. Y. Dong, “Investigating mechanisms of collagen thermal denaturation by high resolution second-harmonic generation imaging,” Biophys. J. 91(7), 2620–2625 (2006).
[CrossRef] [PubMed]

Kao, F. J.

A. D. Slepkov, A. Ridsdale, H. N. Wan, M. H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F. J. Kao, and A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[CrossRef] [PubMed]

Kapsokalyvas, D.

Kasten, F. H.

M. Wolman and F. H. Kasten, “Polarized light microscopy in the study of the molecular structure of collagen and reticulin,” Histochemistry 85(1), 41–49 (1986).
[CrossRef] [PubMed]

Kiang, Y. W.

Kildemo, M.

L. M. S. Aas, P. G. Ellingsen, and M. Kildemo, “Near infra-red Mueller matrix imaging system and application to retardance imaging of strain,” Thin Solid Films 519(9), 2737–2741 (2011).
[CrossRef]

Laffray, S.

Lim, R.

V. Da Costa, R. Wei, R. Lim, C. H. Sun, J. J. Brown, and B. J. F. Wong, “Nondestructive imaging of live human keloid and facial tissue using multiphoton microscopy,” Arch. Facial Plast. Surg. 10(1), 38–43 (2008).
[CrossRef] [PubMed]

Lin, B. L.

S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

Lin, L. C.

Y. Sun, W. L. Chen, S. J. Lin, S. H. Jee, Y. F. Chen, L. C. Lin, P. T. C. So, and C. Y. Dong, “Investigating mechanisms of collagen thermal denaturation by high resolution second-harmonic generation imaging,” Biophys. J. 91(7), 2620–2625 (2006).
[CrossRef] [PubMed]

Lin, S. J.

Y. Sun, W. L. Chen, S. J. Lin, S. H. Jee, Y. F. Chen, L. C. Lin, P. T. C. So, and C. Y. Dong, “Investigating mechanisms of collagen thermal denaturation by high resolution second-harmonic generation imaging,” Biophys. J. 91(7), 2620–2625 (2006).
[CrossRef] [PubMed]

Loew, L. M.

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

Loza-Alvarez, P.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[CrossRef] [PubMed]

Lu, F.

F. Lu, W. Zheng, and Z. Huang, “Heterodyne polarization coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92(12), 123901 (2008).
[CrossRef]

Lu, S.

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

Lu, S. Y.

Lukins, P. B.

Macias Romero, C.

Mansfield, J. C.

J. C. Mansfield, C. P. Winlove, J. Moger, and S. J. Matcher, “Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy,” J. Biomed. Opt. 13(4), 044020 (2008).
[CrossRef] [PubMed]

Martin, J. L.

Matcher, S. J.

J. C. Mansfield, C. P. Winlove, J. Moger, and S. J. Matcher, “Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy,” J. Biomed. Opt. 13(4), 044020 (2008).
[CrossRef] [PubMed]

Matteini, P.

Meijer, E. W.

E. W. Meijer, E. E. Havinga, and G. L. J. A. Rikken, “Second-harmonic generation in centrosymmetric crystals of chiral molecules,” Phys. Rev. Lett. 65(1), 37–39 (1990).
[CrossRef] [PubMed]

Millard, A. C.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[CrossRef] [PubMed]

Min, W.

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

Moffatt, D. J.

A. D. Slepkov, A. Ridsdale, H. N. Wan, M. H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F. J. Kao, and A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[CrossRef] [PubMed]

Moger, J.

J. C. Mansfield, C. P. Winlove, J. Moger, and S. J. Matcher, “Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy,” J. Biomed. Opt. 13(4), 044020 (2008).
[CrossRef] [PubMed]

Mohler, W. A.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[CrossRef] [PubMed]

Munhoz, F.

Nadiarynkh, O.

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7(4), 654–669 (2012).
[CrossRef] [PubMed]

Nikitin, A. Y.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Novikova, T.

Pavone, F. S.

Pegoraro, A. F.

A. D. Slepkov, A. Ridsdale, H. N. Wan, M. H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F. J. Kao, and A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[CrossRef] [PubMed]

Pena, A. M.

M. Strupler, A. M. Pena, M. Hernest, P. L. Tharaux, J. L. Martin, E. Beaurepaire, and M. C. Schanne-Klein, “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Opt. Express 15(7), 4054–4065 (2007).
[CrossRef] [PubMed]

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[CrossRef] [PubMed]

Periasamy, A.

A. Periasamy, D. H. Burns, D. N. Holdren, G. H. Pollack, and K. Trombitás, “A-band shortening in single fibers of frog skeletal muscle,” Biophys. J. 57(4), 815–828 (1990).
[CrossRef] [PubMed]

Pezacki, J. P.

A. D. Slepkov, A. Ridsdale, H. N. Wan, M. H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F. J. Kao, and A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[CrossRef] [PubMed]

Pierangelo, A.

Pini, R.

Plotnikov, S.

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7(4), 654–669 (2012).
[CrossRef] [PubMed]

Plotnikov, S. V.

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[CrossRef] [PubMed]

Poirier, S.

Pollack, G. H.

A. Periasamy, D. H. Burns, D. N. Holdren, G. H. Pollack, and K. Trombitás, “A-band shortening in single fibers of frog skeletal muscle,” Biophys. J. 57(4), 815–828 (1990).
[CrossRef] [PubMed]

Psilodimitrakopoulos, S.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[CrossRef] [PubMed]

Ratto, F.

Ridsdale, A.

A. D. Slepkov, A. Ridsdale, H. N. Wan, M. H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F. J. Kao, and A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[CrossRef] [PubMed]

Rigneault, H.

P. Schön, M. Behrndt, D. Ait-Belkacem, H. Rigneault, and S. Brasselet, “Polarization and phase pulse shaping applied to structural contrast in nonlinear microscopy imaging,” Phys. Rev. A 81(1), 013809 (2010).
[CrossRef]

Rikken, G. L. J. A.

E. W. Meijer, E. E. Havinga, and G. L. J. A. Rikken, “Second-harmonic generation in centrosymmetric crystals of chiral molecules,” Phys. Rev. Lett. 65(1), 37–39 (1990).
[CrossRef] [PubMed]

Rossi, F.

Roy, R.

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

Santos, S. I. C. O.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[CrossRef] [PubMed]

Schanne-Klein, M. C.

M. Strupler, A. M. Pena, M. Hernest, P. L. Tharaux, J. L. Martin, E. Beaurepaire, and M. C. Schanne-Klein, “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Opt. Express 15(7), 4054–4065 (2007).
[CrossRef] [PubMed]

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[CrossRef] [PubMed]

Schön, P.

P. Schön, M. Behrndt, D. Ait-Belkacem, H. Rigneault, and S. Brasselet, “Polarization and phase pulse shaping applied to structural contrast in nonlinear microscopy imaging,” Phys. Rev. A 81(1), 013809 (2010).
[CrossRef]

P. Schön, F. Munhoz, A. Gasecka, S. Brustlein, and S. Brasselet, “Polarization distortion effects in polarimetric two-photon microscopy,” Opt. Express 16(25), 20891–20901 (2008).
[CrossRef] [PubMed]

Sheppard, C. J. R.

Sheppard, C. R. J.

Slepkov, A. D.

A. D. Slepkov, A. Ridsdale, H. N. Wan, M. H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F. J. Kao, and A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[CrossRef] [PubMed]

So, P. T. C.

Y. Sun, W. L. Chen, S. J. Lin, S. H. Jee, Y. F. Chen, L. C. Lin, P. T. C. So, and C. Y. Dong, “Investigating mechanisms of collagen thermal denaturation by high resolution second-harmonic generation imaging,” Biophys. J. 91(7), 2620–2625 (2006).
[CrossRef] [PubMed]

Stolow, A.

A. D. Slepkov, A. Ridsdale, H. N. Wan, M. H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F. J. Kao, and A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[CrossRef] [PubMed]

Stringari, C.

Strupler, M.

Sun, C. H.

V. Da Costa, R. Wei, R. Lim, C. H. Sun, J. J. Brown, and B. J. F. Wong, “Nondestructive imaging of live human keloid and facial tissue using multiphoton microscopy,” Arch. Facial Plast. Surg. 10(1), 38–43 (2008).
[CrossRef] [PubMed]

Sun, C. K.

S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

Sun, C. W.

Sun, Y.

Y. Sun, W. L. Chen, S. J. Lin, S. H. Jee, Y. F. Chen, L. C. Lin, P. T. C. So, and C. Y. Dong, “Investigating mechanisms of collagen thermal denaturation by high resolution second-harmonic generation imaging,” Biophys. J. 91(7), 2620–2625 (2006).
[CrossRef] [PubMed]

Supatto, W.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[CrossRef] [PubMed]

Tharaux, P. L.

Thayil, A. K. N.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[CrossRef] [PubMed]

Tordjmann, T.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[CrossRef] [PubMed]

Török, P.

Trombitás, K.

A. Periasamy, D. H. Burns, D. N. Holdren, G. H. Pollack, and K. Trombitás, “A-band shortening in single fibers of frog skeletal muscle,” Biophys. J. 57(4), 815–828 (1990).
[CrossRef] [PubMed]

Tsai, T. H.

S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

Validire, P.

Vallée, R.

Vitkin, I. A.

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissue,” Opt. Commun. 283(6), 1200–1208 (2010).
[CrossRef]

Walker, M. J.

M. J. Walker, “Matrix calculus and the Stokes parameters of polarized radiation,” Am. J. Phys. 22(4), 170–174 (1954).
[CrossRef]

Wan, H. N.

A. D. Slepkov, A. Ridsdale, H. N. Wan, M. H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F. J. Kao, and A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[CrossRef] [PubMed]

Wang, M. H.

A. D. Slepkov, A. Ridsdale, H. N. Wan, M. H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F. J. Kao, and A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[CrossRef] [PubMed]

Webb, W. W.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Wei, R.

V. Da Costa, R. Wei, R. Lim, C. H. Sun, J. J. Brown, and B. J. F. Wong, “Nondestructive imaging of live human keloid and facial tissue using multiphoton microscopy,” Arch. Facial Plast. Surg. 10(1), 38–43 (2008).
[CrossRef] [PubMed]

Williams, R. M.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Winlove, C. P.

J. C. Mansfield, C. P. Winlove, J. Moger, and S. J. Matcher, “Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy,” J. Biomed. Opt. 13(4), 044020 (2008).
[CrossRef] [PubMed]

Wolman, M.

M. Wolman and F. H. Kasten, “Polarized light microscopy in the study of the molecular structure of collagen and reticulin,” Histochemistry 85(1), 41–49 (1986).
[CrossRef] [PubMed]

Wong, B. J. F.

V. Da Costa, R. Wei, R. Lim, C. H. Sun, J. J. Brown, and B. J. F. Wong, “Nondestructive imaging of live human keloid and facial tissue using multiphoton microscopy,” Arch. Facial Plast. Surg. 10(1), 38–43 (2008).
[CrossRef] [PubMed]

Wood, M. F. G.

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissue,” Opt. Commun. 283(6), 1200–1208 (2010).
[CrossRef]

Xie, X. S.

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

Yang, C. C.

Yew, E. Y. S.

Zheng, W.

F. Lu, W. Zheng, and Z. Huang, “Heterodyne polarization coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92(12), 123901 (2008).
[CrossRef]

Zipfel, W. R.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Am. J. Phys. (2)

M. J. Walker, “Matrix calculus and the Stokes parameters of polarized radiation,” Am. J. Phys. 22(4), 170–174 (1954).
[CrossRef]

W. Bickel and W. Bailey, “Stokes Vectors, Mueller matrices and polarized scattered light,” Am. J. Phys. 53(5), 468–478 (1985).
[CrossRef]

Anal. Chem. (1)

P. J. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal. Chem. 83(9), 3224–3231 (2011).
[PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

F. Lu, W. Zheng, and Z. Huang, “Heterodyne polarization coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92(12), 123901 (2008).
[CrossRef]

Arch. Facial Plast. Surg. (1)

V. Da Costa, R. Wei, R. Lim, C. H. Sun, J. J. Brown, and B. J. F. Wong, “Nondestructive imaging of live human keloid and facial tissue using multiphoton microscopy,” Arch. Facial Plast. Surg. 10(1), 38–43 (2008).
[CrossRef] [PubMed]

Biophys. J. (5)

S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006).
[CrossRef] [PubMed]

Y. Sun, W. L. Chen, S. J. Lin, S. H. Jee, Y. F. Chen, L. C. Lin, P. T. C. So, and C. Y. Dong, “Investigating mechanisms of collagen thermal denaturation by high resolution second-harmonic generation imaging,” Biophys. J. 91(7), 2620–2625 (2006).
[CrossRef] [PubMed]

S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, and C. K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[CrossRef] [PubMed]

A. Periasamy, D. H. Burns, D. N. Holdren, G. H. Pollack, and K. Trombitás, “A-band shortening in single fibers of frog skeletal muscle,” Biophys. J. 57(4), 815–828 (1990).
[CrossRef] [PubMed]

Histochemistry (1)

M. Wolman and F. H. Kasten, “Polarized light microscopy in the study of the molecular structure of collagen and reticulin,” Histochemistry 85(1), 41–49 (1986).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

J. C. Mansfield, C. P. Winlove, J. Moger, and S. J. Matcher, “Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy,” J. Biomed. Opt. 13(4), 044020 (2008).
[CrossRef] [PubMed]

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[CrossRef] [PubMed]

A. D. Slepkov, A. Ridsdale, H. N. Wan, M. H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F. J. Kao, and A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Nat. Biotechnol. (1)

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

Nat. Methods (1)

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[CrossRef] [PubMed]

Nat. Protoc. (1)

X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7(4), 654–669 (2012).
[CrossRef] [PubMed]

Nature (1)

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

Opt. Commun. (1)

N. Ghosh, M. F. G. Wood, and I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissue,” Opt. Commun. 283(6), 1200–1208 (2010).
[CrossRef]

Opt. Express (11)

I. Berezhnyy and A. Dogariu, “Time-resolved Mueller matrix imaging polarimetry,” Opt. Express 12(19), 4635–4649 (2004).
[CrossRef] [PubMed]

M. Han, G. Giese, and J. F. Bille, “Second harmonic generation imaging of collagen fibrils in cornea and sclera,” Opt. Express 13(15), 5791–5797 (2005).
[CrossRef] [PubMed]

E. Y. S. Yew and C. R. J. Sheppard, “Effects of axial field components on second harmonic generation microscopy,” Opt. Express 14(3), 1167–1174 (2006).
[CrossRef] [PubMed]

M. Strupler, A. M. Pena, M. Hernest, P. L. Tharaux, J. L. Martin, E. Beaurepaire, and M. C. Schanne-Klein, “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Opt. Express 15(7), 4054–4065 (2007).
[CrossRef] [PubMed]

L. Fu and M. Gu, “Polarization anisotropy in fiber-optic second harmonic generation microscopy,” Opt. Express 16(7), 5000–5006 (2008).
[CrossRef] [PubMed]

M. R. Foreman, C. Macias Romero, and P. Török, “A priori information and optimisation in polarimetry,” Opt. Express 16(19), 15212–15227 (2008).
[CrossRef] [PubMed]

P. Schön, F. Munhoz, A. Gasecka, S. Brustlein, and S. Brasselet, “Polarization distortion effects in polarimetric two-photon microscopy,” Opt. Express 16(25), 20891–20901 (2008).
[CrossRef] [PubMed]

P. Matteini, F. Ratto, F. Rossi, R. Cicchi, C. Stringari, D. Kapsokalyvas, F. S. Pavone, and R. Pini, “Photothermally-induced disordered patterns of corneal collagen revealed by SHG imaging,” Opt. Express 17(6), 4868–4878 (2009).
[CrossRef] [PubMed]

E. Bélanger, S. Bégin, S. Laffray, Y. De Koninck, R. Vallée, and D. Côté, “Quantitative myelin imaging with coherent anti-Stokes Raman scattering microscopy: alleviating the excitation polarization dependence with circularly polarized laser beams,” Opt. Express 17(21), 18419–18432 (2009).
[CrossRef] [PubMed]

M. R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010).
[CrossRef] [PubMed]

S. Brasselet, D. Aït-Belkacem, A. Gasecka, F. Munhoz, S. Brustlein, and S. Brasselet, “Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging,” Opt. Express 18(14), 14859–14870 (2010).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (1)

P. Schön, M. Behrndt, D. Ait-Belkacem, H. Rigneault, and S. Brasselet, “Polarization and phase pulse shaping applied to structural contrast in nonlinear microscopy imaging,” Phys. Rev. A 81(1), 013809 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

E. W. Meijer, E. E. Havinga, and G. L. J. A. Rikken, “Second-harmonic generation in centrosymmetric crystals of chiral molecules,” Phys. Rev. Lett. 65(1), 37–39 (1990).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Thin Solid Films (1)

L. M. S. Aas, P. G. Ellingsen, and M. Kildemo, “Near infra-red Mueller matrix imaging system and application to retardance imaging of strain,” Thin Solid Films 519(9), 2737–2741 (2011).
[CrossRef]

Other (4)

J. Qiu, Modern Optics Laboratory, National Yang-Ming University, 155 Li-Nong St, Taipei 112, Taiwan and N. Mazumder are preparing a manuscript to be called “Stokes vector formalism based nonlinear optical microscopy.”

E. Hecht, Optics, 4th ed. (Addison Wesley, 2002).

R. W. Boyd, Nonlinear Optics(Academic press, San Diego, CA, 1992).

J. G. Webster, “Polarization measurement,” in The Measurement, Instrumentation and Sensors Handbook, (CRC Press, 1998), Chap. 60.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of polarization-resolved SHG microscope with four-channel Stokes -polarimeter module. The insert displays the polarization state analyzer (PSA);PSG: polarization state generator; P: Polarizer, λ/2: Half wave-plate, λ/4: Quarter wave-plate, M: Mirror, S: Sample, F: Filter, BS: Beam splitter, FR: Fresnel Rhomb,W1 and W2: Wollaston prisms, Ia, Ib, Ic, Id: photo-multiplier tubes (PMTs).

Fig. 2
Fig. 2

Experimental polarization-resolved SHG response from KDP micro-crystals,(a) shows the reconstructed 2D Stokes vector images; (b) represents the DOP, DOLP, DOCP and polarization anisotropy images of SHG light from the KDP micro-crystals, when the input polarization is horizontal polarized. The color scale shows the values of each parameter.

Fig. 3
Fig. 3

Experimental polarization-resolved SHG response from collagen type-I, (a) shows the reconstructed 2D Stokes vector images; (b) represents the DOP, DOLP, DOCP and polarization anisotropy images of SHG light from the collagen type-I, when the input polarization is horizontal polarized. The color scale shows the values of each parameter.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S = [ S 0 S 1 S 2 S 3 ] = [ I 0 + I 90 I 0 I 90 I 45 I 45 I R C P I L C P ]
I = A 4 × 4 S o u t
D O P = S 1 2 + S 2 2 + S 3 2 S 0
D O L P = S 1 2 + S 2 2 S 0
D O C P = | S 3 | S 0
r = I p a r I p e r p I p a r + 2 I p e r p
r = 2 S 1 3 S 0 S 1
A 4 × 4 = [ 292.88 209.49 216.62 0.75 213.26 60.71 166.99 19.41 267.48 84.15 78.93 209.49 250.91 72.30 32.95 247.98 ]

Metrics