Abstract

We report on a single plane illumination microscope (SPIM) incorporating adaptive optics in the imaging arm. We show how aberrations can occur from the sample mounting tube and quantify the aberrations both experimentally and computationally. A wavefront sensorless approach was taken to imaging a green fluorescent protein (GFP) labelled transgenic zebrafish. We show improvements in image quality whilst recording a 3D “z–stack” and show how the aberrations come from varying depths in the fish.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Girkin, S. Poland, and A. J. Wright, “Adaptive optics for deeper imaging of biological samples,” Curr. Opin. Biotechnol. 20, 106–110 (2009).
    [CrossRef] [PubMed]
  2. M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc. London, Ser. A. 365, 2829–2843 (2007).
    [CrossRef]
  3. M. Schwertner, M. J. Booth, M. A. A. Neil, and T. Wilson, “A Measurement of specimen- induced aberrations of biological samples using phase stepping interferometry,” J. Microsc. 213, 11–19 (2004).
    [CrossRef]
  4. M. Booth, M. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index- mismatched media,” J. Microsc. 192, 90–98 (1998).
    [CrossRef]
  5. D. Debarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express 15, 8176–8190 (2007).
    [CrossRef] [PubMed]
  6. M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99, 5788–5792 (2002).
    [CrossRef] [PubMed]
  7. X. Tao, B. Fernandez, O. Azucena, M. Fu, D. Garcia, Y. Zuo, D. C. Chen, and J. Kubby, “Adaptive optics confocal microscopy using direct wavefront sensing,” Opt. Lett. 36, 1062–1064 (2011).
    [CrossRef] [PubMed]
  8. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
    [CrossRef] [PubMed]
  9. J. W. Cha and P. T. So, “A Shack-Hartmann wavefront sensor based adaptive optics System for multiphoton microscopy,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008).
  10. N. Olivier, D. Debarre, and E. Beaurepaire, “Dynamic aberration correction for multiharmonic microscopy,” Opt. Lett. 34, 3145–3147 (2009).
    [CrossRef] [PubMed]
  11. A. J. Wright, S. P. Poland, J. M. Girkin, C. W. Freudiger, C. L. Evans, and X. S. Xie, “Adaptive optics for enhanced signal in CARS microscopy,” Opt. Express 15, 18209–18219 (2007).
    [CrossRef] [PubMed]
  12. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
    [CrossRef] [PubMed]
  13. K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum. 78, 023705 (2007).
    [CrossRef] [PubMed]
  14. J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136, 1963–1975 (2009).
    [CrossRef] [PubMed]
  15. L. I. Zon, “Zebrafish: a new model for human disease,” Genome Res. 9, 99–100 (1999)
    [PubMed]
  16. J. Bakkers, “Zebrafish as a model to study cardiac development and human cardiac disease,” Cardiovasc. Res. 91, 183–184 (2011).
    [CrossRef]
  17. A. J. Hill, H. Teraoka, W. Heideman, and R. E. Peterson, “Zebrafish as a model vertebrate for investigating chemical toxicity,” Toxicol. Sci. 86, 6–19 (2005).
    [CrossRef] [PubMed]
  18. J. M. Taylor, C. D. Saunter, G. D. Love, J. M. Girkin, D. J. Henderson, and B. Chaudhry, “Real-time optical gating for three-dimensional beating heart imaging,” J. Biomed. Opt. 16, 116021 (2011).
    [CrossRef] [PubMed]
  19. P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello, and E. H. Stelzer, “High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy,” Nat. Methods 4, 311–313 (2007).
    [PubMed]
  20. J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8, 811–819 (2011).
    [CrossRef] [PubMed]
  21. M. J. Booth, “Wave front sensor-less adaptive optics: a model-based approach using sphere packings,” Opt. Express 14, 1339–1352 (2006).
    [CrossRef] [PubMed]
  22. A. Facomprez, E. Beaurepaire, and D. Debarre, “Accuracy of correction in modal sensorless adaptive optics,” Opt. Express 20, 2598–2612 (2012).
    [CrossRef] [PubMed]
  23. K. N. Walker and R. K. Tyson, “Wavefront correction using a Fourier-based image sharpness metric,” Proc. SPIE. 7468, 74680O (2009).
    [CrossRef]
  24. A. M. Petzold, V. M. Bedell, N. J. Boczek, J. J. Essner, D. Balciunas, K. J. Clark, and S. C. Ekker, “SCORE imaging: specimen in a corrected optical rotational enclosure,” Zebrafish 7, 149–154 (2010).
    [CrossRef] [PubMed]

2012 (1)

2011 (4)

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8, 811–819 (2011).
[CrossRef] [PubMed]

X. Tao, B. Fernandez, O. Azucena, M. Fu, D. Garcia, Y. Zuo, D. C. Chen, and J. Kubby, “Adaptive optics confocal microscopy using direct wavefront sensing,” Opt. Lett. 36, 1062–1064 (2011).
[CrossRef] [PubMed]

J. Bakkers, “Zebrafish as a model to study cardiac development and human cardiac disease,” Cardiovasc. Res. 91, 183–184 (2011).
[CrossRef]

J. M. Taylor, C. D. Saunter, G. D. Love, J. M. Girkin, D. J. Henderson, and B. Chaudhry, “Real-time optical gating for three-dimensional beating heart imaging,” J. Biomed. Opt. 16, 116021 (2011).
[CrossRef] [PubMed]

2010 (1)

A. M. Petzold, V. M. Bedell, N. J. Boczek, J. J. Essner, D. Balciunas, K. J. Clark, and S. C. Ekker, “SCORE imaging: specimen in a corrected optical rotational enclosure,” Zebrafish 7, 149–154 (2010).
[CrossRef] [PubMed]

2009 (4)

K. N. Walker and R. K. Tyson, “Wavefront correction using a Fourier-based image sharpness metric,” Proc. SPIE. 7468, 74680O (2009).
[CrossRef]

N. Olivier, D. Debarre, and E. Beaurepaire, “Dynamic aberration correction for multiharmonic microscopy,” Opt. Lett. 34, 3145–3147 (2009).
[CrossRef] [PubMed]

J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136, 1963–1975 (2009).
[CrossRef] [PubMed]

J. M. Girkin, S. Poland, and A. J. Wright, “Adaptive optics for deeper imaging of biological samples,” Curr. Opin. Biotechnol. 20, 106–110 (2009).
[CrossRef] [PubMed]

2007 (5)

M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc. London, Ser. A. 365, 2829–2843 (2007).
[CrossRef]

D. Debarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express 15, 8176–8190 (2007).
[CrossRef] [PubMed]

A. J. Wright, S. P. Poland, J. M. Girkin, C. W. Freudiger, C. L. Evans, and X. S. Xie, “Adaptive optics for enhanced signal in CARS microscopy,” Opt. Express 15, 18209–18219 (2007).
[CrossRef] [PubMed]

P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello, and E. H. Stelzer, “High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy,” Nat. Methods 4, 311–313 (2007).
[PubMed]

K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum. 78, 023705 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

A. J. Hill, H. Teraoka, W. Heideman, and R. E. Peterson, “Zebrafish as a model vertebrate for investigating chemical toxicity,” Toxicol. Sci. 86, 6–19 (2005).
[CrossRef] [PubMed]

2004 (2)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[CrossRef] [PubMed]

M. Schwertner, M. J. Booth, M. A. A. Neil, and T. Wilson, “A Measurement of specimen- induced aberrations of biological samples using phase stepping interferometry,” J. Microsc. 213, 11–19 (2004).
[CrossRef]

2002 (2)

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99, 5788–5792 (2002).
[CrossRef] [PubMed]

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
[CrossRef] [PubMed]

1999 (1)

L. I. Zon, “Zebrafish: a new model for human disease,” Genome Res. 9, 99–100 (1999)
[PubMed]

1998 (1)

M. Booth, M. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index- mismatched media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

Albert, O.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
[CrossRef] [PubMed]

Azucena, O.

Bakkers, J.

J. Bakkers, “Zebrafish as a model to study cardiac development and human cardiac disease,” Cardiovasc. Res. 91, 183–184 (2011).
[CrossRef]

Balciunas, D.

A. M. Petzold, V. M. Bedell, N. J. Boczek, J. J. Essner, D. Balciunas, K. J. Clark, and S. C. Ekker, “SCORE imaging: specimen in a corrected optical rotational enclosure,” Zebrafish 7, 149–154 (2010).
[CrossRef] [PubMed]

Beaurepaire, E.

Bedell, V. M.

A. M. Petzold, V. M. Bedell, N. J. Boczek, J. J. Essner, D. Balciunas, K. J. Clark, and S. C. Ekker, “SCORE imaging: specimen in a corrected optical rotational enclosure,” Zebrafish 7, 149–154 (2010).
[CrossRef] [PubMed]

Boczek, N. J.

A. M. Petzold, V. M. Bedell, N. J. Boczek, J. J. Essner, D. Balciunas, K. J. Clark, and S. C. Ekker, “SCORE imaging: specimen in a corrected optical rotational enclosure,” Zebrafish 7, 149–154 (2010).
[CrossRef] [PubMed]

Booth, M.

M. Booth, M. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index- mismatched media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

Booth, M. J.

M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc. London, Ser. A. 365, 2829–2843 (2007).
[CrossRef]

D. Debarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express 15, 8176–8190 (2007).
[CrossRef] [PubMed]

M. J. Booth, “Wave front sensor-less adaptive optics: a model-based approach using sphere packings,” Opt. Express 14, 1339–1352 (2006).
[CrossRef] [PubMed]

M. Schwertner, M. J. Booth, M. A. A. Neil, and T. Wilson, “A Measurement of specimen- induced aberrations of biological samples using phase stepping interferometry,” J. Microsc. 213, 11–19 (2004).
[CrossRef]

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99, 5788–5792 (2002).
[CrossRef] [PubMed]

Cha, J. W.

J. W. Cha and P. T. So, “A Shack-Hartmann wavefront sensor based adaptive optics System for multiphoton microscopy,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008).

Chaudhry, B.

J. M. Taylor, C. D. Saunter, G. D. Love, J. M. Girkin, D. J. Henderson, and B. Chaudhry, “Real-time optical gating for three-dimensional beating heart imaging,” J. Biomed. Opt. 16, 116021 (2011).
[CrossRef] [PubMed]

Chen, D. C.

Clark, K. J.

A. M. Petzold, V. M. Bedell, N. J. Boczek, J. J. Essner, D. Balciunas, K. J. Clark, and S. C. Ekker, “SCORE imaging: specimen in a corrected optical rotational enclosure,” Zebrafish 7, 149–154 (2010).
[CrossRef] [PubMed]

Debarre, D.

Del Bene, F.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[CrossRef] [PubMed]

Ekker, S. C.

A. M. Petzold, V. M. Bedell, N. J. Boczek, J. J. Essner, D. Balciunas, K. J. Clark, and S. C. Ekker, “SCORE imaging: specimen in a corrected optical rotational enclosure,” Zebrafish 7, 149–154 (2010).
[CrossRef] [PubMed]

Essner, J. J.

A. M. Petzold, V. M. Bedell, N. J. Boczek, J. J. Essner, D. Balciunas, K. J. Clark, and S. C. Ekker, “SCORE imaging: specimen in a corrected optical rotational enclosure,” Zebrafish 7, 149–154 (2010).
[CrossRef] [PubMed]

Evans, C. L.

Facomprez, A.

Fernandez, B.

Freudiger, C. W.

Fu, M.

Garcia, D.

Girkin, J. M.

J. M. Taylor, C. D. Saunter, G. D. Love, J. M. Girkin, D. J. Henderson, and B. Chaudhry, “Real-time optical gating for three-dimensional beating heart imaging,” J. Biomed. Opt. 16, 116021 (2011).
[CrossRef] [PubMed]

J. M. Girkin, S. Poland, and A. J. Wright, “Adaptive optics for deeper imaging of biological samples,” Curr. Opin. Biotechnol. 20, 106–110 (2009).
[CrossRef] [PubMed]

A. J. Wright, S. P. Poland, J. M. Girkin, C. W. Freudiger, C. L. Evans, and X. S. Xie, “Adaptive optics for enhanced signal in CARS microscopy,” Opt. Express 15, 18209–18219 (2007).
[CrossRef] [PubMed]

Greger, K.

K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum. 78, 023705 (2007).
[CrossRef] [PubMed]

P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello, and E. H. Stelzer, “High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy,” Nat. Methods 4, 311–313 (2007).
[PubMed]

Heideman, W.

A. J. Hill, H. Teraoka, W. Heideman, and R. E. Peterson, “Zebrafish as a model vertebrate for investigating chemical toxicity,” Toxicol. Sci. 86, 6–19 (2005).
[CrossRef] [PubMed]

Henderson, D. J.

J. M. Taylor, C. D. Saunter, G. D. Love, J. M. Girkin, D. J. Henderson, and B. Chaudhry, “Real-time optical gating for three-dimensional beating heart imaging,” J. Biomed. Opt. 16, 116021 (2011).
[CrossRef] [PubMed]

Hill, A. J.

A. J. Hill, H. Teraoka, W. Heideman, and R. E. Peterson, “Zebrafish as a model vertebrate for investigating chemical toxicity,” Toxicol. Sci. 86, 6–19 (2005).
[CrossRef] [PubMed]

Huisken, J.

J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136, 1963–1975 (2009).
[CrossRef] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[CrossRef] [PubMed]

Juskaitis, R.

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99, 5788–5792 (2002).
[CrossRef] [PubMed]

Kubby, J.

Love, G. D.

J. M. Taylor, C. D. Saunter, G. D. Love, J. M. Girkin, D. J. Henderson, and B. Chaudhry, “Real-time optical gating for three-dimensional beating heart imaging,” J. Biomed. Opt. 16, 116021 (2011).
[CrossRef] [PubMed]

Marcello, M.

P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello, and E. H. Stelzer, “High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy,” Nat. Methods 4, 311–313 (2007).
[PubMed]

Mertz, J.

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8, 811–819 (2011).
[CrossRef] [PubMed]

Neil, M.

M. Booth, M. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index- mismatched media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

Neil, M. A. A.

M. Schwertner, M. J. Booth, M. A. A. Neil, and T. Wilson, “A Measurement of specimen- induced aberrations of biological samples using phase stepping interferometry,” J. Microsc. 213, 11–19 (2004).
[CrossRef]

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99, 5788–5792 (2002).
[CrossRef] [PubMed]

Norris, T. B.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
[CrossRef] [PubMed]

Olivier, N.

Pampaloni, F.

P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello, and E. H. Stelzer, “High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy,” Nat. Methods 4, 311–313 (2007).
[PubMed]

Peterson, R. E.

A. J. Hill, H. Teraoka, W. Heideman, and R. E. Peterson, “Zebrafish as a model vertebrate for investigating chemical toxicity,” Toxicol. Sci. 86, 6–19 (2005).
[CrossRef] [PubMed]

Petzold, A. M.

A. M. Petzold, V. M. Bedell, N. J. Boczek, J. J. Essner, D. Balciunas, K. J. Clark, and S. C. Ekker, “SCORE imaging: specimen in a corrected optical rotational enclosure,” Zebrafish 7, 149–154 (2010).
[CrossRef] [PubMed]

Poland, S.

J. M. Girkin, S. Poland, and A. J. Wright, “Adaptive optics for deeper imaging of biological samples,” Curr. Opin. Biotechnol. 20, 106–110 (2009).
[CrossRef] [PubMed]

Poland, S. P.

Saunter, C. D.

J. M. Taylor, C. D. Saunter, G. D. Love, J. M. Girkin, D. J. Henderson, and B. Chaudhry, “Real-time optical gating for three-dimensional beating heart imaging,” J. Biomed. Opt. 16, 116021 (2011).
[CrossRef] [PubMed]

Schwertner, M.

M. Schwertner, M. J. Booth, M. A. A. Neil, and T. Wilson, “A Measurement of specimen- induced aberrations of biological samples using phase stepping interferometry,” J. Microsc. 213, 11–19 (2004).
[CrossRef]

Sherman, L.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
[CrossRef] [PubMed]

So, P. T.

J. W. Cha and P. T. So, “A Shack-Hartmann wavefront sensor based adaptive optics System for multiphoton microscopy,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008).

Stainier, D. Y. R.

J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136, 1963–1975 (2009).
[CrossRef] [PubMed]

Stelzer, E. H.

P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello, and E. H. Stelzer, “High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy,” Nat. Methods 4, 311–313 (2007).
[PubMed]

Stelzer, E. H. K.

K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum. 78, 023705 (2007).
[CrossRef] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[CrossRef] [PubMed]

Swoger, J.

K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum. 78, 023705 (2007).
[CrossRef] [PubMed]

P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello, and E. H. Stelzer, “High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy,” Nat. Methods 4, 311–313 (2007).
[PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[CrossRef] [PubMed]

Tao, X.

Taylor, J. M.

J. M. Taylor, C. D. Saunter, G. D. Love, J. M. Girkin, D. J. Henderson, and B. Chaudhry, “Real-time optical gating for three-dimensional beating heart imaging,” J. Biomed. Opt. 16, 116021 (2011).
[CrossRef] [PubMed]

Teraoka, H.

A. J. Hill, H. Teraoka, W. Heideman, and R. E. Peterson, “Zebrafish as a model vertebrate for investigating chemical toxicity,” Toxicol. Sci. 86, 6–19 (2005).
[CrossRef] [PubMed]

Tyson, R. K.

K. N. Walker and R. K. Tyson, “Wavefront correction using a Fourier-based image sharpness metric,” Proc. SPIE. 7468, 74680O (2009).
[CrossRef]

Verveer, P. J.

P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello, and E. H. Stelzer, “High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy,” Nat. Methods 4, 311–313 (2007).
[PubMed]

Walker, K. N.

K. N. Walker and R. K. Tyson, “Wavefront correction using a Fourier-based image sharpness metric,” Proc. SPIE. 7468, 74680O (2009).
[CrossRef]

Wilson, T.

D. Debarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express 15, 8176–8190 (2007).
[CrossRef] [PubMed]

M. Schwertner, M. J. Booth, M. A. A. Neil, and T. Wilson, “A Measurement of specimen- induced aberrations of biological samples using phase stepping interferometry,” J. Microsc. 213, 11–19 (2004).
[CrossRef]

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99, 5788–5792 (2002).
[CrossRef] [PubMed]

M. Booth, M. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index- mismatched media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

Wittbrodt, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[CrossRef] [PubMed]

Wright, A. J.

J. M. Girkin, S. Poland, and A. J. Wright, “Adaptive optics for deeper imaging of biological samples,” Curr. Opin. Biotechnol. 20, 106–110 (2009).
[CrossRef] [PubMed]

A. J. Wright, S. P. Poland, J. M. Girkin, C. W. Freudiger, C. L. Evans, and X. S. Xie, “Adaptive optics for enhanced signal in CARS microscopy,” Opt. Express 15, 18209–18219 (2007).
[CrossRef] [PubMed]

Xie, X. S.

Ye, J. Y.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
[CrossRef] [PubMed]

Zon, L. I.

L. I. Zon, “Zebrafish: a new model for human disease,” Genome Res. 9, 99–100 (1999)
[PubMed]

Zuo, Y.

Cardiovasc. Res. (1)

J. Bakkers, “Zebrafish as a model to study cardiac development and human cardiac disease,” Cardiovasc. Res. 91, 183–184 (2011).
[CrossRef]

Curr. Opin. Biotechnol. (1)

J. M. Girkin, S. Poland, and A. J. Wright, “Adaptive optics for deeper imaging of biological samples,” Curr. Opin. Biotechnol. 20, 106–110 (2009).
[CrossRef] [PubMed]

Development (1)

J. Huisken and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136, 1963–1975 (2009).
[CrossRef] [PubMed]

Genome Res. (1)

L. I. Zon, “Zebrafish: a new model for human disease,” Genome Res. 9, 99–100 (1999)
[PubMed]

J. Biomed. Opt. (1)

J. M. Taylor, C. D. Saunter, G. D. Love, J. M. Girkin, D. J. Henderson, and B. Chaudhry, “Real-time optical gating for three-dimensional beating heart imaging,” J. Biomed. Opt. 16, 116021 (2011).
[CrossRef] [PubMed]

J. Microsc. (3)

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65–71 (2002).
[CrossRef] [PubMed]

M. Schwertner, M. J. Booth, M. A. A. Neil, and T. Wilson, “A Measurement of specimen- induced aberrations of biological samples using phase stepping interferometry,” J. Microsc. 213, 11–19 (2004).
[CrossRef]

M. Booth, M. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index- mismatched media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

Nat. Methods (2)

P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello, and E. H. Stelzer, “High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy,” Nat. Methods 4, 311–313 (2007).
[PubMed]

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8, 811–819 (2011).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Philos. Trans. R. Soc. London, Ser. A. (1)

M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc. London, Ser. A. 365, 2829–2843 (2007).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. U.S.A. 99, 5788–5792 (2002).
[CrossRef] [PubMed]

Proc. SPIE. (1)

K. N. Walker and R. K. Tyson, “Wavefront correction using a Fourier-based image sharpness metric,” Proc. SPIE. 7468, 74680O (2009).
[CrossRef]

Rev. Sci. Instrum. (1)

K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum. 78, 023705 (2007).
[CrossRef] [PubMed]

Science (1)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305, 1007–1009 (2004).
[CrossRef] [PubMed]

Toxicol. Sci. (1)

A. J. Hill, H. Teraoka, W. Heideman, and R. E. Peterson, “Zebrafish as a model vertebrate for investigating chemical toxicity,” Toxicol. Sci. 86, 6–19 (2005).
[CrossRef] [PubMed]

Zebrafish (1)

A. M. Petzold, V. M. Bedell, N. J. Boczek, J. J. Essner, D. Balciunas, K. J. Clark, and S. C. Ekker, “SCORE imaging: specimen in a corrected optical rotational enclosure,” Zebrafish 7, 149–154 (2010).
[CrossRef] [PubMed]

Other (1)

J. W. Cha and P. T. So, “A Shack-Hartmann wavefront sensor based adaptive optics System for multiphoton microscopy,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008).

Supplementary Material (2)

» Media 1: MOV (1613 KB)     
» Media 2: MOV (1491 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical Configuration showing the SPIM and the AO. The illumination light is shown in blue - to the left, and the imaging light is shown in green, to the right. The symbols are explained in detail in the text.

Fig. 2
Fig. 2

Tube geometry used to hold the zebrafish. The light–blue ring shows the cross section of the pipette. The blue rays from the top show the illumination beam (only focussed in the direction shown - it is a sheet in the orthogonal direction), and the green rays on the right show the illumination rays. Normally the foci of each set of rays coincide but we have drawn them separately here for clarity. Both the illumination beam and the imaging beam foci can be significantly deviated, as shown (the undeviated rays are shown for comparison in black) and both can give rise to focus errors. The deviations are given by Δz1 and Δz2 respectively, and are shown numerically in Fig. 3. Light in the imaging arm is also significantly affected by astigmatism (not shown). The z–axis is shown, which is the scanning axis.

Fig. 3
Fig. 3

Results of ray tracing in a mounting pipette showing how both the illumination beam (blue dashed line) and the imaging beam (red dotted beam) are deviated by the pipette (see Fig. 2) which gives rise to a focus error. The left hand ordinate shows the defocus measured in RMS waves and the right hand ordinate shows the same defocus expressed in terms of spot displacement, Δz (shown separately as Δz1 and Δz2 in Fig. 2). The green solid line is the combination (difference) of the two curves and is the net observed defocus - which has an additional constant offset removed so that the green (solid) line goes through the origin (since that is the point at which the microscope is manually focussed). Astigmatism was also simulated (and is shown in Fig. 4).

Fig. 4
Fig. 4

Results of calibrating the system with beads. (a) image of the bead imaged through a borosilicate glass pipette when the DM is flat. (b) Image of the bead after optimization. The white scale bar represents 20 μm. (c) Variation of the metric during the 4 optimization runs (different zones are described in the text). (d) Measured and simulated focus and astigmatism variation with depth (Zernike modes j= 4 and 6) at a wavelength of 550 nm.

Fig. 5
Fig. 5

AO in SPIM with a zebrafish in a glass borosilicate pipette. (a,b,c) are images taken for a flat mirror shape, a mirror shape optimized for the system aberrations, and for a mirror shape optimized directly on the fish. The white square corresponds to the ROI on which the optimization is performed and is 24 microns wide. (d) shows the metric normalized to the uncorrected values during the z-stack, as a function of imaging depth, when the mirror is flat (blue), and optimized (black). The green vertical lines correspond to where the mirror has been optimized. The purple vertical line shows when the ROI has been moved. (e) shows the Zernike mode amplitude at different depth. Mode 4 and mode 6 are focus and astigmatism, respectively. Two s are provided which show “before” and “after” full–AO examples. The first ( Media 1) shows a z–scan through the dorsal fin and the second ( Media 2) shows blood vessels in the fish.

Fig. 6
Fig. 6

Results showing the improvements taken when using a refractive index matching FEP mounting tube, again. The images show again part of the pectoral fin. (a,b) are images taken for a flat mirror shape and for a mirror shape optimized directly on the fish respectively. As discussed in the text - the improvements here are marginally (although clearer in the original data than that shown here). The white square corresponds to the ROI on which the optimization is performed and is 19 μm wide. (c) gives the metrics normalized to the uncorrected metric (blue) for the case of system only correction (red) and full sample correction (black). The green vertical lines correspond to where the mirror has been optimized. The purple vertical line shows when the ROI has been moved. (e) represents the Zernike mode amplitude at different depths.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

metric = 1 N p N p ( I ( x , y ) I ) 2
metric = N p | [ I ( x , y ) ] | masked N p | [ I ( x , y ) ] | unmasked .

Metrics