Abstract

A spectroscopic probe with multiple detecting fibers was used for quantifying absorption and scattering in liquid optical phantoms. The phantoms were mixtures of Intralipid and red and blue food dyes. Intensity calibration for the detecting fibers was undertaken using either a microsphere suspension (absolute calibration) or a uniform detector illumination (relative calibration between detectors). Two different scattering phase functions were used in an inverse Monte Carlo algorithm. Data were evaluated for residual spectra (systematic deviations and magnitude) and accuracy in estimation of scattering and absorption. Spectral fitting was improved by allowing for a 10% intensity relaxation in the optimization algorithm. For a multi-detector setup, non-systematic residual spectrum was only found using the more complex Gegenbauer-kernel phase function. However, the choice of phase function did not influence the accuracy in the estimation of absorption and scattering. Similar estimation accuracy as in the multi-detector setup was also obtained using either two relative calibrated detectors or one absolute calibrated detector at a fiber separation of 0.46 mm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem.47(1), 555–606 (1996).
    [CrossRef] [PubMed]
  2. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
    [CrossRef] [PubMed]
  3. J. L. Hollmann and L. V. Wang, “Multiple-source optical diffusion approximation for a multilayer scattering medium,” Appl. Opt.46(23), 6004–6009 (2007).
    [CrossRef] [PubMed]
  4. F. Bevilacqua and C. Depeursinge, “Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path,” J. Opt. Soc. Am. A16(12), 2935–2945 (1999).
    [CrossRef]
  5. P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt.10(3), 034018 (2005).
    [CrossRef] [PubMed]
  6. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt.38(22), 4939–4950 (1999).
    [CrossRef] [PubMed]
  7. P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt.8(3), 495–503 (2003).
    [CrossRef] [PubMed]
  8. T. Lindbergh, E. Häggblad, H. Ahn, E. Göran Salerud, M. Larsson, and T. Strömberg, “Improved model for myocardial diffuse reflectance spectra by including mitochondrial cytochrome aa3, methemoglobin, and inhomogenously distributed RBC,” J Biophoton.4(4), 268–276 (2011).
    [CrossRef] [PubMed]
  9. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt.45(5), 1062–1071 (2006).
    [CrossRef] [PubMed]
  10. N. Haj-Hosseini, J. Richter, S. Andersson-Engels, and K. Wårdell, “Optical touch pointer for fluorescence guided glioblastoma resection using 5-aminolevulinic acid,” Lasers Surg. Med.42(1), 9–14 (2010).
    [CrossRef] [PubMed]
  11. H. J. van Staveren, C. J. Moes, J. van Marie, S. A. Prahl, and M. J. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991).
    [CrossRef] [PubMed]
  12. T. Lindbergh, I. Fredriksson, M. Larsson, and T. Strömberg, “Spectral determination of a two-parametric phase function for polydispersive scattering liquids,” Opt. Express17(3), 1610–1621 (2009).
    [CrossRef] [PubMed]
  13. L. Wang and S. L. Jacques, “Error estimation of measuring total interaction coefficients of turbid media using collimated light transmission,” Phys. Med. Biol.39(12), 2349–2354 (1994).
    [CrossRef] [PubMed]
  14. S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater.29(11), 1481–1490 (2007).
    [CrossRef]
  15. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt.12(3), 555–563 (1973).
    [CrossRef] [PubMed]
  16. H. Karlsson, A. Pettersson, M. Larsson, and T. Stromberg, “Can a one-layer optical skin model including melanin and inhomogeneously distributed blood explain spatially resolved diffuse reflectance spectra?” Proc. SPIE7896, 78962Y, 78962Y-9 (2011).
    [CrossRef]
  17. L. O. Reynolds and N. J. McCormick, “Approximate two-parameter phase function for light-scattering,” J. Opt. Soc. Am.70(10), 1206–1212 (1980).
    [CrossRef]
  18. I. Fredriksson, M. Larsson, and T. Stromberg, “Inverse Monte Carlo in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt.17, 047004 (2012).
  19. T. Lindbergh, M. Larsson, Z. Szabó, H. Casimir-Ahn, and T. Strömberg, “Intramyocardial oxygen transport by quantitative diffuse reflectance spectroscopy in calves,” J. Biomed. Opt.15(2), 027009 (2010).
    [CrossRef] [PubMed]
  20. R. L. van Veen, W. Verkruysse, and H. J. Sterenborg, “Diffuse-reflectance spectroscopy from 500 to 1060 nm by correction for inhomogeneously distributed absorbers,” Opt. Lett.27(4), 246–248 (2002).
    [CrossRef] [PubMed]
  21. N. Rajaram, A. Gopal, X. Zhang, and J. W. Tunnell, “Experimental validation of the effects of microvasculature pigment packaging on in vivo diffuse reflectance spectroscopy,” Lasers Surg. Med.42(7), 680–688 (2010).
    [CrossRef] [PubMed]
  22. I. Fredriksson, M. Larsson, and T. Stromberg, “Accuracy of vessel diameter estimated from a vessel packaging compensation in diffuse reflectance spectroscopy,” Proc. SPIE8087, 80871M, 80871M-8 (2011).
    [CrossRef]
  23. A. Amelink, H. J. Sterenborg, J. L. Roodenburg, and M. J. Witjes, “Non-invasive measurement of the microvascular properties of non-dysplastic and dysplastic oral leukoplakias by use of optical spectroscopy,” Oral Oncol.47(12), 1165–1170 (2011).
    [CrossRef] [PubMed]

2012

I. Fredriksson, M. Larsson, and T. Stromberg, “Inverse Monte Carlo in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt.17, 047004 (2012).

2011

I. Fredriksson, M. Larsson, and T. Stromberg, “Accuracy of vessel diameter estimated from a vessel packaging compensation in diffuse reflectance spectroscopy,” Proc. SPIE8087, 80871M, 80871M-8 (2011).
[CrossRef]

A. Amelink, H. J. Sterenborg, J. L. Roodenburg, and M. J. Witjes, “Non-invasive measurement of the microvascular properties of non-dysplastic and dysplastic oral leukoplakias by use of optical spectroscopy,” Oral Oncol.47(12), 1165–1170 (2011).
[CrossRef] [PubMed]

T. Lindbergh, E. Häggblad, H. Ahn, E. Göran Salerud, M. Larsson, and T. Strömberg, “Improved model for myocardial diffuse reflectance spectra by including mitochondrial cytochrome aa3, methemoglobin, and inhomogenously distributed RBC,” J Biophoton.4(4), 268–276 (2011).
[CrossRef] [PubMed]

H. Karlsson, A. Pettersson, M. Larsson, and T. Stromberg, “Can a one-layer optical skin model including melanin and inhomogeneously distributed blood explain spatially resolved diffuse reflectance spectra?” Proc. SPIE7896, 78962Y, 78962Y-9 (2011).
[CrossRef]

2010

N. Haj-Hosseini, J. Richter, S. Andersson-Engels, and K. Wårdell, “Optical touch pointer for fluorescence guided glioblastoma resection using 5-aminolevulinic acid,” Lasers Surg. Med.42(1), 9–14 (2010).
[CrossRef] [PubMed]

T. Lindbergh, M. Larsson, Z. Szabó, H. Casimir-Ahn, and T. Strömberg, “Intramyocardial oxygen transport by quantitative diffuse reflectance spectroscopy in calves,” J. Biomed. Opt.15(2), 027009 (2010).
[CrossRef] [PubMed]

N. Rajaram, A. Gopal, X. Zhang, and J. W. Tunnell, “Experimental validation of the effects of microvasculature pigment packaging on in vivo diffuse reflectance spectroscopy,” Lasers Surg. Med.42(7), 680–688 (2010).
[CrossRef] [PubMed]

2009

2007

J. L. Hollmann and L. V. Wang, “Multiple-source optical diffusion approximation for a multilayer scattering medium,” Appl. Opt.46(23), 6004–6009 (2007).
[CrossRef] [PubMed]

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater.29(11), 1481–1490 (2007).
[CrossRef]

2006

2005

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt.10(3), 034018 (2005).
[CrossRef] [PubMed]

2003

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt.8(3), 495–503 (2003).
[CrossRef] [PubMed]

2002

1999

1996

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem.47(1), 555–606 (1996).
[CrossRef] [PubMed]

1994

L. Wang and S. L. Jacques, “Error estimation of measuring total interaction coefficients of turbid media using collimated light transmission,” Phys. Med. Biol.39(12), 2349–2354 (1994).
[CrossRef] [PubMed]

1992

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
[CrossRef] [PubMed]

1991

1980

1973

Ahn, H.

T. Lindbergh, E. Häggblad, H. Ahn, E. Göran Salerud, M. Larsson, and T. Strömberg, “Improved model for myocardial diffuse reflectance spectra by including mitochondrial cytochrome aa3, methemoglobin, and inhomogenously distributed RBC,” J Biophoton.4(4), 268–276 (2011).
[CrossRef] [PubMed]

Amelink, A.

A. Amelink, H. J. Sterenborg, J. L. Roodenburg, and M. J. Witjes, “Non-invasive measurement of the microvascular properties of non-dysplastic and dysplastic oral leukoplakias by use of optical spectroscopy,” Oral Oncol.47(12), 1165–1170 (2011).
[CrossRef] [PubMed]

Andersson-Engels, S.

N. Haj-Hosseini, J. Richter, S. Andersson-Engels, and K. Wårdell, “Optical touch pointer for fluorescence guided glioblastoma resection using 5-aminolevulinic acid,” Lasers Surg. Med.42(1), 9–14 (2010).
[CrossRef] [PubMed]

Bargo, P. R.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt.10(3), 034018 (2005).
[CrossRef] [PubMed]

Bevilacqua, F.

Blair, G.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt.10(3), 034018 (2005).
[CrossRef] [PubMed]

Casimir-Ahn, H.

T. Lindbergh, M. Larsson, Z. Szabó, H. Casimir-Ahn, and T. Strömberg, “Intramyocardial oxygen transport by quantitative diffuse reflectance spectroscopy in calves,” J. Biomed. Opt.15(2), 027009 (2010).
[CrossRef] [PubMed]

Charvet, I.

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt.8(3), 495–503 (2003).
[CrossRef] [PubMed]

Depeursinge, C.

Farrell, T. J.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
[CrossRef] [PubMed]

Fredriksson, I.

I. Fredriksson, M. Larsson, and T. Stromberg, “Inverse Monte Carlo in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt.17, 047004 (2012).

I. Fredriksson, M. Larsson, and T. Stromberg, “Accuracy of vessel diameter estimated from a vessel packaging compensation in diffuse reflectance spectroscopy,” Proc. SPIE8087, 80871M, 80871M-8 (2011).
[CrossRef]

T. Lindbergh, I. Fredriksson, M. Larsson, and T. Strömberg, “Spectral determination of a two-parametric phase function for polydispersive scattering liquids,” Opt. Express17(3), 1610–1621 (2009).
[CrossRef] [PubMed]

Goodell, T. T.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt.10(3), 034018 (2005).
[CrossRef] [PubMed]

Gopal, A.

N. Rajaram, A. Gopal, X. Zhang, and J. W. Tunnell, “Experimental validation of the effects of microvasculature pigment packaging on in vivo diffuse reflectance spectroscopy,” Lasers Surg. Med.42(7), 680–688 (2010).
[CrossRef] [PubMed]

Göran Salerud, E.

T. Lindbergh, E. Häggblad, H. Ahn, E. Göran Salerud, M. Larsson, and T. Strömberg, “Improved model for myocardial diffuse reflectance spectra by including mitochondrial cytochrome aa3, methemoglobin, and inhomogenously distributed RBC,” J Biophoton.4(4), 268–276 (2011).
[CrossRef] [PubMed]

Gross, J. D.

Häggblad, E.

T. Lindbergh, E. Häggblad, H. Ahn, E. Göran Salerud, M. Larsson, and T. Strömberg, “Improved model for myocardial diffuse reflectance spectra by including mitochondrial cytochrome aa3, methemoglobin, and inhomogenously distributed RBC,” J Biophoton.4(4), 268–276 (2011).
[CrossRef] [PubMed]

Haj-Hosseini, N.

N. Haj-Hosseini, J. Richter, S. Andersson-Engels, and K. Wårdell, “Optical touch pointer for fluorescence guided glioblastoma resection using 5-aminolevulinic acid,” Lasers Surg. Med.42(1), 9–14 (2010).
[CrossRef] [PubMed]

Hale, G. M.

Hollmann, J. L.

Ivanov, C. D.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater.29(11), 1481–1490 (2007).
[CrossRef]

Jacques, S. L.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt.10(3), 034018 (2005).
[CrossRef] [PubMed]

L. Wang and S. L. Jacques, “Error estimation of measuring total interaction coefficients of turbid media using collimated light transmission,” Phys. Med. Biol.39(12), 2349–2354 (1994).
[CrossRef] [PubMed]

Karlsson, H.

H. Karlsson, A. Pettersson, M. Larsson, and T. Stromberg, “Can a one-layer optical skin model including melanin and inhomogeneously distributed blood explain spatially resolved diffuse reflectance spectra?” Proc. SPIE7896, 78962Y, 78962Y-9 (2011).
[CrossRef]

Kasarova, S. N.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater.29(11), 1481–1490 (2007).
[CrossRef]

Koval, G.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt.10(3), 034018 (2005).
[CrossRef] [PubMed]

Larsson, M.

I. Fredriksson, M. Larsson, and T. Stromberg, “Inverse Monte Carlo in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt.17, 047004 (2012).

T. Lindbergh, E. Häggblad, H. Ahn, E. Göran Salerud, M. Larsson, and T. Strömberg, “Improved model for myocardial diffuse reflectance spectra by including mitochondrial cytochrome aa3, methemoglobin, and inhomogenously distributed RBC,” J Biophoton.4(4), 268–276 (2011).
[CrossRef] [PubMed]

H. Karlsson, A. Pettersson, M. Larsson, and T. Stromberg, “Can a one-layer optical skin model including melanin and inhomogeneously distributed blood explain spatially resolved diffuse reflectance spectra?” Proc. SPIE7896, 78962Y, 78962Y-9 (2011).
[CrossRef]

I. Fredriksson, M. Larsson, and T. Stromberg, “Accuracy of vessel diameter estimated from a vessel packaging compensation in diffuse reflectance spectroscopy,” Proc. SPIE8087, 80871M, 80871M-8 (2011).
[CrossRef]

T. Lindbergh, M. Larsson, Z. Szabó, H. Casimir-Ahn, and T. Strömberg, “Intramyocardial oxygen transport by quantitative diffuse reflectance spectroscopy in calves,” J. Biomed. Opt.15(2), 027009 (2010).
[CrossRef] [PubMed]

T. Lindbergh, I. Fredriksson, M. Larsson, and T. Strömberg, “Spectral determination of a two-parametric phase function for polydispersive scattering liquids,” Opt. Express17(3), 1610–1621 (2009).
[CrossRef] [PubMed]

Lindbergh, T.

T. Lindbergh, E. Häggblad, H. Ahn, E. Göran Salerud, M. Larsson, and T. Strömberg, “Improved model for myocardial diffuse reflectance spectra by including mitochondrial cytochrome aa3, methemoglobin, and inhomogenously distributed RBC,” J Biophoton.4(4), 268–276 (2011).
[CrossRef] [PubMed]

T. Lindbergh, M. Larsson, Z. Szabó, H. Casimir-Ahn, and T. Strömberg, “Intramyocardial oxygen transport by quantitative diffuse reflectance spectroscopy in calves,” J. Biomed. Opt.15(2), 027009 (2010).
[CrossRef] [PubMed]

T. Lindbergh, I. Fredriksson, M. Larsson, and T. Strömberg, “Spectral determination of a two-parametric phase function for polydispersive scattering liquids,” Opt. Express17(3), 1610–1621 (2009).
[CrossRef] [PubMed]

Marquet, P.

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt.8(3), 495–503 (2003).
[CrossRef] [PubMed]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt.38(22), 4939–4950 (1999).
[CrossRef] [PubMed]

McCormick, N. J.

Meda, P.

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt.8(3), 495–503 (2003).
[CrossRef] [PubMed]

Moes, C. J.

Nikolov, I. D.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater.29(11), 1481–1490 (2007).
[CrossRef]

Ory, G.

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt.8(3), 495–503 (2003).
[CrossRef] [PubMed]

Palmer, G. M.

Patterson, M. S.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
[CrossRef] [PubMed]

Pettersson, A.

H. Karlsson, A. Pettersson, M. Larsson, and T. Stromberg, “Can a one-layer optical skin model including melanin and inhomogeneously distributed blood explain spatially resolved diffuse reflectance spectra?” Proc. SPIE7896, 78962Y, 78962Y-9 (2011).
[CrossRef]

Piguet, D.

Prahl, S. A.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt.10(3), 034018 (2005).
[CrossRef] [PubMed]

H. J. van Staveren, C. J. Moes, J. van Marie, S. A. Prahl, and M. J. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991).
[CrossRef] [PubMed]

Querry, M. R.

Rajaram, N.

N. Rajaram, A. Gopal, X. Zhang, and J. W. Tunnell, “Experimental validation of the effects of microvasculature pigment packaging on in vivo diffuse reflectance spectroscopy,” Lasers Surg. Med.42(7), 680–688 (2010).
[CrossRef] [PubMed]

Ramanujam, N.

Reynolds, L. O.

Richards-Kortum, R.

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem.47(1), 555–606 (1996).
[CrossRef] [PubMed]

Richter, J.

N. Haj-Hosseini, J. Richter, S. Andersson-Engels, and K. Wårdell, “Optical touch pointer for fluorescence guided glioblastoma resection using 5-aminolevulinic acid,” Lasers Surg. Med.42(1), 9–14 (2010).
[CrossRef] [PubMed]

Roodenburg, J. L.

A. Amelink, H. J. Sterenborg, J. L. Roodenburg, and M. J. Witjes, “Non-invasive measurement of the microvascular properties of non-dysplastic and dysplastic oral leukoplakias by use of optical spectroscopy,” Oral Oncol.47(12), 1165–1170 (2011).
[CrossRef] [PubMed]

Sevick-Muraca, E.

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem.47(1), 555–606 (1996).
[CrossRef] [PubMed]

Sleven, R. A.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt.10(3), 034018 (2005).
[CrossRef] [PubMed]

St. Ghislain, M.

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt.8(3), 495–503 (2003).
[CrossRef] [PubMed]

Sterenborg, H. J.

A. Amelink, H. J. Sterenborg, J. L. Roodenburg, and M. J. Witjes, “Non-invasive measurement of the microvascular properties of non-dysplastic and dysplastic oral leukoplakias by use of optical spectroscopy,” Oral Oncol.47(12), 1165–1170 (2011).
[CrossRef] [PubMed]

R. L. van Veen, W. Verkruysse, and H. J. Sterenborg, “Diffuse-reflectance spectroscopy from 500 to 1060 nm by correction for inhomogeneously distributed absorbers,” Opt. Lett.27(4), 246–248 (2002).
[CrossRef] [PubMed]

Stromberg, T.

I. Fredriksson, M. Larsson, and T. Stromberg, “Inverse Monte Carlo in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt.17, 047004 (2012).

I. Fredriksson, M. Larsson, and T. Stromberg, “Accuracy of vessel diameter estimated from a vessel packaging compensation in diffuse reflectance spectroscopy,” Proc. SPIE8087, 80871M, 80871M-8 (2011).
[CrossRef]

H. Karlsson, A. Pettersson, M. Larsson, and T. Stromberg, “Can a one-layer optical skin model including melanin and inhomogeneously distributed blood explain spatially resolved diffuse reflectance spectra?” Proc. SPIE7896, 78962Y, 78962Y-9 (2011).
[CrossRef]

Strömberg, T.

T. Lindbergh, E. Häggblad, H. Ahn, E. Göran Salerud, M. Larsson, and T. Strömberg, “Improved model for myocardial diffuse reflectance spectra by including mitochondrial cytochrome aa3, methemoglobin, and inhomogenously distributed RBC,” J Biophoton.4(4), 268–276 (2011).
[CrossRef] [PubMed]

T. Lindbergh, M. Larsson, Z. Szabó, H. Casimir-Ahn, and T. Strömberg, “Intramyocardial oxygen transport by quantitative diffuse reflectance spectroscopy in calves,” J. Biomed. Opt.15(2), 027009 (2010).
[CrossRef] [PubMed]

T. Lindbergh, I. Fredriksson, M. Larsson, and T. Strömberg, “Spectral determination of a two-parametric phase function for polydispersive scattering liquids,” Opt. Express17(3), 1610–1621 (2009).
[CrossRef] [PubMed]

Sultanova, N. G.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater.29(11), 1481–1490 (2007).
[CrossRef]

Szabó, Z.

T. Lindbergh, M. Larsson, Z. Szabó, H. Casimir-Ahn, and T. Strömberg, “Intramyocardial oxygen transport by quantitative diffuse reflectance spectroscopy in calves,” J. Biomed. Opt.15(2), 027009 (2010).
[CrossRef] [PubMed]

Thueler, P.

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt.8(3), 495–503 (2003).
[CrossRef] [PubMed]

Tromberg, B. J.

Tunnell, J. W.

N. Rajaram, A. Gopal, X. Zhang, and J. W. Tunnell, “Experimental validation of the effects of microvasculature pigment packaging on in vivo diffuse reflectance spectroscopy,” Lasers Surg. Med.42(7), 680–688 (2010).
[CrossRef] [PubMed]

van Gemert, M. J.

van Marie, J.

van Staveren, H. J.

van Veen, R. L.

Verkruysse, W.

Vermeulen, B.

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt.8(3), 495–503 (2003).
[CrossRef] [PubMed]

Wang, L.

L. Wang and S. L. Jacques, “Error estimation of measuring total interaction coefficients of turbid media using collimated light transmission,” Phys. Med. Biol.39(12), 2349–2354 (1994).
[CrossRef] [PubMed]

Wang, L. V.

Wårdell, K.

N. Haj-Hosseini, J. Richter, S. Andersson-Engels, and K. Wårdell, “Optical touch pointer for fluorescence guided glioblastoma resection using 5-aminolevulinic acid,” Lasers Surg. Med.42(1), 9–14 (2010).
[CrossRef] [PubMed]

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
[CrossRef] [PubMed]

Witjes, M. J.

A. Amelink, H. J. Sterenborg, J. L. Roodenburg, and M. J. Witjes, “Non-invasive measurement of the microvascular properties of non-dysplastic and dysplastic oral leukoplakias by use of optical spectroscopy,” Oral Oncol.47(12), 1165–1170 (2011).
[CrossRef] [PubMed]

Zhang, X.

N. Rajaram, A. Gopal, X. Zhang, and J. W. Tunnell, “Experimental validation of the effects of microvasculature pigment packaging on in vivo diffuse reflectance spectroscopy,” Lasers Surg. Med.42(7), 680–688 (2010).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem.

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem.47(1), 555–606 (1996).
[CrossRef] [PubMed]

Appl. Opt.

J Biophoton.

T. Lindbergh, E. Häggblad, H. Ahn, E. Göran Salerud, M. Larsson, and T. Strömberg, “Improved model for myocardial diffuse reflectance spectra by including mitochondrial cytochrome aa3, methemoglobin, and inhomogenously distributed RBC,” J Biophoton.4(4), 268–276 (2011).
[CrossRef] [PubMed]

J. Biomed. Opt.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt.10(3), 034018 (2005).
[CrossRef] [PubMed]

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt.8(3), 495–503 (2003).
[CrossRef] [PubMed]

I. Fredriksson, M. Larsson, and T. Stromberg, “Inverse Monte Carlo in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt.17, 047004 (2012).

T. Lindbergh, M. Larsson, Z. Szabó, H. Casimir-Ahn, and T. Strömberg, “Intramyocardial oxygen transport by quantitative diffuse reflectance spectroscopy in calves,” J. Biomed. Opt.15(2), 027009 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Lasers Surg. Med.

N. Rajaram, A. Gopal, X. Zhang, and J. W. Tunnell, “Experimental validation of the effects of microvasculature pigment packaging on in vivo diffuse reflectance spectroscopy,” Lasers Surg. Med.42(7), 680–688 (2010).
[CrossRef] [PubMed]

N. Haj-Hosseini, J. Richter, S. Andersson-Engels, and K. Wårdell, “Optical touch pointer for fluorescence guided glioblastoma resection using 5-aminolevulinic acid,” Lasers Surg. Med.42(1), 9–14 (2010).
[CrossRef] [PubMed]

Med. Phys.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt. Mater.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater.29(11), 1481–1490 (2007).
[CrossRef]

Oral Oncol.

A. Amelink, H. J. Sterenborg, J. L. Roodenburg, and M. J. Witjes, “Non-invasive measurement of the microvascular properties of non-dysplastic and dysplastic oral leukoplakias by use of optical spectroscopy,” Oral Oncol.47(12), 1165–1170 (2011).
[CrossRef] [PubMed]

Phys. Med. Biol.

L. Wang and S. L. Jacques, “Error estimation of measuring total interaction coefficients of turbid media using collimated light transmission,” Phys. Med. Biol.39(12), 2349–2354 (1994).
[CrossRef] [PubMed]

Proc. SPIE

H. Karlsson, A. Pettersson, M. Larsson, and T. Stromberg, “Can a one-layer optical skin model including melanin and inhomogeneously distributed blood explain spatially resolved diffuse reflectance spectra?” Proc. SPIE7896, 78962Y, 78962Y-9 (2011).
[CrossRef]

I. Fredriksson, M. Larsson, and T. Stromberg, “Accuracy of vessel diameter estimated from a vessel packaging compensation in diffuse reflectance spectroscopy,” Proc. SPIE8087, 80871M, 80871M-8 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Measured spectra from a microsphere solution for the shortest detector distance (solid black) compared to simulated spectra for spheres with a radius of 150 nm (dashed black) and simulated spectra for spheres with a radius of 160 nm (dotted black).

Fig. 2
Fig. 2

The estimated wavelength resolved anisotropy factor for the Gegenbauer kernel phase function.

Fig. 3
Fig. 3

(a) Measured (black; model 1 without q) and simulated spectra (gray) for the four detector distances in absolute calibrated phantom 8. (b) The residual.

Fig. 4
Fig. 4

(a) Measured (black; model 1 with q) and simulated spectra (gray) for the four detector distances in absolute calibrated phantom 8. (b) The residual.

Fig. 5
Fig. 5

(a) Measured (black; model 3 with q) and simulated spectra (gray) for the four detector distances in absolute calibrated phantom 8. (b) The residual.

Fig. 6
Fig. 6

(a) Measured (black; model 5 with q) and simulated spectra (gray) for the two detector distances in relative calibrated phantom 11. (b) The residual.

Tables (4)

Tables Icon

Table 1 Optical Phantoms 7-16 with Both Scattering and Absorption Components Included

Tables Icon

Table 2 Summary of the Seven Models

Tables Icon

Table 3 Performance of the Seven Models

Tables Icon

Table 4 Calculated Model Errors of the Included Chromophores and the Reduced Scattering Coefficient for Model 1 and Model 5

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A abs (ρ)= I meas, μ-sphere (λ,ρ) I MC, μ-sphere (λ,ρ) λ .
I abs (λ,ρ)= I meas (λ,ρ) A abs (ρ) .
A rel (ρ)= I meas, u.i. (λ,ρ) I meas, u.i. (λ,ρ) ρ λ[500,630] .
I rel (λ,ρ)= I meas (λ,ρ) A rel (ρ) .
E abs (α,β, c blue , c red )= I MC ( μ a , μ s ,λ,ρ) q abs (ρ) I abs (λ,ρ) 1,
E rel (α,β, c blue , c red )= I MC ( μ a , μ s ,λ,ρ) q rel (ρ) I rel (λ,ρ) I MC ( μ a , μ s ,λ,ρ) I rel (λ,ρ) λ,ρ 1 1.

Metrics