Abstract

In vivo high resolution imaging of biological tissues is desirable for a wide range of biomedical applications. Recently focal modulation microscopy (FMM) has been developed and an imaging depth comparable to multi-photon microscopy (MPM) and optical coherence microscopy (OCM) has been achieved. Here we report the first focal modulation microscope that is capable of performing real-time fluorescence and scattering imaging simultaneously on thick biological tissues. A novel spatiotemporal phase modulator (STPM) has been designed and integrated into such a microscope to achieve high performances in terms of imaging speed, contrast, effective spatial resolution, signal to noise ratio, and compatibility with multiple excitation wavelengths.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Ameer-Beg, P. R. Barber, R. J. Hodgkiss, R. J. Locke, R. G. Newman, G. M. Tozer, B. Vojnovic, and J. Wilson, “Application of multiphoton steady state and lifetime imaging to mapping of tumour vascular architecture in vivo,” Proc. SPIE4620, 85–95 (2002).
    [CrossRef]
  2. U. Dirnagl, U. Lindauer, A. Them, W. Pfister, K. M. Einhaupl, and A. Villringer, “Subsurface microscopic visualization of brain-tissue in-vivo—present, problems and prospects,” Micron24(6), 611–622 (1993).
    [CrossRef]
  3. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005).
    [CrossRef] [PubMed]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  5. W. M. Petroll, J. V. Jester, and H. D. Cavanagh, “In vivo confocal imaging: general principles and applications,” Scanning16(3), 131–149 (1994).
    [PubMed]
  6. P. Timpson, E. J. McGhee, and K. I. Anderson, “Imaging molecular dynamics in vivo—from cell biology to animal models,” J. Cell Sci.124(17), 2877–2890 (2011).
    [CrossRef] [PubMed]
  7. I. Tomo, S. Le Calvez, H. Maier, J. Boutet de Monvel, A. Fridberger, and M. Ulfendahl, “Imaging the living inner ear using intravital confocal microscopy,” Neuroimage35(4), 1393–1400 (2007).
    [CrossRef] [PubMed]
  8. N. Wuyts, J. C. Palauqui, G. Conejero, J. L. Verdeil, C. Granier, and C. Massonnet, “High-contrast three-dimensional imaging of the Arabidopsis leaf enables the analysis of cell dimensions in the epidermis and mesophyll,” Plant Methods6(1), 17 (2010), doi:, http://www.plantmethods.com/content/6/1/17 .
    [CrossRef] [PubMed]
  9. S. Khoshyomn, P. L. Penar, W. J. McBride, and D. J. Taatjes, “Four-dimensional analysis of human brain tumor spheroid invasion into fetal rat brain aggregates using confocal scanning laser microscopy,” J. Neurooncol.38(1), 1–10 (1998).
    [CrossRef] [PubMed]
  10. M. Gu and C. J. R. Sheppard, “Three-dimensional image-formation in confocal fluorescence microscopy,” Proc. SPIE1660, 188–198 (1992).
    [CrossRef]
  11. C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal.11(03), 216–223 (2005).
    [CrossRef] [PubMed]
  12. J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron.2(4), 1017–1028 (1996).
    [CrossRef]
  13. N. G. Chen, C. H. Wong, and C. J. R. Sheppard, “Focal modulation microscopy,” Opt. Express16(23), 18764–18769 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-18764 .
    [CrossRef] [PubMed]
  14. S. P. Chong, C. H. Wong, C. J. R. Sheppard, and N. G. Chen, “Focal modulation microscopy: a theoretical study,” Opt. Lett.35(11), 1804–1806 (2010).
    [CrossRef] [PubMed]
  15. G. J. Gao, S. P. Chong, C. J. R. Sheppard, and N. G. Chen, “Considerations of aperture configuration in focal modulation microscopy from the standpoint of modulation depth,” J. Opt. Soc. Am. A28(4), 496–501 (2011).
    [CrossRef] [PubMed]
  16. S. P. Chong, C. H. Wong, K. F. Wong, C. J. R. Sheppard, and N. G. Chen, “High-speed focal modulation microscopy using acousto-optical modulators,” Biomed. Opt. Express1(3), 1026–1037 (2010), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-3-1026 .
    [CrossRef] [PubMed]

2011

2010

2008

2007

I. Tomo, S. Le Calvez, H. Maier, J. Boutet de Monvel, A. Fridberger, and M. Ulfendahl, “Imaging the living inner ear using intravital confocal microscopy,” Neuroimage35(4), 1393–1400 (2007).
[CrossRef] [PubMed]

2005

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005).
[CrossRef] [PubMed]

C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal.11(03), 216–223 (2005).
[CrossRef] [PubMed]

2002

S. M. Ameer-Beg, P. R. Barber, R. J. Hodgkiss, R. J. Locke, R. G. Newman, G. M. Tozer, B. Vojnovic, and J. Wilson, “Application of multiphoton steady state and lifetime imaging to mapping of tumour vascular architecture in vivo,” Proc. SPIE4620, 85–95 (2002).
[CrossRef]

1998

S. Khoshyomn, P. L. Penar, W. J. McBride, and D. J. Taatjes, “Four-dimensional analysis of human brain tumor spheroid invasion into fetal rat brain aggregates using confocal scanning laser microscopy,” J. Neurooncol.38(1), 1–10 (1998).
[CrossRef] [PubMed]

1996

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron.2(4), 1017–1028 (1996).
[CrossRef]

1994

W. M. Petroll, J. V. Jester, and H. D. Cavanagh, “In vivo confocal imaging: general principles and applications,” Scanning16(3), 131–149 (1994).
[PubMed]

1993

U. Dirnagl, U. Lindauer, A. Them, W. Pfister, K. M. Einhaupl, and A. Villringer, “Subsurface microscopic visualization of brain-tissue in-vivo—present, problems and prospects,” Micron24(6), 611–622 (1993).
[CrossRef]

1992

M. Gu and C. J. R. Sheppard, “Three-dimensional image-formation in confocal fluorescence microscopy,” Proc. SPIE1660, 188–198 (1992).
[CrossRef]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ameer-Beg, S. M.

S. M. Ameer-Beg, P. R. Barber, R. J. Hodgkiss, R. J. Locke, R. G. Newman, G. M. Tozer, B. Vojnovic, and J. Wilson, “Application of multiphoton steady state and lifetime imaging to mapping of tumour vascular architecture in vivo,” Proc. SPIE4620, 85–95 (2002).
[CrossRef]

Anderson, K. I.

P. Timpson, E. J. McGhee, and K. I. Anderson, “Imaging molecular dynamics in vivo—from cell biology to animal models,” J. Cell Sci.124(17), 2877–2890 (2011).
[CrossRef] [PubMed]

Barber, P. R.

S. M. Ameer-Beg, P. R. Barber, R. J. Hodgkiss, R. J. Locke, R. G. Newman, G. M. Tozer, B. Vojnovic, and J. Wilson, “Application of multiphoton steady state and lifetime imaging to mapping of tumour vascular architecture in vivo,” Proc. SPIE4620, 85–95 (2002).
[CrossRef]

Bigelow, M. R.

C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal.11(03), 216–223 (2005).
[CrossRef] [PubMed]

Boutet de Monvel, J.

I. Tomo, S. Le Calvez, H. Maier, J. Boutet de Monvel, A. Fridberger, and M. Ulfendahl, “Imaging the living inner ear using intravital confocal microscopy,” Neuroimage35(4), 1393–1400 (2007).
[CrossRef] [PubMed]

Cavanagh, H. D.

W. M. Petroll, J. V. Jester, and H. D. Cavanagh, “In vivo confocal imaging: general principles and applications,” Scanning16(3), 131–149 (1994).
[PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, N. G.

Chong, S. P.

Conejero, G.

N. Wuyts, J. C. Palauqui, G. Conejero, J. L. Verdeil, C. Granier, and C. Massonnet, “High-contrast three-dimensional imaging of the Arabidopsis leaf enables the analysis of cell dimensions in the epidermis and mesophyll,” Plant Methods6(1), 17 (2010), doi:, http://www.plantmethods.com/content/6/1/17 .
[CrossRef] [PubMed]

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005).
[CrossRef] [PubMed]

Dirnagl, U.

U. Dirnagl, U. Lindauer, A. Them, W. Pfister, K. M. Einhaupl, and A. Villringer, “Subsurface microscopic visualization of brain-tissue in-vivo—present, problems and prospects,” Micron24(6), 611–622 (1993).
[CrossRef]

Einhaupl, K. M.

U. Dirnagl, U. Lindauer, A. Them, W. Pfister, K. M. Einhaupl, and A. Villringer, “Subsurface microscopic visualization of brain-tissue in-vivo—present, problems and prospects,” Micron24(6), 611–622 (1993).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fridberger, A.

I. Tomo, S. Le Calvez, H. Maier, J. Boutet de Monvel, A. Fridberger, and M. Ulfendahl, “Imaging the living inner ear using intravital confocal microscopy,” Neuroimage35(4), 1393–1400 (2007).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gao, G. J.

Gittinger, G.

C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal.11(03), 216–223 (2005).
[CrossRef] [PubMed]

Granier, C.

N. Wuyts, J. C. Palauqui, G. Conejero, J. L. Verdeil, C. Granier, and C. Massonnet, “High-contrast three-dimensional imaging of the Arabidopsis leaf enables the analysis of cell dimensions in the epidermis and mesophyll,” Plant Methods6(1), 17 (2010), doi:, http://www.plantmethods.com/content/6/1/17 .
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gu, M.

M. Gu and C. J. R. Sheppard, “Three-dimensional image-formation in confocal fluorescence microscopy,” Proc. SPIE1660, 188–198 (1992).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005).
[CrossRef] [PubMed]

Hodgkiss, R. J.

S. M. Ameer-Beg, P. R. Barber, R. J. Hodgkiss, R. J. Locke, R. G. Newman, G. M. Tozer, B. Vojnovic, and J. Wilson, “Application of multiphoton steady state and lifetime imaging to mapping of tumour vascular architecture in vivo,” Proc. SPIE4620, 85–95 (2002).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Izatt, J. A.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron.2(4), 1017–1028 (1996).
[CrossRef]

Jester, J. V.

W. M. Petroll, J. V. Jester, and H. D. Cavanagh, “In vivo confocal imaging: general principles and applications,” Scanning16(3), 131–149 (1994).
[PubMed]

Khoshyomn, S.

S. Khoshyomn, P. L. Penar, W. J. McBride, and D. J. Taatjes, “Four-dimensional analysis of human brain tumor spheroid invasion into fetal rat brain aggregates using confocal scanning laser microscopy,” J. Neurooncol.38(1), 1–10 (1998).
[CrossRef] [PubMed]

Kobayashi, K.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron.2(4), 1017–1028 (1996).
[CrossRef]

Kulkarni, M. D.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron.2(4), 1017–1028 (1996).
[CrossRef]

Le Calvez, S.

I. Tomo, S. Le Calvez, H. Maier, J. Boutet de Monvel, A. Fridberger, and M. Ulfendahl, “Imaging the living inner ear using intravital confocal microscopy,” Neuroimage35(4), 1393–1400 (2007).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lindauer, U.

U. Dirnagl, U. Lindauer, A. Them, W. Pfister, K. M. Einhaupl, and A. Villringer, “Subsurface microscopic visualization of brain-tissue in-vivo—present, problems and prospects,” Micron24(6), 611–622 (1993).
[CrossRef]

Locke, R. J.

S. M. Ameer-Beg, P. R. Barber, R. J. Hodgkiss, R. J. Locke, R. G. Newman, G. M. Tozer, B. Vojnovic, and J. Wilson, “Application of multiphoton steady state and lifetime imaging to mapping of tumour vascular architecture in vivo,” Proc. SPIE4620, 85–95 (2002).
[CrossRef]

Maier, H.

I. Tomo, S. Le Calvez, H. Maier, J. Boutet de Monvel, A. Fridberger, and M. Ulfendahl, “Imaging the living inner ear using intravital confocal microscopy,” Neuroimage35(4), 1393–1400 (2007).
[CrossRef] [PubMed]

Massonnet, C.

N. Wuyts, J. C. Palauqui, G. Conejero, J. L. Verdeil, C. Granier, and C. Massonnet, “High-contrast three-dimensional imaging of the Arabidopsis leaf enables the analysis of cell dimensions in the epidermis and mesophyll,” Plant Methods6(1), 17 (2010), doi:, http://www.plantmethods.com/content/6/1/17 .
[CrossRef] [PubMed]

McBride, W. J.

S. Khoshyomn, P. L. Penar, W. J. McBride, and D. J. Taatjes, “Four-dimensional analysis of human brain tumor spheroid invasion into fetal rat brain aggregates using confocal scanning laser microscopy,” J. Neurooncol.38(1), 1–10 (1998).
[CrossRef] [PubMed]

McGhee, E. J.

P. Timpson, E. J. McGhee, and K. I. Anderson, “Imaging molecular dynamics in vivo—from cell biology to animal models,” J. Cell Sci.124(17), 2877–2890 (2011).
[CrossRef] [PubMed]

Miller, C. E.

C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal.11(03), 216–223 (2005).
[CrossRef] [PubMed]

Newman, R. G.

S. M. Ameer-Beg, P. R. Barber, R. J. Hodgkiss, R. J. Locke, R. G. Newman, G. M. Tozer, B. Vojnovic, and J. Wilson, “Application of multiphoton steady state and lifetime imaging to mapping of tumour vascular architecture in vivo,” Proc. SPIE4620, 85–95 (2002).
[CrossRef]

Palauqui, J. C.

N. Wuyts, J. C. Palauqui, G. Conejero, J. L. Verdeil, C. Granier, and C. Massonnet, “High-contrast three-dimensional imaging of the Arabidopsis leaf enables the analysis of cell dimensions in the epidermis and mesophyll,” Plant Methods6(1), 17 (2010), doi:, http://www.plantmethods.com/content/6/1/17 .
[CrossRef] [PubMed]

Penar, P. L.

S. Khoshyomn, P. L. Penar, W. J. McBride, and D. J. Taatjes, “Four-dimensional analysis of human brain tumor spheroid invasion into fetal rat brain aggregates using confocal scanning laser microscopy,” J. Neurooncol.38(1), 1–10 (1998).
[CrossRef] [PubMed]

Petroll, W. M.

W. M. Petroll, J. V. Jester, and H. D. Cavanagh, “In vivo confocal imaging: general principles and applications,” Scanning16(3), 131–149 (1994).
[PubMed]

Pfister, W.

U. Dirnagl, U. Lindauer, A. Them, W. Pfister, K. M. Einhaupl, and A. Villringer, “Subsurface microscopic visualization of brain-tissue in-vivo—present, problems and prospects,” Micron24(6), 611–622 (1993).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sedmera, D.

C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal.11(03), 216–223 (2005).
[CrossRef] [PubMed]

Sheppard, C. J. R.

Sivak, M. V.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron.2(4), 1017–1028 (1996).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Taatjes, D. J.

S. Khoshyomn, P. L. Penar, W. J. McBride, and D. J. Taatjes, “Four-dimensional analysis of human brain tumor spheroid invasion into fetal rat brain aggregates using confocal scanning laser microscopy,” J. Neurooncol.38(1), 1–10 (1998).
[CrossRef] [PubMed]

Them, A.

U. Dirnagl, U. Lindauer, A. Them, W. Pfister, K. M. Einhaupl, and A. Villringer, “Subsurface microscopic visualization of brain-tissue in-vivo—present, problems and prospects,” Micron24(6), 611–622 (1993).
[CrossRef]

Thompson, R. P.

C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal.11(03), 216–223 (2005).
[CrossRef] [PubMed]

Timpson, P.

P. Timpson, E. J. McGhee, and K. I. Anderson, “Imaging molecular dynamics in vivo—from cell biology to animal models,” J. Cell Sci.124(17), 2877–2890 (2011).
[CrossRef] [PubMed]

Tomo, I.

I. Tomo, S. Le Calvez, H. Maier, J. Boutet de Monvel, A. Fridberger, and M. Ulfendahl, “Imaging the living inner ear using intravital confocal microscopy,” Neuroimage35(4), 1393–1400 (2007).
[CrossRef] [PubMed]

Tozer, G. M.

S. M. Ameer-Beg, P. R. Barber, R. J. Hodgkiss, R. J. Locke, R. G. Newman, G. M. Tozer, B. Vojnovic, and J. Wilson, “Application of multiphoton steady state and lifetime imaging to mapping of tumour vascular architecture in vivo,” Proc. SPIE4620, 85–95 (2002).
[CrossRef]

Trusk, T. C.

C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal.11(03), 216–223 (2005).
[CrossRef] [PubMed]

Ulfendahl, M.

I. Tomo, S. Le Calvez, H. Maier, J. Boutet de Monvel, A. Fridberger, and M. Ulfendahl, “Imaging the living inner ear using intravital confocal microscopy,” Neuroimage35(4), 1393–1400 (2007).
[CrossRef] [PubMed]

Verdeil, J. L.

N. Wuyts, J. C. Palauqui, G. Conejero, J. L. Verdeil, C. Granier, and C. Massonnet, “High-contrast three-dimensional imaging of the Arabidopsis leaf enables the analysis of cell dimensions in the epidermis and mesophyll,” Plant Methods6(1), 17 (2010), doi:, http://www.plantmethods.com/content/6/1/17 .
[CrossRef] [PubMed]

Villringer, A.

U. Dirnagl, U. Lindauer, A. Them, W. Pfister, K. M. Einhaupl, and A. Villringer, “Subsurface microscopic visualization of brain-tissue in-vivo—present, problems and prospects,” Micron24(6), 611–622 (1993).
[CrossRef]

Vojnovic, B.

S. M. Ameer-Beg, P. R. Barber, R. J. Hodgkiss, R. J. Locke, R. G. Newman, G. M. Tozer, B. Vojnovic, and J. Wilson, “Application of multiphoton steady state and lifetime imaging to mapping of tumour vascular architecture in vivo,” Proc. SPIE4620, 85–95 (2002).
[CrossRef]

Wang, H.-W.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron.2(4), 1017–1028 (1996).
[CrossRef]

Wilson, J.

S. M. Ameer-Beg, P. R. Barber, R. J. Hodgkiss, R. J. Locke, R. G. Newman, G. M. Tozer, B. Vojnovic, and J. Wilson, “Application of multiphoton steady state and lifetime imaging to mapping of tumour vascular architecture in vivo,” Proc. SPIE4620, 85–95 (2002).
[CrossRef]

Wong, C. H.

Wong, K. F.

Wuyts, N.

N. Wuyts, J. C. Palauqui, G. Conejero, J. L. Verdeil, C. Granier, and C. Massonnet, “High-contrast three-dimensional imaging of the Arabidopsis leaf enables the analysis of cell dimensions in the epidermis and mesophyll,” Plant Methods6(1), 17 (2010), doi:, http://www.plantmethods.com/content/6/1/17 .
[CrossRef] [PubMed]

Biomed. Opt. Express

IEEE J. Sel. Top. Quantum Electron.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron.2(4), 1017–1028 (1996).
[CrossRef]

J. Cell Sci.

P. Timpson, E. J. McGhee, and K. I. Anderson, “Imaging molecular dynamics in vivo—from cell biology to animal models,” J. Cell Sci.124(17), 2877–2890 (2011).
[CrossRef] [PubMed]

J. Neurooncol.

S. Khoshyomn, P. L. Penar, W. J. McBride, and D. J. Taatjes, “Four-dimensional analysis of human brain tumor spheroid invasion into fetal rat brain aggregates using confocal scanning laser microscopy,” J. Neurooncol.38(1), 1–10 (1998).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Micron

U. Dirnagl, U. Lindauer, A. Them, W. Pfister, K. M. Einhaupl, and A. Villringer, “Subsurface microscopic visualization of brain-tissue in-vivo—present, problems and prospects,” Micron24(6), 611–622 (1993).
[CrossRef]

Microsc. Microanal.

C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal.11(03), 216–223 (2005).
[CrossRef] [PubMed]

Nat. Methods

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005).
[CrossRef] [PubMed]

Neuroimage

I. Tomo, S. Le Calvez, H. Maier, J. Boutet de Monvel, A. Fridberger, and M. Ulfendahl, “Imaging the living inner ear using intravital confocal microscopy,” Neuroimage35(4), 1393–1400 (2007).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Plant Methods

N. Wuyts, J. C. Palauqui, G. Conejero, J. L. Verdeil, C. Granier, and C. Massonnet, “High-contrast three-dimensional imaging of the Arabidopsis leaf enables the analysis of cell dimensions in the epidermis and mesophyll,” Plant Methods6(1), 17 (2010), doi:, http://www.plantmethods.com/content/6/1/17 .
[CrossRef] [PubMed]

Proc. SPIE

M. Gu and C. J. R. Sheppard, “Three-dimensional image-formation in confocal fluorescence microscopy,” Proc. SPIE1660, 188–198 (1992).
[CrossRef]

S. M. Ameer-Beg, P. R. Barber, R. J. Hodgkiss, R. J. Locke, R. G. Newman, G. M. Tozer, B. Vojnovic, and J. Wilson, “Application of multiphoton steady state and lifetime imaging to mapping of tumour vascular architecture in vivo,” Proc. SPIE4620, 85–95 (2002).
[CrossRef]

Scanning

W. M. Petroll, J. V. Jester, and H. D. Cavanagh, “In vivo confocal imaging: general principles and applications,” Scanning16(3), 131–149 (1994).
[PubMed]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: AVI (1301 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) A STPM is inserted in the excitation light path of an Olympus FV300 confocal microscope for FMM imaging. (b) A six-zone spatial polarizer that selectively passes horizontally polarized light (white zones) or vertically polarized light (gray) zones. (c) Signal processing circuit for demodulation. See the text for details.

Fig. 2
Fig. 2

(a) Merged leaf image (Media 1) from autofluorescence (red) and backscattering/reflectance (green). (b) Autofluorescence chloroplasts en face and (d) cross-sectional CM images, respectively, were acquired simultaneously with corresponding FMM images (c) and (e). (f) Line profiles taken along same color lines in the FMM image (e). (g) Line profiles taken along same color lines in the CM image (d). Scale bars: 5 µm.

Metrics