Abstract

Sensors based on surface plasmon resonances (SPRs) have proven themselves as promising devices for molecular investigations – still there is potential to determine the geometrical parameter set for optimal sensing performance. Here we propose a comprehensive design rule for one-dimensional plasmonic grating structures. We present an analytical approach, which allows for estimation of the grating parameters for best SPR coupling efficiency for any geometry and design wavelength. On the example of sinusoidal gratings, we expand this solution and discuss numerically and experimentally, how the grating modulation depth can be refined to achieve optimal signal resolution. Finally, we propose a benchmark factor to assess the sensor performance, which can be applied to any sensing scheme utilizing resonances, allowing for comparison of different technological platforms.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Borisov and O. S. Wolfbeis, “Optical biosensors,” Chem. Rev. 108(2), 423–461 (2008).
    [CrossRef] [PubMed]
  2. L. Nicu and T. Leichlé, “Biosensors and tools for surface functionalization from the macro- to the nanoscale: The way forward,” J. Appl. Phys. 104(11), 111101 (2008).
    [CrossRef]
  3. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [CrossRef] [PubMed]
  4. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [CrossRef] [PubMed]
  5. P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17(8), R93–R116 (2006).
    [CrossRef]
  6. R. B. M. Schasfoort and A. J. Tudos, Handbook of surface plasmon resonance (RSC Publishing, 2008).
  7. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: a review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [CrossRef]
  8. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [CrossRef] [PubMed]
  9. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
    [CrossRef] [PubMed]
  10. M. Sukharev, P. R. Sievert, T. Seideman, and J. B. Ketterson, “Perfect coupling of light to surface plasmons with ultra-narrow linewidths,” J. Chem. Phys. 131(3), 034708 (2009).
    [CrossRef] [PubMed]
  11. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
    [CrossRef] [PubMed]
  12. J. Dostalek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sens. Actuators B Chem. 107(1), 154–161 (2005).
    [CrossRef]
  13. Y. Nazirizadeh, U. Bog, S. Sekula, T. Mappes, U. Lemmer, and M. Gerken, “Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers,” Opt. Express 18(18), 19120–19128 (2010).
    [CrossRef] [PubMed]
  14. C. Vannahme, S. Klinkhammer, M. B. Christiansen, A. Kolew, A. Kristensen, U. Lemmer, and T. Mappes, “All-polymer organic semiconductor laser chips: parallel fabrication and encapsulation,” Opt. Express 18(24), 24881–24887 (2010).
    [CrossRef] [PubMed]
  15. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).
  16. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces,” J. Opt. Soc. Am. 31(3), 213–222 (1941).
    [CrossRef]
  17. R. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, “Surface plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
    [CrossRef]
  18. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3(11), 1780–1787 (1986).
    [CrossRef]
  19. I. Baltog, N. Primeau, R. Reinisch, and J. L. Coutaz, “Surface enhanced Raman scattering on silver grating: optimized antennalike gain of the stokes signal of 104,” Appl. Phys. Lett. 66(10), 1187 (1995).
    [CrossRef]
  20. S. C. Kitson, W. L. Barnes, G. W. Bradberry, and J. R. Sambles, “Surface profile dependence of surface plasmom band gaps on metallic gratings,” J. Appl. Phys. 79(9), 7383 (1996).
    [CrossRef]
  21. S. Balci, A. Kocabas, C. Kocabas, and A. Aydinli, “Slowing surface plasmon polaritons on plasmonic coupled cavities by tuning grating grooves,” Appl. Phys. Lett. 97(13), 131103 (2010).
    [CrossRef]
  22. S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008).
    [CrossRef] [PubMed]
  23. N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett. 88(7), 071110 (2006).
    [CrossRef]
  24. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
    [CrossRef] [PubMed]
  25. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32(21), 3080–3082 (2007).
    [CrossRef] [PubMed]
  26. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
    [CrossRef]
  27. G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8(12), 2074–2079 (2008).
    [CrossRef]
  28. E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
    [CrossRef] [PubMed]
  29. G. A. Campbell and R. Mutharasan, “PEMC sensor’s mass change sensitivity is 20 pg/Hz under liquid immersion,” Biosens. Bioelectron. 22(1), 35–41 (2006).
    [CrossRef] [PubMed]
  30. N. Ramakrishnan, T. Vamsi, A. Khan, H. B. Nemade, and R. P. Palathinkal, “Humidity sensor using NIPAAm nanogel as sensing medium in saw devices,” Int. J. Nanosci. 10(01n02), 259–262 (2011).
    [CrossRef]
  31. E. Popov, “Plasmon interactions in metallic gratings: ω- and k-minigaps and their connection with poles and zeros,” Surf. Sci. 222(2-3), 517–529 (1989).
    [CrossRef]
  32. F. Toigo, A. Marvin, V. Celli, and N. Hill, “Optical properties of rough surfaces: general theory and the small roughness limit,” Phys. Rev. B 15(12), 5618–5626 (1977).
    [CrossRef]
  33. R. Petit and M. Cadilhac, “Sur la diffraction d'une onde plane par un réseau infiniment conducteur,” Acad. Sci., B 262, 468 (1966) (in French).
  34. A. Akhmanov, V. N. Seminogov, and V. I. Sokolov, “Light diffraction at corrugated surfaces,” J. Exp. Theor. Phys. 93, 1654 (1987) (in Russian).
  35. V. N. Seminogov and V. I. Sokolov, “Influence of the nonmonochromaticity of the periodic relief of a surface on the effect of total suppression of the specular reflection of an s-polarized electromagnetic wave,” Opt. Spectrosc. 68, 50–53 (1990).
  36. A. V. Nesterov-Müller, Laser beams with axially symmetric polarisation, (Schatura, 2000).
  37. http://www.allresist.de/wEnglish/produkte/SonderanfertigungenExperimentalmuster/0041.php
  38. RSoft DiffractMOD, “RSoft Design Group.” http://www.rsoftdesign.com
  39. U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60(7), 4992–4999 (1999).
    [CrossRef]
  40. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
    [CrossRef]

2011 (1)

N. Ramakrishnan, T. Vamsi, A. Khan, H. B. Nemade, and R. P. Palathinkal, “Humidity sensor using NIPAAm nanogel as sensing medium in saw devices,” Int. J. Nanosci. 10(01n02), 259–262 (2011).
[CrossRef]

2010 (3)

2009 (1)

M. Sukharev, P. R. Sievert, T. Seideman, and J. B. Ketterson, “Perfect coupling of light to surface plasmons with ultra-narrow linewidths,” J. Chem. Phys. 131(3), 034708 (2009).
[CrossRef] [PubMed]

2008 (7)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

S. M. Borisov and O. S. Wolfbeis, “Optical biosensors,” Chem. Rev. 108(2), 423–461 (2008).
[CrossRef] [PubMed]

L. Nicu and T. Leichlé, “Biosensors and tools for surface functionalization from the macro- to the nanoscale: The way forward,” J. Appl. Phys. 104(11), 111101 (2008).
[CrossRef]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008).
[CrossRef] [PubMed]

G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8(12), 2074–2079 (2008).
[CrossRef]

2007 (4)

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32(21), 3080–3082 (2007).
[CrossRef] [PubMed]

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

2006 (3)

P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17(8), R93–R116 (2006).
[CrossRef]

N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett. 88(7), 071110 (2006).
[CrossRef]

G. A. Campbell and R. Mutharasan, “PEMC sensor’s mass change sensitivity is 20 pg/Hz under liquid immersion,” Biosens. Bioelectron. 22(1), 35–41 (2006).
[CrossRef] [PubMed]

2005 (2)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

J. Dostalek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sens. Actuators B Chem. 107(1), 154–161 (2005).
[CrossRef]

1999 (3)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: a review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60(7), 4992–4999 (1999).
[CrossRef]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
[CrossRef]

1996 (2)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

S. C. Kitson, W. L. Barnes, G. W. Bradberry, and J. R. Sambles, “Surface profile dependence of surface plasmom band gaps on metallic gratings,” J. Appl. Phys. 79(9), 7383 (1996).
[CrossRef]

1995 (1)

I. Baltog, N. Primeau, R. Reinisch, and J. L. Coutaz, “Surface enhanced Raman scattering on silver grating: optimized antennalike gain of the stokes signal of 104,” Appl. Phys. Lett. 66(10), 1187 (1995).
[CrossRef]

1990 (1)

V. N. Seminogov and V. I. Sokolov, “Influence of the nonmonochromaticity of the periodic relief of a surface on the effect of total suppression of the specular reflection of an s-polarized electromagnetic wave,” Opt. Spectrosc. 68, 50–53 (1990).

1989 (1)

E. Popov, “Plasmon interactions in metallic gratings: ω- and k-minigaps and their connection with poles and zeros,” Surf. Sci. 222(2-3), 517–529 (1989).
[CrossRef]

1987 (1)

A. Akhmanov, V. N. Seminogov, and V. I. Sokolov, “Light diffraction at corrugated surfaces,” J. Exp. Theor. Phys. 93, 1654 (1987) (in Russian).

1986 (1)

1977 (1)

F. Toigo, A. Marvin, V. Celli, and N. Hill, “Optical properties of rough surfaces: general theory and the small roughness limit,” Phys. Rev. B 15(12), 5618–5626 (1977).
[CrossRef]

1968 (1)

R. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, “Surface plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[CrossRef]

1966 (1)

R. Petit and M. Cadilhac, “Sur la diffraction d'une onde plane par un réseau infiniment conducteur,” Acad. Sci., B 262, 468 (1966) (in French).

1941 (1)

1902 (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).

Akhmanov, A.

A. Akhmanov, V. N. Seminogov, and V. I. Sokolov, “Light diffraction at corrugated surfaces,” J. Exp. Theor. Phys. 93, 1654 (1987) (in Russian).

Alegret, J.

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Arakawa, E.

R. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, “Surface plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[CrossRef]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Aydinli, A.

S. Balci, A. Kocabas, C. Kocabas, and A. Aydinli, “Slowing surface plasmon polaritons on plasmonic coupled cavities by tuning grating grooves,” Appl. Phys. Lett. 97(13), 131103 (2010).
[CrossRef]

Balci, S.

S. Balci, A. Kocabas, C. Kocabas, and A. Aydinli, “Slowing surface plasmon polaritons on plasmonic coupled cavities by tuning grating grooves,” Appl. Phys. Lett. 97(13), 131103 (2010).
[CrossRef]

Baltog, I.

I. Baltog, N. Primeau, R. Reinisch, and J. L. Coutaz, “Surface enhanced Raman scattering on silver grating: optimized antennalike gain of the stokes signal of 104,” Appl. Phys. Lett. 66(10), 1187 (1995).
[CrossRef]

Barnes, W. L.

S. C. Kitson, W. L. Barnes, G. W. Bradberry, and J. R. Sambles, “Surface profile dependence of surface plasmom band gaps on metallic gratings,” J. Appl. Phys. 79(9), 7383 (1996).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

Barrios, C. A.

Bog, U.

Borisov, S. M.

S. M. Borisov and O. S. Wolfbeis, “Optical biosensors,” Chem. Rev. 108(2), 423–461 (2008).
[CrossRef] [PubMed]

Bradberry, G. W.

S. C. Kitson, W. L. Barnes, G. W. Bradberry, and J. R. Sambles, “Surface profile dependence of surface plasmom band gaps on metallic gratings,” J. Appl. Phys. 79(9), 7383 (1996).
[CrossRef]

Cadilhac, M.

R. Petit and M. Cadilhac, “Sur la diffraction d'une onde plane par un réseau infiniment conducteur,” Acad. Sci., B 262, 468 (1966) (in French).

Campbell, G. A.

G. A. Campbell and R. Mutharasan, “PEMC sensor’s mass change sensitivity is 20 pg/Hz under liquid immersion,” Biosens. Bioelectron. 22(1), 35–41 (2006).
[CrossRef] [PubMed]

Casquel, R.

Celli, V.

F. Toigo, A. Marvin, V. Celli, and N. Hill, “Optical properties of rough surfaces: general theory and the small roughness limit,” Phys. Rev. B 15(12), 5618–5626 (1977).
[CrossRef]

Christiansen, M. B.

Coutaz, J. L.

I. Baltog, N. Primeau, R. Reinisch, and J. L. Coutaz, “Surface enhanced Raman scattering on silver grating: optimized antennalike gain of the stokes signal of 104,” Appl. Phys. Lett. 66(10), 1187 (1995).
[CrossRef]

Cowan, J.

R. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, “Surface plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[CrossRef]

Cunningham, B. T.

N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett. 88(7), 071110 (2006).
[CrossRef]

Dostalek, J.

J. Dostalek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sens. Actuators B Chem. 107(1), 154–161 (2005).
[CrossRef]

Erickson, D.

Fainman, Y.

G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8(12), 2074–2079 (2008).
[CrossRef]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Fano, U.

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Ganesh, N.

N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett. 88(7), 071110 (2006).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: a review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Gaylord, T. K.

Gerken, M.

Griol, A.

Gylfason, K. B.

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Hamm, R.

R. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, “Surface plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[CrossRef]

Heitmann, D.

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60(7), 4992–4999 (1999).
[CrossRef]

Hill, N.

F. Toigo, A. Marvin, V. Celli, and N. Hill, “Optical properties of rough surfaces: general theory and the small roughness limit,” Phys. Rev. B 15(12), 5618–5626 (1977).
[CrossRef]

Hoa, X. D.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

Holgado, M.

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

J. Dostalek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sens. Actuators B Chem. 107(1), 154–161 (2005).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: a review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
[CrossRef]

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Hwang, G. M.

G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8(12), 2074–2079 (2008).
[CrossRef]

Käll, M.

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

Ketterson, J. B.

M. Sukharev, P. R. Sievert, T. Seideman, and J. B. Ketterson, “Perfect coupling of light to surface plasmons with ultra-narrow linewidths,” J. Chem. Phys. 131(3), 034708 (2009).
[CrossRef] [PubMed]

Khan, A.

N. Ramakrishnan, T. Vamsi, A. Khan, H. B. Nemade, and R. P. Palathinkal, “Humidity sensor using NIPAAm nanogel as sensing medium in saw devices,” Int. J. Nanosci. 10(01n02), 259–262 (2011).
[CrossRef]

Kirk, A. G.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

S. C. Kitson, W. L. Barnes, G. W. Bradberry, and J. R. Sambles, “Surface profile dependence of surface plasmom band gaps on metallic gratings,” J. Appl. Phys. 79(9), 7383 (1996).
[CrossRef]

Klinkhammer, S.

Kocabas, A.

S. Balci, A. Kocabas, C. Kocabas, and A. Aydinli, “Slowing surface plasmon polaritons on plasmonic coupled cavities by tuning grating grooves,” Appl. Phys. Lett. 97(13), 131103 (2010).
[CrossRef]

Kocabas, C.

S. Balci, A. Kocabas, C. Kocabas, and A. Aydinli, “Slowing surface plasmon polaritons on plasmonic coupled cavities by tuning grating grooves,” Appl. Phys. Lett. 97(13), 131103 (2010).
[CrossRef]

Kolew, A.

Koudela, I.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
[CrossRef]

Kristensen, A.

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Lambeck, P. V.

P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17(8), R93–R116 (2006).
[CrossRef]

Larsson, E. M.

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Leichlé, T.

L. Nicu and T. Leichlé, “Biosensors and tools for surface functionalization from the macro- to the nanoscale: The way forward,” J. Appl. Phys. 104(11), 111101 (2008).
[CrossRef]

Lemmer, U.

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Mandal, S.

Mappes, T.

Marvin, A.

F. Toigo, A. Marvin, V. Celli, and N. Hill, “Optical properties of rough surfaces: general theory and the small roughness limit,” Phys. Rev. B 15(12), 5618–5626 (1977).
[CrossRef]

Miler, M.

J. Dostalek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sens. Actuators B Chem. 107(1), 154–161 (2005).
[CrossRef]

Moharam, M. G.

Mullen, E. H.

G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8(12), 2074–2079 (2008).
[CrossRef]

Mutharasan, R.

G. A. Campbell and R. Mutharasan, “PEMC sensor’s mass change sensitivity is 20 pg/Hz under liquid immersion,” Biosens. Bioelectron. 22(1), 35–41 (2006).
[CrossRef] [PubMed]

Nazirizadeh, Y.

Nemade, H. B.

N. Ramakrishnan, T. Vamsi, A. Khan, H. B. Nemade, and R. P. Palathinkal, “Humidity sensor using NIPAAm nanogel as sensing medium in saw devices,” Int. J. Nanosci. 10(01n02), 259–262 (2011).
[CrossRef]

Nicu, L.

L. Nicu and T. Leichlé, “Biosensors and tools for surface functionalization from the macro- to the nanoscale: The way forward,” J. Appl. Phys. 104(11), 111101 (2008).
[CrossRef]

Palathinkal, R. P.

N. Ramakrishnan, T. Vamsi, A. Khan, H. B. Nemade, and R. P. Palathinkal, “Humidity sensor using NIPAAm nanogel as sensing medium in saw devices,” Int. J. Nanosci. 10(01n02), 259–262 (2011).
[CrossRef]

Pang, L.

G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8(12), 2074–2079 (2008).
[CrossRef]

Petit, R.

R. Petit and M. Cadilhac, “Sur la diffraction d'une onde plane par un réseau infiniment conducteur,” Acad. Sci., B 262, 468 (1966) (in French).

Popov, E.

E. Popov, “Plasmon interactions in metallic gratings: ω- and k-minigaps and their connection with poles and zeros,” Surf. Sci. 222(2-3), 517–529 (1989).
[CrossRef]

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

Primeau, N.

I. Baltog, N. Primeau, R. Reinisch, and J. L. Coutaz, “Surface enhanced Raman scattering on silver grating: optimized antennalike gain of the stokes signal of 104,” Appl. Phys. Lett. 66(10), 1187 (1995).
[CrossRef]

Ramakrishnan, N.

N. Ramakrishnan, T. Vamsi, A. Khan, H. B. Nemade, and R. P. Palathinkal, “Humidity sensor using NIPAAm nanogel as sensing medium in saw devices,” Int. J. Nanosci. 10(01n02), 259–262 (2011).
[CrossRef]

Reinisch, R.

I. Baltog, N. Primeau, R. Reinisch, and J. L. Coutaz, “Surface enhanced Raman scattering on silver grating: optimized antennalike gain of the stokes signal of 104,” Appl. Phys. Lett. 66(10), 1187 (1995).
[CrossRef]

Ritchie, R.

R. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, “Surface plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[CrossRef]

Sambles, J. R.

S. C. Kitson, W. L. Barnes, G. W. Bradberry, and J. R. Sambles, “Surface profile dependence of surface plasmom band gaps on metallic gratings,” J. Appl. Phys. 79(9), 7383 (1996).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

Sánchez, B.

Schröter, U.

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60(7), 4992–4999 (1999).
[CrossRef]

Seideman, T.

M. Sukharev, P. R. Sievert, T. Seideman, and J. B. Ketterson, “Perfect coupling of light to surface plasmons with ultra-narrow linewidths,” J. Chem. Phys. 131(3), 034708 (2009).
[CrossRef] [PubMed]

Sekula, S.

Seminogov, V. N.

V. N. Seminogov and V. I. Sokolov, “Influence of the nonmonochromaticity of the periodic relief of a surface on the effect of total suppression of the specular reflection of an s-polarized electromagnetic wave,” Opt. Spectrosc. 68, 50–53 (1990).

A. Akhmanov, V. N. Seminogov, and V. I. Sokolov, “Light diffraction at corrugated surfaces,” J. Exp. Theor. Phys. 93, 1654 (1987) (in Russian).

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Sievert, P. R.

M. Sukharev, P. R. Sievert, T. Seideman, and J. B. Ketterson, “Perfect coupling of light to surface plasmons with ultra-narrow linewidths,” J. Chem. Phys. 131(3), 034708 (2009).
[CrossRef] [PubMed]

Sohlström, H.

Sokolov, V. I.

V. N. Seminogov and V. I. Sokolov, “Influence of the nonmonochromaticity of the periodic relief of a surface on the effect of total suppression of the specular reflection of an s-polarized electromagnetic wave,” Opt. Spectrosc. 68, 50–53 (1990).

A. Akhmanov, V. N. Seminogov, and V. I. Sokolov, “Light diffraction at corrugated surfaces,” J. Exp. Theor. Phys. 93, 1654 (1987) (in Russian).

Sukharev, M.

M. Sukharev, P. R. Sievert, T. Seideman, and J. B. Ketterson, “Perfect coupling of light to surface plasmons with ultra-narrow linewidths,” J. Chem. Phys. 131(3), 034708 (2009).
[CrossRef] [PubMed]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Sutherland, D. S.

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

Tabrizian, M.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

Toigo, F.

F. Toigo, A. Marvin, V. Celli, and N. Hill, “Optical properties of rough surfaces: general theory and the small roughness limit,” Phys. Rev. B 15(12), 5618–5626 (1977).
[CrossRef]

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Vamsi, T.

N. Ramakrishnan, T. Vamsi, A. Khan, H. B. Nemade, and R. P. Palathinkal, “Humidity sensor using NIPAAm nanogel as sensing medium in saw devices,” Int. J. Nanosci. 10(01n02), 259–262 (2011).
[CrossRef]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Vannahme, C.

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Wolfbeis, O. S.

S. M. Borisov and O. S. Wolfbeis, “Optical biosensors,” Chem. Rev. 108(2), 423–461 (2008).
[CrossRef] [PubMed]

Wood, R. W.

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Yee, S. S.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: a review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Acad. Sci., B (1)

R. Petit and M. Cadilhac, “Sur la diffraction d'une onde plane par un réseau infiniment conducteur,” Acad. Sci., B 262, 468 (1966) (in French).

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

I. Baltog, N. Primeau, R. Reinisch, and J. L. Coutaz, “Surface enhanced Raman scattering on silver grating: optimized antennalike gain of the stokes signal of 104,” Appl. Phys. Lett. 66(10), 1187 (1995).
[CrossRef]

S. Balci, A. Kocabas, C. Kocabas, and A. Aydinli, “Slowing surface plasmon polaritons on plasmonic coupled cavities by tuning grating grooves,” Appl. Phys. Lett. 97(13), 131103 (2010).
[CrossRef]

N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett. 88(7), 071110 (2006).
[CrossRef]

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Biosens. Bioelectron. (2)

G. A. Campbell and R. Mutharasan, “PEMC sensor’s mass change sensitivity is 20 pg/Hz under liquid immersion,” Biosens. Bioelectron. 22(1), 35–41 (2006).
[CrossRef] [PubMed]

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

Chem. Rev. (2)

S. M. Borisov and O. S. Wolfbeis, “Optical biosensors,” Chem. Rev. 108(2), 423–461 (2008).
[CrossRef] [PubMed]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

IEEE Sens. J. (1)

G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8(12), 2074–2079 (2008).
[CrossRef]

Int. J. Nanosci. (1)

N. Ramakrishnan, T. Vamsi, A. Khan, H. B. Nemade, and R. P. Palathinkal, “Humidity sensor using NIPAAm nanogel as sensing medium in saw devices,” Int. J. Nanosci. 10(01n02), 259–262 (2011).
[CrossRef]

J. Appl. Phys. (2)

S. C. Kitson, W. L. Barnes, G. W. Bradberry, and J. R. Sambles, “Surface profile dependence of surface plasmom band gaps on metallic gratings,” J. Appl. Phys. 79(9), 7383 (1996).
[CrossRef]

L. Nicu and T. Leichlé, “Biosensors and tools for surface functionalization from the macro- to the nanoscale: The way forward,” J. Appl. Phys. 104(11), 111101 (2008).
[CrossRef]

J. Chem. Phys. (1)

M. Sukharev, P. R. Sievert, T. Seideman, and J. B. Ketterson, “Perfect coupling of light to surface plasmons with ultra-narrow linewidths,” J. Chem. Phys. 131(3), 034708 (2009).
[CrossRef] [PubMed]

J. Exp. Theor. Phys. (1)

A. Akhmanov, V. N. Seminogov, and V. I. Sokolov, “Light diffraction at corrugated surfaces,” J. Exp. Theor. Phys. 93, 1654 (1987) (in Russian).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (1)

P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17(8), R93–R116 (2006).
[CrossRef]

Nano Lett. (1)

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Opt. Spectrosc. (1)

V. N. Seminogov and V. I. Sokolov, “Influence of the nonmonochromaticity of the periodic relief of a surface on the effect of total suppression of the specular reflection of an s-polarized electromagnetic wave,” Opt. Spectrosc. 68, 50–53 (1990).

Philos. Mag. (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).

Phys. Rev. B (2)

F. Toigo, A. Marvin, V. Celli, and N. Hill, “Optical properties of rough surfaces: general theory and the small roughness limit,” Phys. Rev. B 15(12), 5618–5626 (1977).
[CrossRef]

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60(7), 4992–4999 (1999).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

R. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, “Surface plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[CrossRef]

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (3)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: a review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

J. Dostalek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sens. Actuators B Chem. 107(1), 154–161 (2005).
[CrossRef]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
[CrossRef]

Surf. Sci. (1)

E. Popov, “Plasmon interactions in metallic gratings: ω- and k-minigaps and their connection with poles and zeros,” Surf. Sci. 222(2-3), 517–529 (1989).
[CrossRef]

Other (4)

A. V. Nesterov-Müller, Laser beams with axially symmetric polarisation, (Schatura, 2000).

http://www.allresist.de/wEnglish/produkte/SonderanfertigungenExperimentalmuster/0041.php

RSoft DiffractMOD, “RSoft Design Group.” http://www.rsoftdesign.com

R. B. M. Schasfoort and A. J. Tudos, Handbook of surface plasmon resonance (RSC Publishing, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Arbitrary grating relief (d: grating period, h: modulation depth, ε: dielectric permittivity of the grating material, ε cov : dielectric permittivity of the cover material). The normally incident plane wave is polarized perpendicular to the stripes.

Fig. 2
Fig. 2

Schematic principle of the optical characterization setup. The broadband radiation of a supercontinuum source is polarized and guided to the microfluidic chamber via a beam splitter. The light impinges the substrate under normal incidence. The reflected light passes the beam splitter anew and is spectrally investigated by a fiber-coupled spectrometer. The inset shows a photograph of the flowbox, in which the sensor sample acts as its back side.

Fig. 3
Fig. 3

(a) Numerically predicted reflection spectrum of the 0th order SPR on a sinusoidal silver surface (Grating period: 405 nm, modulation depth: 13 nm, silver film thickness: 125 nm), simulated by RCWA. The full-width-half-maximum (FWHM) and the coupling strength σ Sig are extracted by Lorentzian fitting. (b) Schematic illustration of the sensor geometry and the RCWA unit cell.

Fig. 4
Fig. 4

Simulated (blue triangles) and experimentally observed (red dots) behavior of the (a) SPR full-width-half-maximum (FWHM) and (b) the SPR coupling efficiency. While the FWHM increases with increasing grating modulation depth, the coupling strength σ Sig experiences a maximum for a modulation depth of around 16 nm. Due to the roughness of the silver film, the experimental results are loss-afflicted (wider FWHM and lower coupling efficiency, than numerically predicted).

Fig. 5
Fig. 5

SEM image of the sinusoidal silver surface of a fabricated sensor transducer. The roughness of the silver is induced by the inherent nature of the thermal evaporation process, and results in additional optical losses. In the present optical characterization experiments, the roughness lead to an increased sensitivity, in comparison to a perfectly smooth sinus, as the silver surfaces exhibits caverns and cracks, which the analyte can penetrate. The average RMS roughness was measured by AFM to 4.3 nm, with local maximum roughness values of ~41 nm,

Fig. 6
Fig. 6

(a) Calculated (blue triangles) and experimentally assessed benchmark factor γ OB as a function of the grating modulation depth. A comparison elucidates that especially for shallower gratings the roughness of the silver film results in reduced signal discrimination. (b) First derivative of the numerically predicted spectral signal of the investigated SPRs for different modulation depth. At maximum γ OB highest signal discrimination is achieved, as the side slopes of the resonance become steepest.

Fig. 7
Fig. 7

Calculated (blue triangles) and experimentally assessed benchmark factor χ exp , plotted over the grating modulation depth.

Fig. 8
Fig. 8

(a) Exemplary experimental SPR shift during exposure of the grating surface to IPA/H2O mixtures with various refractive indexes (Grating parameters: d=405nm, h=19.5nm, silver film thickness = 125 nm). (b) Comparison of the resonance shift in (a) with the shift numerically expected by RCWA simulation. The higher sensitivity achieved by experiment ( 682.36 nm/RIU 682.36 nm/RIU, simulated value: 417.97 nm/RIU ) are attributed to the roughness of the silver film.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

f(x)= p= ξ p exp(ipgx), ξ p = ξ p * , ξ 0 =0,
E= E i exp(ikziωt)+ p= E p exp(i k p x+ Γ p ziωt),
E 0 = (ki γ 0 ) (k+i γ 0 ) E i ig E 1 ξ 1 +ig E 1 ξ 1 ,
E ±1 =± (kg( E i E 0 ) ξ ±1 2 g 2 E 1 ξ ±2 ) kT ,
T= T 0 +i T 1 = g 2 k 2 k β m p=1,2,±3,±4... p 2 g 4 k Γ (p+1) | ξ p | 2 i β n ,
R = R Φ Δ () Δ (+) , R Φ = | (ki γ 0 ) (k+i γ 0 ) | 2 , Δ (±) = [ k 2 T 0 2 β n k( β n k2k g 2 | ξ 1 | 2 )4 g 4 | ξ 2 | 2 ] 2 +4 [ k T 0 ( β n kk g 2 | ξ 1 | 2 )k g 4 ( ξ 1 *2 ξ 2 + ξ 1 2 ξ 2 * ) ] 2 ,
k 2 T 0 2 β n k( β n k2k g 2 | ξ 1 | 2 )4 g 4 | ξ 2 | 2 =0, k T 0 ( β n kk g 2 | ξ 1 | 2 )k g 4 ( ξ 1 *2 ξ 2 + ξ 1 2 ξ 2 * )=0.
B= ( ( n cov λ/d ) 2 1) = β m +B/2,B p=1,2,±3,±4... p 2 β n ( λ/ n cov d ) 2 (p+1) 2 ( λ/ n cov d ) 2 1) | a p | 2 | a 1 | 2 ,
g 2 h 2 = β n 2 | a 1 | 2 .
d opt = λ n cov (1+ ( β m +B/2) 2 ) ,B β n p=1,2,±3,±4... p 2 (p+1) 2 1) | a p | 2 | a 1 | 2 ,
h opt = d opt 2π| a 1 | n 2( m 2 + n 2 ) .
d opt = λ n cov (1+ ( β m + β n /2 3 ) 2 ) 405nm,
h opt = 2 d opt π n 2( m 2 + n 2 ) 13nm.
γ OB = σ Sig FWHM .
χ exp = S σ Sig w = S σ Sig FWHM =S γ OB .

Metrics