Abstract

We report on the demonstration of three-dimensional optical trapping inside the core of a hollow-core microstructured optical fiber specifically designed and fabricated for this purpose. Optical trapping was achieved by means of an external tweezers beam incident transversely on the fiber and focused through the fiber cladding. Trapping was achieved for a range of particle sizes from 1 to 5 µm, and manipulation of the particles in three-dimensions through the entire cross-section of the fiber core was demonstrated. Spectroscopy was also performed on single fluorescent particles, with the fluorescence captured and guided in the fiber core. Video tracking methods allowed the optical traps to be characterized and photobleaching of single particles was also observed and characterized.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
    [CrossRef] [PubMed]
  2. K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
    [CrossRef] [PubMed]
  3. S. J. Hart and A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett. 83(25), 5316–5318 (2003).
    [CrossRef]
  4. S. J. Cran-McGreehin, K. Dholakia, and T. F. Krauss, “Monolithic integration of microfluidic channels and semiconductor lasers,” Opt. Express 14(17), 7723–7729 (2006).
    [CrossRef] [PubMed]
  5. A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9(17), 2568–2575 (2009).
    [CrossRef] [PubMed]
  6. P. S. J. Russell, “Photonic crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [CrossRef]
  7. D. M. Gherardi, A. E. Carruthers, T. Cizmar, E. M. Wright, and K. Dholakia, “A dual beam photonic crystal fiber trap for microscopic particles,” Appl. Phys. Lett. 93(4), 041110 (2008).
    [CrossRef]
  8. F. Benabid, J. Knight, and P. Russell, “Particle levitation and guidance in hollow-core photonic crystal fiber,” Opt. Express 10(21), 1195–1203 (2002).
    [PubMed]
  9. T. Takekoshi and R. J. Knize, “Optical guiding of atoms through a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 98(21), 210404 (2007).
    [CrossRef] [PubMed]
  10. P. Domachuk, N. Wolchover, M. Cronin-Golomb, and F. G. Omenetto, “Effect of hollow-core photonic crystal fiber microstructure on transverse optical trapping,” Appl. Phys. Lett. 94(14), 141101 (2009).
    [CrossRef]
  11. T. G. Euser, M. K. Garbos, J. S. Y. Chen, and P. S. J. Russell, “Precise balancing of viscous and radiation forces on a particle in liquid-filled photonic bandgap fiber,” Opt. Lett. 34(23), 3674–3676 (2009).
    [CrossRef] [PubMed]
  12. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
    [CrossRef] [PubMed]
  13. F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006).
    [CrossRef] [PubMed]
  14. F. M. Cox, A. Argyros, M. C. J. Large, and S. Kalluri, “Surface enhanced Raman scattering in a hollow core microstructured optical fiber,” Opt. Express 15(21), 13675–13681 (2007).
    [CrossRef] [PubMed]
  15. A. Argyros, M. A. van Eijkelenborg, M. C. J. Large, and I. M. Bassett, “Hollow-core microstructured polymer optical fiber,” Opt. Lett. 31(2), 172–174 (2006).
    [CrossRef] [PubMed]
  16. A. Argyros, “Microstructured polymer optical fibers,” J. Lightwave Technol. 27(11), 1571–1579 (2009).
    [CrossRef]
  17. M. A. van Eijkelenborg, A. Argyros, and S. G. Leon-Saval, “Polycarbonate hollow-core microstructured optical fiber,” Opt. Lett. 33(21), 2446–2448 (2008).
    [CrossRef] [PubMed]
  18. A. Argyros and J. Pla, “Hollow-core polymer fibers with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15(12), 7713–7719 (2007).
    [CrossRef] [PubMed]
  19. T. Birks, D. Bird, T. Hedley, J. Pottage, and P. Russell, “Scaling laws and vector effects in bandgap-guiding fibers,” Opt. Express 12(1), 69–74 (2004).
    [CrossRef] [PubMed]
  20. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St. J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibers,” Opt. Express 15(20), 12680–12685 (2007).
    [CrossRef] [PubMed]
  21. A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibers,” Opt. Express 16(8), 5642–5648 (2008).
    [CrossRef] [PubMed]

2009 (4)

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9(17), 2568–2575 (2009).
[CrossRef] [PubMed]

P. Domachuk, N. Wolchover, M. Cronin-Golomb, and F. G. Omenetto, “Effect of hollow-core photonic crystal fiber microstructure on transverse optical trapping,” Appl. Phys. Lett. 94(14), 141101 (2009).
[CrossRef]

T. G. Euser, M. K. Garbos, J. S. Y. Chen, and P. S. J. Russell, “Precise balancing of viscous and radiation forces on a particle in liquid-filled photonic bandgap fiber,” Opt. Lett. 34(23), 3674–3676 (2009).
[CrossRef] [PubMed]

A. Argyros, “Microstructured polymer optical fibers,” J. Lightwave Technol. 27(11), 1571–1579 (2009).
[CrossRef]

2008 (3)

2007 (5)

2006 (4)

2004 (1)

2003 (2)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[CrossRef] [PubMed]

S. J. Hart and A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett. 83(25), 5316–5318 (2003).
[CrossRef]

2002 (2)

F. Benabid, J. Knight, and P. Russell, “Particle levitation and guidance in hollow-core photonic crystal fiber,” Opt. Express 10(21), 1195–1203 (2002).
[PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Argyros, A.

Bassett, I. M.

Benabid, F.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

F. Benabid, J. Knight, and P. Russell, “Particle levitation and guidance in hollow-core photonic crystal fiber,” Opt. Express 10(21), 1195–1203 (2002).
[PubMed]

Bird, D.

Birks, T.

Burger, S.

Carruthers, A. E.

D. M. Gherardi, A. E. Carruthers, T. Cizmar, E. M. Wright, and K. Dholakia, “A dual beam photonic crystal fiber trap for microscopic particles,” Appl. Phys. Lett. 93(4), 041110 (2008).
[CrossRef]

Chen, J. S. Y.

Cizmar, T.

D. M. Gherardi, A. E. Carruthers, T. Cizmar, E. M. Wright, and K. Dholakia, “A dual beam photonic crystal fiber trap for microscopic particles,” Appl. Phys. Lett. 93(4), 041110 (2008).
[CrossRef]

Cooper, J.

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9(17), 2568–2575 (2009).
[CrossRef] [PubMed]

Cox, F. M.

Cran-McGreehin, S. J.

Cronin-Golomb, M.

P. Domachuk, N. Wolchover, M. Cronin-Golomb, and F. G. Omenetto, “Effect of hollow-core photonic crystal fiber microstructure on transverse optical trapping,” Appl. Phys. Lett. 94(14), 141101 (2009).
[CrossRef]

Dholakia, K.

D. M. Gherardi, A. E. Carruthers, T. Cizmar, E. M. Wright, and K. Dholakia, “A dual beam photonic crystal fiber trap for microscopic particles,” Appl. Phys. Lett. 93(4), 041110 (2008).
[CrossRef]

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
[CrossRef] [PubMed]

S. J. Cran-McGreehin, K. Dholakia, and T. F. Krauss, “Monolithic integration of microfluidic channels and semiconductor lasers,” Opt. Express 14(17), 7723–7729 (2006).
[CrossRef] [PubMed]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[CrossRef] [PubMed]

Docherty, A.

Domachuk, P.

P. Domachuk, N. Wolchover, M. Cronin-Golomb, and F. G. Omenetto, “Effect of hollow-core photonic crystal fiber microstructure on transverse optical trapping,” Appl. Phys. Lett. 94(14), 141101 (2009).
[CrossRef]

Euser, T. G.

Garbos, M. K.

Gherardi, D. M.

D. M. Gherardi, A. E. Carruthers, T. Cizmar, E. M. Wright, and K. Dholakia, “A dual beam photonic crystal fiber trap for microscopic particles,” Appl. Phys. Lett. 93(4), 041110 (2008).
[CrossRef]

Gu, M.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
[CrossRef] [PubMed]

Hart, S. J.

S. J. Hart and A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett. 83(25), 5316–5318 (2003).
[CrossRef]

Hedley, T.

Kalluri, S.

Knight, J.

Knight, J. C.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Knize, R. J.

T. Takekoshi and R. J. Knize, “Optical guiding of atoms through a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 98(21), 210404 (2007).
[CrossRef] [PubMed]

Krauss, T. F.

Large, M. C. J.

Leon-Saval, S. G.

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[CrossRef] [PubMed]

Omenetto, F. G.

P. Domachuk, N. Wolchover, M. Cronin-Golomb, and F. G. Omenetto, “Effect of hollow-core photonic crystal fiber microstructure on transverse optical trapping,” Appl. Phys. Lett. 94(14), 141101 (2009).
[CrossRef]

Padgett, M.

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9(17), 2568–2575 (2009).
[CrossRef] [PubMed]

Pearce, G. J.

Pla, J.

Pottage, J.

Poulton, C. G.

Reece, P.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
[CrossRef] [PubMed]

Russell, P.

Russell, P. S. J.

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[CrossRef] [PubMed]

St. J. Russell, P.

Takekoshi, T.

T. Takekoshi and R. J. Knize, “Optical guiding of atoms through a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 98(21), 210404 (2007).
[CrossRef] [PubMed]

Tassieri, M.

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9(17), 2568–2575 (2009).
[CrossRef] [PubMed]

Terray, A. V.

S. J. Hart and A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett. 83(25), 5316–5318 (2003).
[CrossRef]

van Eijkelenborg, M. A.

Wiederhecker, G. S.

Wolchover, N.

P. Domachuk, N. Wolchover, M. Cronin-Golomb, and F. G. Omenetto, “Effect of hollow-core photonic crystal fiber microstructure on transverse optical trapping,” Appl. Phys. Lett. 94(14), 141101 (2009).
[CrossRef]

Wright, E. M.

D. M. Gherardi, A. E. Carruthers, T. Cizmar, E. M. Wright, and K. Dholakia, “A dual beam photonic crystal fiber trap for microscopic particles,” Appl. Phys. Lett. 93(4), 041110 (2008).
[CrossRef]

Yao, A.

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9(17), 2568–2575 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

S. J. Hart and A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett. 83(25), 5316–5318 (2003).
[CrossRef]

D. M. Gherardi, A. E. Carruthers, T. Cizmar, E. M. Wright, and K. Dholakia, “A dual beam photonic crystal fiber trap for microscopic particles,” Appl. Phys. Lett. 93(4), 041110 (2008).
[CrossRef]

P. Domachuk, N. Wolchover, M. Cronin-Golomb, and F. G. Omenetto, “Effect of hollow-core photonic crystal fiber microstructure on transverse optical trapping,” Appl. Phys. Lett. 94(14), 141101 (2009).
[CrossRef]

Chem. Soc. Rev. (1)

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
[CrossRef] [PubMed]

J. Lightwave Technol. (2)

Lab Chip (1)

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip 9(17), 2568–2575 (2009).
[CrossRef] [PubMed]

Nature (1)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[CrossRef] [PubMed]

Opt. Express (8)

S. J. Cran-McGreehin, K. Dholakia, and T. F. Krauss, “Monolithic integration of microfluidic channels and semiconductor lasers,” Opt. Express 14(17), 7723–7729 (2006).
[CrossRef] [PubMed]

F. Benabid, J. Knight, and P. Russell, “Particle levitation and guidance in hollow-core photonic crystal fiber,” Opt. Express 10(21), 1195–1203 (2002).
[PubMed]

F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006).
[CrossRef] [PubMed]

F. M. Cox, A. Argyros, M. C. J. Large, and S. Kalluri, “Surface enhanced Raman scattering in a hollow core microstructured optical fiber,” Opt. Express 15(21), 13675–13681 (2007).
[CrossRef] [PubMed]

A. Argyros and J. Pla, “Hollow-core polymer fibers with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15(12), 7713–7719 (2007).
[CrossRef] [PubMed]

T. Birks, D. Bird, T. Hedley, J. Pottage, and P. Russell, “Scaling laws and vector effects in bandgap-guiding fibers,” Opt. Express 12(1), 69–74 (2004).
[CrossRef] [PubMed]

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St. J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibers,” Opt. Express 15(20), 12680–12685 (2007).
[CrossRef] [PubMed]

A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibers,” Opt. Express 16(8), 5642–5648 (2008).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

T. Takekoshi and R. J. Knize, “Optical guiding of atoms through a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 98(21), 210404 (2007).
[CrossRef] [PubMed]

Science (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Supplementary Material (2)

» Media 1: MOV (3391 KB)     
» Media 2: MOV (3456 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Transmission spectrum (air-filled) of a 20 cm length of the fabricated fiber. The spectrum will shift upon water-filling to shorter wavelengths as show. The fluorescence range of the particles used in Section 4 is also indicated. Inset shows an optical microscope image of the end-face of the fiber used. This fiber is referred to as Fiber 1 in the text.

Fig. 2
Fig. 2

(a) Schematic of the optical trap setup, with λ/2 indicating a half wave plate; PB a polarizing beam splitter; M a mirror; AOD the acousto-optic deflectors; RT a relay telescope; BET a beam expanding telescope; SM a steering mirror; DM a dichroic mirror. (b) Schematic of the microchamber constructed, with detail shown in (c). (d) Schematic of the HC fiber used for the trapping, showing the preferred orientation of the fiber with respect to the trapping beam; the dimensions indicated refer to Fiber 1.

Fig. 3
Fig. 3

Video frames showing the 5 μm particles trapped in the core of the HC fiber (Fiber 2). (a) Movement in x-direction along the direction of flow. (b) Movement in the y-direction across the transverse direction of the fiber. (c) Movement in the z-direction from the upper to the lower edge of the core with reference points highlighted in red. The laser power used was 16 mW.

Fig. 4
Fig. 4

Manipulation of trapped (a) 5 μm and (b) 1 μm particles in 3D inside the HC Fibers 2 and 1 respectively (see Media 1 and Media 2).

Fig. 5
Fig. 5

(a) Histogram (symbols) and corresponding Gaussian fit (line) of position fluctuation of the microparticles trapped in the fiber core for the x- and y-directions, as measured using video tracking, with 5 μm particles in Fiber 2. A Gaussian fit is used to determine the trap stiffness in each direction. (b) Profile of the variation in trap stiffness at different points along the width of the fiber core.

Fig. 6
Fig. 6

(a) Emission spectra taken for different excitation times (514 nm, 10 mW) of a single trapped particle; the emitted light is guided through the hollow core of the fiber in which the particle was trapped. The spectrum of free particles in suspension is superimposed for comparison. The emission is observed to decrease with exposure to the excitation beam, in the spectra and also through imaging (b), indicating photobleaching. The peak at 514 nm is light from the excitation laser scattered into the core by the particle.

Metrics