Abstract

Laser speckle spatial contrast analysis (LSSCA) is superior to laser speckle temporal contrast analysis (LSTCA) in monitoring the fast change in blood flow due to its advantage of high temporal resolution. However, the application of LSSCA which is based on spatial statistics may be limited when there is nonuniform intensity distribution such as fiber-transmitting laser speckle imaging. In this study, we present a normalized laser speckle spatial contrast analysis (nLSSCA) to correct the detrimental effects of nonuniform intensity distribution on the spatial statistics. Through numerical simulation and phantom experiments, it is found that just ten frames of dynamic laser speckle images are sufficient for nLSSCA to achieve effective correction. Furthermore, nLSSCA has higher temporal resolution than LSTCA to respond the change in velocity. LSSCA, LSTCA and nLSSCA are all applied in the fiber-transmitting laser speckle imaging system to analyze the change of cortical blood flow (CBF) during cortical spreading depression (CSD) in rat cortex respectively, and the results suggest that nLSSCA can examine the change of CBF more accurately. For these advantages, nLSSCA could be a potential tool for fiber-transmitting/endoscopic laser speckle imaging.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Cheng, Y. Yan, and T. Q. Duong, “Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging,” Opt. Express 16(14), 10214–10219 (2008).
    [CrossRef] [PubMed]
  2. G. Watanabe, H. Fujii, and S. Kishi, “Imaging of choroidal hemodynamics in eyes with polypoidal choroidal vasculopathy using laser speckle phenomenon,” Jpn. J. Ophthalmol. 52(3), 175–181 (2008).
    [CrossRef] [PubMed]
  3. K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002).
    [CrossRef] [PubMed]
  4. B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
    [CrossRef] [PubMed]
  5. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).
    [CrossRef] [PubMed]
  6. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
    [CrossRef] [PubMed]
  7. A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt. 15(6), 066030 (2010).
    [CrossRef] [PubMed]
  8. T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
    [CrossRef] [PubMed]
  9. A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
    [CrossRef]
  10. J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
    [CrossRef]
  11. S. Ulyanov, Y. Ganilova, D. Zhu, J. Qiu, P. Li, O. Ulianova, and Q. Luo, “LASCA with a small number of scatterers: application for monitoring of microflow,” Europhys. Lett. 82(1), 18005 (2008).
    [CrossRef]
  12. J. F. Dunn, K. R. Forrester, L. Martin, J. Tulip, and R. C. Bray, “A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints,” Lasers Surg. Med. 43(1), 21–28 (2011).
    [CrossRef] [PubMed]
  13. M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
    [CrossRef] [PubMed]
  14. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
    [CrossRef] [PubMed]
  15. K. R. Forrester, C. Stewart, C. Leonard, J. Tulip, and R. C. Bray, “Endoscopic laser imaging of tissue perfusion: new instrumentation and technique,” Lasers Surg. Med. 33(3), 151–157 (2003).
    [CrossRef] [PubMed]
  16. R. C. Bray, K. R. Forrester, J. Reed, C. Leonard, and J. Tulip, “Endoscopic laser speckle imaging of tissue blood flow: applications in the human knee,” J. Orthop. Res. 24(8), 1650–1659 (2006).
    [CrossRef] [PubMed]
  17. S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, and G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
    [CrossRef] [PubMed]
  18. Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, and S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
    [CrossRef] [PubMed]
  19. R. Jenny, “Fundamentals of fiber optics: an introduction for beginners” (2000), http://www.volpi.ch/download/htm/1193/de/Fiber-Optics-en.pdf .
  20. L. Song and D. Elson, “Endoscopic laser speckle contrast imaging system using a fibre image guide,” Proc. SPIE 7907, 79070F (2011).
    [CrossRef]
  21. D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A 25(1), 9–15 (2008).
    [CrossRef] [PubMed]
  22. D. D. Duncan and S. J. Kirkpatrick, “The copula: a tool for simulating speckle dynamics,” J. Opt. Soc. Am. A 25(1), 231–237 (2008).
    [CrossRef] [PubMed]
  23. J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt. 15(1), 016003 (2010).
    [CrossRef] [PubMed]
  24. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett. 33(24), 2886–2888 (2008).
    [CrossRef] [PubMed]
  25. A. A. P. Leão, “Pial circulation and spreading depression of activity in the cerebral cortex,” J. Neurophysiol. 7, 391–396 (1944).
  26. M. Lauritzen, J. P. Dreier, M. Fabricius, J. A. Hartings, R. Graf, and A. J. Strong, “Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury,” J. Cereb. Blood Flow Metab. 31(1), 17–35 (2011).
    [CrossRef] [PubMed]
  27. X. Sun, Y. Wang, S. Chen, W. Luo, P. Li, and Q. Luo, “Simultaneous monitoring of intracellular pH changes and hemodynamic response during cortical spreading depression by fluorescence-corrected multimodal optical imaging,” Neuroimage 57(3), 873–884 (2011).
    [CrossRef] [PubMed]
  28. D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25(8), 2088–2094 (2008).
    [CrossRef] [PubMed]
  29. J. C. Ramirez-San-Juan, R. Ramos-García, I. Guizar-Iturbide, G. Martínez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express 16(5), 3197–3203 (2008).
    [CrossRef] [PubMed]
  30. T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu, and S. H. Ong, “New insights to image processing of cortical blood flow monitors using laser speckle imaging,” in Proceedings of IEEE Conference Transaction on Medical Imaging (Department of Electrical and Computer Engineering, Singapore, 2007) Vol. 26, pp. 833–842.
  31. H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
    [CrossRef] [PubMed]

2011 (5)

J. F. Dunn, K. R. Forrester, L. Martin, J. Tulip, and R. C. Bray, “A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints,” Lasers Surg. Med. 43(1), 21–28 (2011).
[CrossRef] [PubMed]

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, and S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
[CrossRef] [PubMed]

L. Song and D. Elson, “Endoscopic laser speckle contrast imaging system using a fibre image guide,” Proc. SPIE 7907, 79070F (2011).
[CrossRef]

M. Lauritzen, J. P. Dreier, M. Fabricius, J. A. Hartings, R. Graf, and A. J. Strong, “Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury,” J. Cereb. Blood Flow Metab. 31(1), 17–35 (2011).
[CrossRef] [PubMed]

X. Sun, Y. Wang, S. Chen, W. Luo, P. Li, and Q. Luo, “Simultaneous monitoring of intracellular pH changes and hemodynamic response during cortical spreading depression by fluorescence-corrected multimodal optical imaging,” Neuroimage 57(3), 873–884 (2011).
[CrossRef] [PubMed]

2010 (3)

J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt. 15(1), 016003 (2010).
[CrossRef] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[CrossRef] [PubMed]

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt. 15(6), 066030 (2010).
[CrossRef] [PubMed]

2009 (1)

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[CrossRef] [PubMed]

2008 (9)

G. Watanabe, H. Fujii, and S. Kishi, “Imaging of choroidal hemodynamics in eyes with polypoidal choroidal vasculopathy using laser speckle phenomenon,” Jpn. J. Ophthalmol. 52(3), 175–181 (2008).
[CrossRef] [PubMed]

S. Ulyanov, Y. Ganilova, D. Zhu, J. Qiu, P. Li, O. Ulianova, and Q. Luo, “LASCA with a small number of scatterers: application for monitoring of microflow,” Europhys. Lett. 82(1), 18005 (2008).
[CrossRef]

D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A 25(1), 9–15 (2008).
[CrossRef] [PubMed]

D. D. Duncan and S. J. Kirkpatrick, “The copula: a tool for simulating speckle dynamics,” J. Opt. Soc. Am. A 25(1), 231–237 (2008).
[CrossRef] [PubMed]

J. C. Ramirez-San-Juan, R. Ramos-García, I. Guizar-Iturbide, G. Martínez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express 16(5), 3197–3203 (2008).
[CrossRef] [PubMed]

H. Cheng, Y. Yan, and T. Q. Duong, “Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging,” Opt. Express 16(14), 10214–10219 (2008).
[CrossRef] [PubMed]

D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25(8), 2088–2094 (2008).
[CrossRef] [PubMed]

S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett. 33(24), 2886–2888 (2008).
[CrossRef] [PubMed]

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, and G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
[CrossRef] [PubMed]

2006 (1)

R. C. Bray, K. R. Forrester, J. Reed, C. Leonard, and J. Tulip, “Endoscopic laser speckle imaging of tissue blood flow: applications in the human knee,” J. Orthop. Res. 24(8), 1650–1659 (2006).
[CrossRef] [PubMed]

2004 (2)

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[CrossRef] [PubMed]

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[CrossRef] [PubMed]

2003 (3)

K. R. Forrester, C. Stewart, C. Leonard, J. Tulip, and R. C. Bray, “Endoscopic laser imaging of tissue perfusion: new instrumentation and technique,” Lasers Surg. Med. 33(3), 151–157 (2003).
[CrossRef] [PubMed]

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).
[CrossRef] [PubMed]

2002 (1)

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002).
[CrossRef] [PubMed]

2001 (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

1996 (1)

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[CrossRef]

1981 (1)

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[CrossRef]

1944 (1)

A. A. P. Leão, “Pial circulation and spreading depression of activity in the cerebral cortex,” J. Neurophysiol. 7, 391–396 (1944).

Andermann, M. L.

Boas, D. A.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).
[CrossRef] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

Bolay, H.

Bouma, B. E.

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, and G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
[CrossRef] [PubMed]

Bray, R. C.

J. F. Dunn, K. R. Forrester, L. Martin, J. Tulip, and R. C. Bray, “A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints,” Lasers Surg. Med. 43(1), 21–28 (2011).
[CrossRef] [PubMed]

R. C. Bray, K. R. Forrester, J. Reed, C. Leonard, and J. Tulip, “Endoscopic laser speckle imaging of tissue blood flow: applications in the human knee,” J. Orthop. Res. 24(8), 1650–1659 (2006).
[CrossRef] [PubMed]

K. R. Forrester, C. Stewart, C. Leonard, J. Tulip, and R. C. Bray, “Endoscopic laser imaging of tissue perfusion: new instrumentation and technique,” Lasers Surg. Med. 33(3), 151–157 (2003).
[CrossRef] [PubMed]

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002).
[CrossRef] [PubMed]

Briers, J. D.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[CrossRef]

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[CrossRef]

Burnett, M. G.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[CrossRef] [PubMed]

Cen, J.

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[CrossRef] [PubMed]

Chen, S.

X. Sun, Y. Wang, S. Chen, W. Luo, P. Li, and Q. Luo, “Simultaneous monitoring of intracellular pH changes and hemodynamic response during cortical spreading depression by fluorescence-corrected multimodal optical imaging,” Neuroimage 57(3), 873–884 (2011).
[CrossRef] [PubMed]

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[CrossRef] [PubMed]

Cheng, H.

H. Cheng, Y. Yan, and T. Q. Duong, “Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging,” Opt. Express 16(14), 10214–10219 (2008).
[CrossRef] [PubMed]

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[CrossRef] [PubMed]

Choi, B.

J. C. Ramirez-San-Juan, R. Ramos-García, I. Guizar-Iturbide, G. Martínez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express 16(5), 3197–3203 (2008).
[CrossRef] [PubMed]

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[CrossRef] [PubMed]

Dale, A. M.

Detre, J. A.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[CrossRef] [PubMed]

Devor, A.

Draijer, M.

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[CrossRef] [PubMed]

Dreier, J. P.

M. Lauritzen, J. P. Dreier, M. Fabricius, J. A. Hartings, R. Graf, and A. J. Strong, “Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury,” J. Cereb. Blood Flow Metab. 31(1), 17–35 (2011).
[CrossRef] [PubMed]

Duncan, D. D.

Dunn, A. K.

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt. 15(6), 066030 (2010).
[CrossRef] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003).
[CrossRef] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

Dunn, J. F.

J. F. Dunn, K. R. Forrester, L. Martin, J. Tulip, and R. C. Bray, “A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints,” Lasers Surg. Med. 43(1), 21–28 (2011).
[CrossRef] [PubMed]

Duong, T. Q.

Durduran, T.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[CrossRef] [PubMed]

Elson, D.

L. Song and D. Elson, “Endoscopic laser speckle contrast imaging system using a fibre image guide,” Proc. SPIE 7907, 79070F (2011).
[CrossRef]

Fabricius, M.

M. Lauritzen, J. P. Dreier, M. Fabricius, J. A. Hartings, R. Graf, and A. J. Strong, “Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury,” J. Cereb. Blood Flow Metab. 31(1), 17–35 (2011).
[CrossRef] [PubMed]

Fercher, A. F.

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[CrossRef]

Forrester, K. R.

J. F. Dunn, K. R. Forrester, L. Martin, J. Tulip, and R. C. Bray, “A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints,” Lasers Surg. Med. 43(1), 21–28 (2011).
[CrossRef] [PubMed]

R. C. Bray, K. R. Forrester, J. Reed, C. Leonard, and J. Tulip, “Endoscopic laser speckle imaging of tissue blood flow: applications in the human knee,” J. Orthop. Res. 24(8), 1650–1659 (2006).
[CrossRef] [PubMed]

K. R. Forrester, C. Stewart, C. Leonard, J. Tulip, and R. C. Bray, “Endoscopic laser imaging of tissue perfusion: new instrumentation and technique,” Lasers Surg. Med. 33(3), 151–157 (2003).
[CrossRef] [PubMed]

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002).
[CrossRef] [PubMed]

Fox, D. J.

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt. 15(6), 066030 (2010).
[CrossRef] [PubMed]

Fujii, H.

G. Watanabe, H. Fujii, and S. Kishi, “Imaging of choroidal hemodynamics in eyes with polypoidal choroidal vasculopathy using laser speckle phenomenon,” Jpn. J. Ophthalmol. 52(3), 175–181 (2008).
[CrossRef] [PubMed]

Furuya, D.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[CrossRef] [PubMed]

Ganilova, Y.

S. Ulyanov, Y. Ganilova, D. Zhu, J. Qiu, P. Li, O. Ulianova, and Q. Luo, “LASCA with a small number of scatterers: application for monitoring of microflow,” Europhys. Lett. 82(1), 18005 (2008).
[CrossRef]

Gong, H.

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[CrossRef] [PubMed]

Graf, R.

M. Lauritzen, J. P. Dreier, M. Fabricius, J. A. Hartings, R. Graf, and A. J. Strong, “Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury,” J. Cereb. Blood Flow Metab. 31(1), 17–35 (2011).
[CrossRef] [PubMed]

Greenberg, J. H.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[CrossRef] [PubMed]

Guizar-Iturbide, I.

Gulati, A.

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, and G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
[CrossRef] [PubMed]

Hajjarian, Z.

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, and S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
[CrossRef] [PubMed]

Hartings, J. A.

M. Lauritzen, J. P. Dreier, M. Fabricius, J. A. Hartings, R. Graf, and A. J. Strong, “Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury,” J. Cereb. Blood Flow Metab. 31(1), 17–35 (2011).
[CrossRef] [PubMed]

Hondebrink, E.

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[CrossRef] [PubMed]

Jaffer, F. A.

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, and S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
[CrossRef] [PubMed]

Kang, N. M.

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[CrossRef] [PubMed]

Kirkpatrick, S. J.

Kishi, S.

G. Watanabe, H. Fujii, and S. Kishi, “Imaging of choroidal hemodynamics in eyes with polypoidal choroidal vasculopathy using laser speckle phenomenon,” Jpn. J. Ophthalmol. 52(3), 175–181 (2008).
[CrossRef] [PubMed]

Lauritzen, M.

M. Lauritzen, J. P. Dreier, M. Fabricius, J. A. Hartings, R. Graf, and A. J. Strong, “Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury,” J. Cereb. Blood Flow Metab. 31(1), 17–35 (2011).
[CrossRef] [PubMed]

Leão, A. A. P.

A. A. P. Leão, “Pial circulation and spreading depression of activity in the cerebral cortex,” J. Neurophysiol. 7, 391–396 (1944).

Leonard, C.

R. C. Bray, K. R. Forrester, J. Reed, C. Leonard, and J. Tulip, “Endoscopic laser speckle imaging of tissue blood flow: applications in the human knee,” J. Orthop. Res. 24(8), 1650–1659 (2006).
[CrossRef] [PubMed]

K. R. Forrester, C. Stewart, C. Leonard, J. Tulip, and R. C. Bray, “Endoscopic laser imaging of tissue perfusion: new instrumentation and technique,” Lasers Surg. Med. 33(3), 151–157 (2003).
[CrossRef] [PubMed]

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002).
[CrossRef] [PubMed]

Li, P.

X. Sun, Y. Wang, S. Chen, W. Luo, P. Li, and Q. Luo, “Simultaneous monitoring of intracellular pH changes and hemodynamic response during cortical spreading depression by fluorescence-corrected multimodal optical imaging,” Neuroimage 57(3), 873–884 (2011).
[CrossRef] [PubMed]

J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt. 15(1), 016003 (2010).
[CrossRef] [PubMed]

S. Ulyanov, Y. Ganilova, D. Zhu, J. Qiu, P. Li, O. Ulianova, and Q. Luo, “LASCA with a small number of scatterers: application for monitoring of microflow,” Europhys. Lett. 82(1), 18005 (2008).
[CrossRef]

Luo, Q.

X. Sun, Y. Wang, S. Chen, W. Luo, P. Li, and Q. Luo, “Simultaneous monitoring of intracellular pH changes and hemodynamic response during cortical spreading depression by fluorescence-corrected multimodal optical imaging,” Neuroimage 57(3), 873–884 (2011).
[CrossRef] [PubMed]

J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt. 15(1), 016003 (2010).
[CrossRef] [PubMed]

S. Ulyanov, Y. Ganilova, D. Zhu, J. Qiu, P. Li, O. Ulianova, and Q. Luo, “LASCA with a small number of scatterers: application for monitoring of microflow,” Europhys. Lett. 82(1), 18005 (2008).
[CrossRef]

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[CrossRef] [PubMed]

Luo, W.

X. Sun, Y. Wang, S. Chen, W. Luo, P. Li, and Q. Luo, “Simultaneous monitoring of intracellular pH changes and hemodynamic response during cortical spreading depression by fluorescence-corrected multimodal optical imaging,” Neuroimage 57(3), 873–884 (2011).
[CrossRef] [PubMed]

J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt. 15(1), 016003 (2010).
[CrossRef] [PubMed]

Martin, L.

J. F. Dunn, K. R. Forrester, L. Martin, J. Tulip, and R. C. Bray, “A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints,” Lasers Surg. Med. 43(1), 21–28 (2011).
[CrossRef] [PubMed]

Martínez-Niconoff, G.

Moskowitz, M. A.

Nadkarni, S. K.

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, and S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
[CrossRef] [PubMed]

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, and G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
[CrossRef] [PubMed]

Nelson, J. S.

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[CrossRef] [PubMed]

Parthasarathy, A. B.

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt. 15(6), 066030 (2010).
[CrossRef] [PubMed]

Qiu, J.

J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt. 15(1), 016003 (2010).
[CrossRef] [PubMed]

S. Ulyanov, Y. Ganilova, D. Zhu, J. Qiu, P. Li, O. Ulianova, and Q. Luo, “LASCA with a small number of scatterers: application for monitoring of microflow,” Europhys. Lett. 82(1), 18005 (2008).
[CrossRef]

Ramirez-San-Juan, J. C.

Ramos-García, R.

Reed, J.

R. C. Bray, K. R. Forrester, J. Reed, C. Leonard, and J. Tulip, “Endoscopic laser speckle imaging of tissue blood flow: applications in the human knee,” J. Orthop. Res. 24(8), 1650–1659 (2006).
[CrossRef] [PubMed]

Richards, L. M.

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt. 15(6), 066030 (2010).
[CrossRef] [PubMed]

Song, L.

L. Song and D. Elson, “Endoscopic laser speckle contrast imaging system using a fibre image guide,” Proc. SPIE 7907, 79070F (2011).
[CrossRef]

Steenbergen, W.

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[CrossRef] [PubMed]

Stewart, C.

K. R. Forrester, C. Stewart, C. Leonard, J. Tulip, and R. C. Bray, “Endoscopic laser imaging of tissue perfusion: new instrumentation and technique,” Lasers Surg. Med. 33(3), 151–157 (2003).
[CrossRef] [PubMed]

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002).
[CrossRef] [PubMed]

Strong, A. J.

M. Lauritzen, J. P. Dreier, M. Fabricius, J. A. Hartings, R. Graf, and A. J. Strong, “Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury,” J. Cereb. Blood Flow Metab. 31(1), 17–35 (2011).
[CrossRef] [PubMed]

Sun, X.

X. Sun, Y. Wang, S. Chen, W. Luo, P. Li, and Q. Luo, “Simultaneous monitoring of intracellular pH changes and hemodynamic response during cortical spreading depression by fluorescence-corrected multimodal optical imaging,” Neuroimage 57(3), 873–884 (2011).
[CrossRef] [PubMed]

Tearney, G. J.

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, and S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
[CrossRef] [PubMed]

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, and G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
[CrossRef] [PubMed]

Tulip, J.

J. F. Dunn, K. R. Forrester, L. Martin, J. Tulip, and R. C. Bray, “A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints,” Lasers Surg. Med. 43(1), 21–28 (2011).
[CrossRef] [PubMed]

R. C. Bray, K. R. Forrester, J. Reed, C. Leonard, and J. Tulip, “Endoscopic laser speckle imaging of tissue blood flow: applications in the human knee,” J. Orthop. Res. 24(8), 1650–1659 (2006).
[CrossRef] [PubMed]

K. R. Forrester, C. Stewart, C. Leonard, J. Tulip, and R. C. Bray, “Endoscopic laser imaging of tissue perfusion: new instrumentation and technique,” Lasers Surg. Med. 33(3), 151–157 (2003).
[CrossRef] [PubMed]

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002).
[CrossRef] [PubMed]

Ulianova, O.

S. Ulyanov, Y. Ganilova, D. Zhu, J. Qiu, P. Li, O. Ulianova, and Q. Luo, “LASCA with a small number of scatterers: application for monitoring of microflow,” Europhys. Lett. 82(1), 18005 (2008).
[CrossRef]

Ulyanov, S.

S. Ulyanov, Y. Ganilova, D. Zhu, J. Qiu, P. Li, O. Ulianova, and Q. Luo, “LASCA with a small number of scatterers: application for monitoring of microflow,” Europhys. Lett. 82(1), 18005 (2008).
[CrossRef]

van Leeuwen, T.

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[CrossRef] [PubMed]

Wang, J.

J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt. 15(1), 016003 (2010).
[CrossRef] [PubMed]

Wang, R. K.

Wang, Y.

X. Sun, Y. Wang, S. Chen, W. Luo, P. Li, and Q. Luo, “Simultaneous monitoring of intracellular pH changes and hemodynamic response during cortical spreading depression by fluorescence-corrected multimodal optical imaging,” Neuroimage 57(3), 873–884 (2011).
[CrossRef] [PubMed]

Watanabe, G.

G. Watanabe, H. Fujii, and S. Kishi, “Imaging of choroidal hemodynamics in eyes with polypoidal choroidal vasculopathy using laser speckle phenomenon,” Jpn. J. Ophthalmol. 52(3), 175–181 (2008).
[CrossRef] [PubMed]

Weber, E. L.

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt. 15(6), 066030 (2010).
[CrossRef] [PubMed]

Webster, S.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[CrossRef]

Wells-Gray, E. M.

Xi, J.

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, and S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
[CrossRef] [PubMed]

Yan, Y.

Yelin, D.

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, and G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
[CrossRef] [PubMed]

Yodh, A. G.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[CrossRef] [PubMed]

Yu, G.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[CrossRef] [PubMed]

Zeng, S.

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[CrossRef] [PubMed]

Zhang, H.

J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt. 15(1), 016003 (2010).
[CrossRef] [PubMed]

Zhou, C.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[CrossRef] [PubMed]

Zhu, D.

S. Ulyanov, Y. Ganilova, D. Zhu, J. Qiu, P. Li, O. Ulianova, and Q. Luo, “LASCA with a small number of scatterers: application for monitoring of microflow,” Europhys. Lett. 82(1), 18005 (2008).
[CrossRef]

Europhys. Lett. (1)

S. Ulyanov, Y. Ganilova, D. Zhu, J. Qiu, P. Li, O. Ulianova, and Q. Luo, “LASCA with a small number of scatterers: application for monitoring of microflow,” Europhys. Lett. 82(1), 18005 (2008).
[CrossRef]

J. Biomed. Opt. (7)

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[CrossRef] [PubMed]

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt. 15(6), 066030 (2010).
[CrossRef] [PubMed]

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[CrossRef]

S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, and G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt. 13(5), 054016 (2008).
[CrossRef] [PubMed]

Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, and S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt. 16(2), 026005 (2011).
[CrossRef] [PubMed]

J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt. 15(1), 016003 (2010).
[CrossRef] [PubMed]

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (3)

M. Lauritzen, J. P. Dreier, M. Fabricius, J. A. Hartings, R. Graf, and A. J. Strong, “Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury,” J. Cereb. Blood Flow Metab. 31(1), 17–35 (2011).
[CrossRef] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24(5), 518–525 (2004).
[CrossRef] [PubMed]

J. Neurophysiol. (1)

A. A. P. Leão, “Pial circulation and spreading depression of activity in the cerebral cortex,” J. Neurophysiol. 7, 391–396 (1944).

J. Opt. Soc. Am. A (3)

J. Orthop. Res. (1)

R. C. Bray, K. R. Forrester, J. Reed, C. Leonard, and J. Tulip, “Endoscopic laser speckle imaging of tissue blood flow: applications in the human knee,” J. Orthop. Res. 24(8), 1650–1659 (2006).
[CrossRef] [PubMed]

Jpn. J. Ophthalmol. (1)

G. Watanabe, H. Fujii, and S. Kishi, “Imaging of choroidal hemodynamics in eyes with polypoidal choroidal vasculopathy using laser speckle phenomenon,” Jpn. J. Ophthalmol. 52(3), 175–181 (2008).
[CrossRef] [PubMed]

Lasers Med. Sci. (1)

M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009).
[CrossRef] [PubMed]

Lasers Surg. Med. (2)

K. R. Forrester, C. Stewart, C. Leonard, J. Tulip, and R. C. Bray, “Endoscopic laser imaging of tissue perfusion: new instrumentation and technique,” Lasers Surg. Med. 33(3), 151–157 (2003).
[CrossRef] [PubMed]

J. F. Dunn, K. R. Forrester, L. Martin, J. Tulip, and R. C. Bray, “A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints,” Lasers Surg. Med. 43(1), 21–28 (2011).
[CrossRef] [PubMed]

Med. Biol. Eng. Comput. (1)

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002).
[CrossRef] [PubMed]

Microvasc. Res. (1)

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[CrossRef] [PubMed]

Neuroimage (1)

X. Sun, Y. Wang, S. Chen, W. Luo, P. Li, and Q. Luo, “Simultaneous monitoring of intracellular pH changes and hemodynamic response during cortical spreading depression by fluorescence-corrected multimodal optical imaging,” Neuroimage 57(3), 873–884 (2011).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (1)

L. Song and D. Elson, “Endoscopic laser speckle contrast imaging system using a fibre image guide,” Proc. SPIE 7907, 79070F (2011).
[CrossRef]

Other (2)

R. Jenny, “Fundamentals of fiber optics: an introduction for beginners” (2000), http://www.volpi.ch/download/htm/1193/de/Fiber-Optics-en.pdf .

T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu, and S. H. Ong, “New insights to image processing of cortical blood flow monitors using laser speckle imaging,” in Proceedings of IEEE Conference Transaction on Medical Imaging (Department of Electrical and Computer Engineering, Singapore, 2007) Vol. 26, pp. 833–842.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic setup for fiber-transmitting laser speckle imaging system.

Fig. 2
Fig. 2

(a) A simulated dynamic laser speckle image. (b) KnLSSCA for each m as a function of KLSSCA. (c) The derived T/τc as a function of m for numerical simulation. (d) A dynamic laser speckle image of the intralipid. (e) KnLSSCA for each velocity as a function of KLSSCA. (f) The derived 1/τc as a function of the velocity for phantom experiments.

Fig. 3
Fig. 3

(a) The defined value of a: abackground = 1; aR1 = 0.6, aR2 = 0.3, aR3 = 0.3, aR4 = 0.6. The number of rows for R1 to R4 is 30, 5, 10, and 10 respectively. (b) The resultant simulated dynamic laser speckle image: mbackground = 2, mR1 = 5, mR2 = 15, mR3 = 15, mR4 = 15. (c) Contrast image of (b) using LSSCA. (d) Contrast image of (b) using nLSSCA. (e) The longitudinal changes of the contrast in (c) and (d).

Fig. 4
Fig. 4

(a) The simulated dynamic laser speckle image with nonuniform intensity distribution. (b) The ratio of KR1 to KR2 as a function of the frame number. (c) The noise level expressed as σkk as a function of the frame number.

Fig. 5
Fig. 5

The response for the abrupt change in velocity of the intralipid obtained by LSSCA, nLSSCA and LSTCA respectively.

Fig. 6
Fig. 6

(a) A dynamic laser speckle image of the intralipid acquired by the fiber-transmitting laser speckle imaging system. (b) The contrast image of (a) calculated by LSSCA. (c) The contrast value in the 40th column of (b) and the intensity in the 40th column of (a). (d) The contrast image of (a) calculated by nLSSCA. (e) The mean contrast K using LSSCA, LSTCA and nLSSCA as a function of the velocity of the intralipid. (f) The derived T/τc as a function of the velocity of the intralipid.

Fig. 7
Fig. 7

(a) The CBF image calculated by LSSCA. (b) The CBF image calculated by nLSSCA using 10 frames. For improving the quality of the CBF image, there is temporal average for (b). (c) The ΔCBF during CSD as a function of time obtained by LSSCA, LSTCA using 10 frames, LSTCA using 50 frames and nLSSCA using ten frames. (d) The comparison of the time course of ΔCBF obtained by nLSSCA using 10 frames with that using 50 frames.

Fig. 8
Fig. 8

(a) The values of σkk as a function of the velocity of the intralipid. (b) The values of σkk in the three ROIs located in Fig. 7(b).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I n (x,y,i)=I(x,y,i)/ I ave (x,y,i), I ave (x,y,i)= t=i-(N-1) t=i I(x,y,t) N .
Z(k)= -2ln X 1 cos(2π X 2 + π 2 k-1 n-1 )
T(k)= F z (Z(k))
Α(k)=aexp(2πmT(k))

Metrics